| CY7C1480V25   CY7C1482V25   CY7C1486V25   72-Mbit (2M x 36/4M x 18/1M x 72)   Pipelined Sync SRAM   Features   • Supports bus operation up to 250 MHz   • Available speed grades are 250, 200, and 167 MHz   • Registered inputs and outputs for pipelined operation   • 2.5V core power supply   The CY7C1480V25/CY7C1482V25/CY7C1486V25 SRAM   integrates 2M x 36/4M x 18/1M × 72 SRAM cells with   advanced synchronous peripheral circuitry and a two-bit   counter for internal burst operation. All synchronous inputs are   gated by registers controlled by a positive-edge-triggered   Clock Input (CLK). The synchronous inputs include all   addresses, all data inputs, address-pipelining Chip Enable   • 2.5V/1.8V IO operation   • Fast clock-to-output time   (CE ), depth-expansion Chip Enables (CE and CE ), Burst   1 2 3 — 3.0 ns (for 250-MHz device)   Control inputs (ADSC, ADSP, and ADV), Write Enables (BW ,   X and BWE), and Global Write (GW). Asynchronous inputs   include the Output Enable (OE) and the ZZ pin.   • Provide high-performance 3-1-1-1 access rate   ® • User selectable burst counter supporting Intel   ® Addresses and chip enables are registered at rising edge of   clock when either Address Strobe Processor (ADSP) or   Address Strobe Controller (ADSC) is active. Subsequent burst   addresses can be internally generated as controlled by the   Advance pin (ADV).   Pentium interleaved or linear burst sequences   • Separate processor and controller address strobes   • Synchronous self timed writes   • Asynchronous output enable   • Single cycle chip deselect   Address, data inputs, and write controls are registered on-chip   to initiate a self-timed Write cycle. This part supports Byte   to two or four bytes wide, as controlled by the byte write control   inputs. When it is active LOW, GW causes all bytes to be   written.   • CY7C1480V25, CY7C1482V25 available in   JEDEC-standard Pb-free 100-pin TQFP, Pb-free and   non-Pb-free 165-ball FBGA package. CY7C1486V25   available in Pb-free and non-Pb-free 209-ball FBGA   package   • IEEE 1149.1 JTAG-Compatible Boundary Scan   • “ZZ” Sleep Mode option   The CY7C1480V25/CY7C1482V25/CY7C1486V25 operates   from a +2.5V core power supply while all outputs may operate   with either a +2.5 or +1.8V supply. All inputs and outputs are   JEDEC-standard JESD8-5-compatible.   Selection Guide   250 MHz   3.0   200 MHz   3.0   167 MHz   3.4   Unit   ns   Maximum Access Time   Maximum Operating Current   Maximum CMOS Standby Current   450   450   400   mA   mA   120   120   120   Note   1. For best practices recommendations, refer to the Cypress application note System Design Guidelines at www.cypress.com.   Cypress Semiconductor Corporation   Document #: 38-05282 Rev. *H   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised April 23, 2007   CY7C1480V25   CY7C1482V25   CY7C1486V25   Logic Block Diagram – CY7C1486V25 (1M x 72)   ADDRESS   REGISTER   A0, A1,A   A[1:0]   MODE   Q1   Q0   ADV   CLK   BINARY   COUNTER   CLR   ADSC   ADSP   DQ   H , DQPH   DQ   H , DQPH   BW   BW   H G WRITE DRIVER   WRITE DRIVER   DQ   G , DQPG   DQ   F , DQPF   WRITE DRIVER   WRITE DRIVER   DQ   F , DQPF   DQ   F , DQPF   BW   BW   BW   BW   F E WRITE DRIVER   WRITE DRIVER   DQ   E , DQPE   DQ   E , DQPE   WRITE DRIVER   WRITE DRIVER   MEMORY   ARRAY   DQ   D , DQPD   DQ   D , DQPD   D WRITE DRIVER   WRITE DRIVER   DQ   C , DQPC   DQ   C , DQPC   C WRITE DRIVER   WRITE DRIVER   OUTPUT   BUFFERS   OUTPUT   REGISTERS   SENSE   AMPS   DQs   DQP   DQP   DQP   DQP   DQP   DQP   DQP   DQP   A B C D E E DQ   B , DQPB   DQ   B , DQPB   WRITE DRIVER   BW   BW   B WRITE DRIVER   DQ   A , DQPA   DQ   A , DQPA   F WRITE DRIVER   A WRITE DRIVER   G H BWE   INPUT   GW   CE1   CE2   CE3   OE   REGISTERS   ENABLE   REGISTER   PIPELINED   ENABLE   SLEEP   CONTROL   ZZ   Document #: 38-05282 Rev. *H   Page 3 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Pin Configurations   100-Pin TQFP Pinout   DQPC   1 DQPB   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQB   DQB   VSSQ   VDDQ   DQB   DQB   VSS   80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   NC   NC   NC   VDDQ   VSSQ   NC   A NC   NC   VDDQ   VSSQ   NC   DQPA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   VSS   NC   1 2 3 4 5 6 7 8 80   79   78   77   76   75   74   73   72   71   70   69   68   67   66   65   64   63   62   61   60   59   58   57   56   55   54   53   52   51   DQC   2 DQc   VDDQ   VSSQ   DQC   3 4 5 6 DQC   7 NC   DQC   8 DQB   DQB   VSSQ   VDDQ   DQB   DQB   NC   VDD   NC   VSS   DQB   DQB   VDDQ   VSSQ   DQB   DQB   DQPB   NC   DQC   9 10   11   9 VSSQ   VDDQ   DQC   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   12   DQC   13   NC   14   VDD   15   NC   VDD   ZZ   CY7C1482V25   (4M x 18)   CY7C1480V25   (2M x 36)   NC   16   VDD   ZZ   VSS   17   DQD   18   DQA   DQA   VDDQ   VSSQ   DQA   DQA   DQA   DQA   VSSQ   VDDQ   DQA   DQA   DQPA   DQA   DQA   VDDQ   VSSQ   DQA   DQA   NC   DQD   19   20   21   VDDQ   VSSQ   DQD   22   DQD   23   DQD   24   DQD   25   26   27   NC   VSSQ   VDDQ   DQD   DQD   29   VSSQ   VDDQ   NC   NC   NC   VSSQ   VDDQ   NC   NC   NC   28   DQPD   30   Document #: 38-05282 Rev. *H   Page 4 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Pin Configurations (continued)   165-Ball FBGA (15 x 17 x 1.4 mm) Pinout   CY7C1480V25 (2M x 36)   1 2 3 4 5 6 7 8 9 10   A 11   NC   NC/288M   NC/144M   DQPC   A B C D CE1   BWC   BWD   VSS   VDD   BWB   BWA   VSS   VSS   CE   A BWE   GW   VSS   ADSC   OE   ADV   ADSP   VDDQ   VDDQ   3 A CE2   VDDQ   VDDQ   CLK   VSS   VSS   A NC/576M   DQPB   DQB   NC   VSS   NC/1G   DQB   DQC   DQC   VSS   VDD   DQC   DQC   DQC   DQC   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   DQB   DQB   DQB   NC   DQB   E F DQC   DQC   NC   VSS   VSS   VSS   VSS   VSS   VSS   DQB   DQB   ZZ   G H J DQD   DQD   DQD   DQD   DQD   DQD   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   DQA   DQA   DQA   K L DQD   DQPD   NC   DQD   NC   A VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A DQA   DQPA   A M N P TDI   A1   TDO   A0   MODE   A A A TMS   TCK   A A A A R CY7C1482V25 (4M x 18)   1 2 A 3 4 5 NC   6 7 8 9 10   A 11   A NC/288M   NC/144M   NC   A B C D BWB   NC   CE   CE1   CE2   BWE   GW   VSS   VSS   ADSC   OE   ADV   ADSP   VDDQ   VDDQ   3 A BWA   VSS   VSS   CLK   VSS   VSS   A NC/576M   DQPA   DQA   NC   VDDQ   VDDQ   VSS   VDD   VSS   NC/1G   NC   NC   DQB   VDD   NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   NC   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VSS   VDD   VDD   VDD   VDD   VDD   VDD   VDD   VDDQ   VDDQ   VDDQ   NC   NC   NC   DQA   DQA   DQA   ZZ   E F NC   NC   G H J NC   NC   DQB   DQB   DQB   NC   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   VDDQ   DQA   DQA   DQA   NC   NC   NC   K L NC   NC   DQB   DQPB   NC   NC   NC   A VDDQ   VDDQ   A VDD   VSS   A VSS   NC   VSS   A VSS   NC   VDD   VSS   A VDDQ   VDDQ   A DQA   NC   A NC   NC   A M N P TDI   A1   TDO   MODE   A A A TMS   A0   TCK   A A A A R Document #: 38-05282 Rev. *H   Page 5 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Pin Configurations (continued)   209-Ball FBGA (14 x 22 x 1.76 mm) Pinout   CY7C1486V25 (1M × 72)   1 2 3 A 4 5 6 7 8 9 10   11   DQG   DQG   DQG   A B C D E F DQG   DQG   DQB   DQB   DQB   CE   ADSC   BWE   ADSP   ADV   A CE   A DQB   DQB   2 3 NC/288M   NC/144M   BWS   BWS   BWS   B BWS   F G C DQG   DQG   NC/576M   GW   BWS   NC   BWS   CE   BWS   A BWS   DQB   DQB   E D 1 H DQG   V NC/1G OE   V NC   V SS   DQB   SS   DQPG DQPC   V V V V V V DDQ   DDQ   DDQ   SS   DDQ   DD   DD   DD   DQPF DQPB   DQC   DQC   V V V DQF   DQF   V V NC   NC   NC   NC   V V SS   SS   SS   SS   DD   SS   G H J DQC   DQC   V DQC   V V DDQ   V V V DD   DDQ   DQF   DQF   DDQ   DDQ   V V V V V V V DQC   DQC   NC   DQF   SS   SS   SS   SS   SS   SS   DQ   F DQC   NC   V V V V DDQ   V DDQ   DD   DD   DDQ   DDQ   DQF   NC   DQF   NC   K L CLK   V V V NC   V SS   SS   SS   NC   NC   DQH   DQH   DQH   V V V NC   NC   V DDQ   DD   SS   DD   DDQ   DDQ   DQA   DQA   DQ   A DDQ   M N P R T V V V V V V V DQH   DQH   DQH   V V SS   SS   SS   SS   SS   DQA   DQA   DQA   V V V DDQ   DQH   DQH   DQPD   DQD   DQD   V V V V V NC   ZZ   V DD   DD   DDQ   SS   DDQ   DDQ   DQA   DQA   DQPA   DQE   DQE   V V V V V V SS   SS   SS   SS   SS   DQPH   DQD   DQD   DQD   DQD   V V DDQ   SS   DD   DD   DDQ   DDQ   SS   DDQ   DD   DQPE   DQE   DQE   DQE   DQE   NC   V NC   A NC   NC   A MODE   A U V W A A A A A A A1   A DQD   DQD   A A A DQE   DQE   TDI   TDO   TCK   A A0   A TMS   Document #: 38-05282 Rev. *H   Page 6 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Pin Definitions   Pin Name   I/O   Description   Address Inputs used to select one of the address locations. Sampled at the rising   A , A , A   Input-   0 1 Synchronous edge of the CLK if ADSP or ADSC is active LOW, and CE , CE , and CE are sampled   1 2 3 active. A1: A0 are fed to the two-bit counter.   Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the   Synchronous SRAM. Sampled on the rising edge of CLK.   Input-   BW ,BW ,BW ,   A B C BW , BW , BW ,   D E F BW , BW   G H GW   Input-   Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK,   Synchronous a global write is conducted (ALL bytes are written, regardless of the values on BW and   X BWE).   BWE   CLK   Input-   Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal   Synchronous must be asserted LOW to conduct a byte write.   Input-   Clock   Clock Input. Captures all synchronous inputs to the device. Also increments the burst   counter when ADV is asserted LOW during a burst operation.   CE   CE   CE   Input-   Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in   1 2 3 Synchronous conjunction with CE and CE to select/deselect the device. ADSP is ignored if CE is   2 3 1 HIGH. CE is sampled only when a new external address is loaded.   1 Input-   Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in   Synchronous conjunction with CE and CE to select/deselect the device. CE is sampled only when a   1 3 2 new external address is loaded.   Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in   Synchronous conjunction with CE and CE to select/deselect the device. CE is sampled only when a   Input-   1 2 3 new external address is loaded.   OE   Input-   Output Enable, asynchronous input, active LOW. Controls the direction of the IO pins.   Asynchronous When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are tri-stated,   and act as input data pins. OE is masked during the first clock of a read cycle when   emerging from a deselected state.   ADV   Input-   Advance Input signal, sampled on the rising edge of CLK, active LOW. When   Synchronous asserted, it automatically increments the address in a burst cycle.   ADSP   Input- Address Strobe from Processor, sampled on the rising edge of CLK, active LOW.   Synchronous When asserted LOW, addresses presented to the device are captured in the address   registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both   asserted, only ADSP is recognized. ASDP is ignored when CE is deasserted HIGH.   1 ADSC   ZZ   Input-   Address Strobe from Controller, sampled on the rising edge of CLK, active LOW.   Synchronous When asserted LOW, addresses presented to the device are captured in the address   registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both   asserted, only ADSP is recognized.   Input-   ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a   Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation, this   pin has to be LOW or left floating. ZZ pin has an internal pull down.   I/O-   Bidirectional Data IO lines. As inputs, they feed into an on-chip data register that is   DQs, DQPs   Synchronous triggered by the rising edge of CLK. As outputs, they deliver the data contained in the   memory location specified by the addresses presented during the previous clock rise of   the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW,   the pins behave as outputs. When HIGH, DQs and DQP are placed in a tri-state condition.   X V V V V Power Supply Power supply inputs to the core of the device.   DD   Ground   Ground for the core of the device.   Ground for the I/O circuitry.   SS   I/O Ground   SSQ   I/O Power Supply Power supply for the I/O circuitry.   DDQ   Note   2. Applicable for TQFP package. For BGA package V serves as ground for the core and the IO circuitry.   SS   Document #: 38-05282 Rev. *H   Page 7 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Pin Definitions (continued)   Pin Name   I/O   Description   Selects Burst Order. When tied to GND selects linear burst sequence. When tied to V   MODE   Input Static   DD   or left floating selects interleaved burst sequence. This is a strap pin and must remain static   during device operation. Mode pin has an internal pull up.   TDO   TDI   JTAG Serial   Output   Synchronous packages.   Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the   JTAG feature is not used, this pin must be disconnected. This pin is not available on TQFP   JTAG Serial Input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous is not used, this pin can be disconnected or connected to V . This pin is not available on   DD   TQFP packages.   TMS   JTAG Serial Input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature   Synchronous is not used, this pin can be disconnected or connected to V . This pin is not available on   DD   TQFP packages.   TCK   NC   JTAG Clock   - Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be   connected to V . This pin is not available on TQFP packages.   SS   No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are address   expansion pins and are not internally connected to the die.   corresponding data is allowed to propagate to the input of the   Output Registers. At the rising edge of the next clock the data   Functional Overview   All synchronous inputs pass through input registers controlled   by the rising edge of the clock. All data outputs pass through   output registers controlled by the rising edge of the clock.   Maximum access delay from the clock rise (t ) is 3.0 ns   (250 MHz device).   is allowed to propagate through the output register and onto   the data bus within 3.0 ns (250-MHz device) if OE is active   LOW. The only exception occurs when the SRAM is emerging   from a deselected state to a selected state, its outputs are   always tri-stated during the first cycle of the access. After the   first cycle of the access, the outputs are controlled by the OE   signal. Consecutive single read cycles are supported. After the   SRAM is deselected at clock rise by the chip select and either   ADSP or ADSC signals, its output will tri-state immediately.   CO   The CY7C1480V25/CY7C1482V25/CY7C1486V25 supports   secondary cache in systems using either a linear or inter-   leaved burst sequence. The interleaved burst order supports   Pentium and i486™ processors. The linear burst sequence is   suited for processors that use a linear burst sequence. The   burst order is user selectable, and is determined by sampling   the MODE input. Accesses can be initiated with either the   Processor Address Strobe (ADSP) or the Controller Address   Strobe (ADSC). Address advancement through the burst   sequence is controlled by the ADV input. A two-bit on-chip   wraparound burst counter captures the first address in a burst   sequence and automatically increments the address for the   rest of the burst access.   Single Write Accesses Initiated by ADSP   This access is initiated when both of the following conditions   are satisfied at clock rise: (1) ADSP is asserted LOW, and   (2) CE , CE , CE are all asserted active. The address   1 2 3 presented to A is loaded into the address register and the   address advancement logic while being delivered to the   memory array. The write signals (GW, BWE, and BW ) and   X ADV inputs are ignored during this first cycle.   ADSP-triggered write accesses require two clock cycles to   complete. If GW is asserted LOW on the second clock rise, the   data presented to the DQs inputs is written into the corre-   sponding address location in the memory array. If GW is HIGH,   Byte write operations are qualified with the Byte Write Enable   (BWE) and Byte Write Select (BW ) inputs. A Global Write   X Enable (GW) overrides all byte write inputs and writes data to   all four bytes. All writes are simplified with on-chip   synchronous self-timed write circuitry.   then the write operation is controlled by the BWE and BW   X signals.   Three synchronous Chip Selects (CE , CE , CE ) and an   1 2 3 The CY7C1480V25/CY7C1482V25/CY7C1486V25 provides   Read/Write” on page 11. Asserting the Byte Write Enable input   asynchronous Output Enable (OE) provide easy bank   selection and output tri-state control. ADSP is ignored if CE   1 is HIGH.   (BWE) with the selected Byte Write (BW ) input, will selec-   X Single Read Accesses   tively write to only the desired bytes. Bytes not selected during   a byte write operation remain unaltered. A synchronous   self-timed write mechanism has been provided to simplify the   write operations.   This access is initiated when the following conditions are   satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)   CE , CE , CE are all asserted active, and (3) the write signals   1 2 3 (GW, BWE) are all deasserted HIGH. ADSP is ignored if CE   Because CY7C1480V25/CY7C1482V25/CY7C1486V25 is a   common IO device, the Output Enable (OE) must be   deasserted HIGH before presenting data to the DQs inputs.   Doing so tri-states the output drivers. As a safety precaution,   1 is HIGH. The address presented to the address inputs (A) is   stored into the address advancement logic and the Address   Register while being presented to the memory array. The   Document #: 38-05282 Rev. *H   Page 8 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   DQs are automatically tri-stated whenever a write cycle is   detected, regardless of the state of OE.   Sleep Mode   The ZZ input pin is an asynchronous input. Asserting ZZ   places the SRAM in a power conservation “sleep” mode. Two   clock cycles are required to enter into or exit from this “sleep”   mode. While in this mode, data integrity is guaranteed.   Accesses pending when entering the “sleep” mode are not   considered valid nor is the completion of the operation   guaranteed. The device must be deselected prior to entering   the “sleep” mode. CE , CE , CE , ADSP, and ADSC must   Single Write Accesses Initiated by ADSC   ADSC Write accesses are initiated when the following condi-   tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is   deasserted HIGH, (3) CE , CE , CE are all asserted active,   1 2 3 and (4) the appropriate combination of the write inputs (GW,   BWE, and BW ) are asserted active to conduct a write to the   X 1 2 3 desired byte(s). ADSC-triggered write accesses need a single   clock cycle to complete. The address presented to A is loaded   into the address register and the address advancement logic   while being delivered to the memory array. The ADV input is   ignored during this cycle. If a global write is conducted, the   data presented to the DQs is written into the corresponding   address location in the memory core. If a byte write is   conducted, only the selected bytes are written. Bytes not   selected during a byte write operation remain unaltered. A   synchronous self-timed write mechanism has been provided   to simplify the write operations.   remain inactive for the duration of t   returns LOW.   after the ZZ input   ZZREC   Interleaved Burst Address Table   (MODE = Floating or VDD   ) First   Address   A1: A0   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   00   01   10   11   01   00   11   10   10   11   00   01   11   10   01   00   Because CY7C1480V25/CY7C1482V25/CY7C1486V25 is a   common IO device, the Output Enable (OE) must be   deasserted HIGH before presenting data to the DQs inputs.   Doing so tri-states the output drivers. As a safety precaution,   DQs are automatically tri-stated whenever a write cycle is   detected, regardless of the state of OE.   Linear Burst Address Table   (MODE = GND)   Burst Sequences   First   Second   Address   A1: A0   Third   Address   A1: A0   Fourth   Address   A1: A0   The CY7C1480V25/CY7C1482V25/CY7C1486V25 provides   a two-bit wraparound counter, fed by A1: A0, that implements   either an interleaved or linear burst sequence. The interleaved   burst sequence is designed specifically to support Intel   Pentium applications. The linear burst sequence is designed   to support processors that follow a linear burst sequence. The   burst sequence is user selectable through the MODE input.   Address   A1: A0   00   01   10   11   01   10   11   00   10   11   00   01   11   00   01   10   Asserting ADV LOW at clock rise automatically increments the   burst counter to the next address in the burst sequence. Both   Read and Write burst operations are supported.   ZZ Mode Electrical Characteristics   Parameter   Description   Sleep Mode Standby Current   Device Operation to ZZ   Test Conditions   ZZ > V – 0.2V   Min.   Max.   120   Unit   mA   ns   I t t t t DDZZ   DD   ZZ > V – 0.2V   2t   ZZS   DD   CYC   ZZ Recovery Time   ZZ < 0.2V   2t   ns   ZZREC   ZZI   CYC   ZZ Active to Sleep Current   ZZ Inactive to Exit Sleep Current   This parameter is sampled   This parameter is sampled   2t   ns   CYC   0 ns   RZZI   Document #: 38-05282 Rev. *H   Page 9 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Truth Table   The truth table for CY7C1480V25, CY7C1482V25, and CY7C1486V25 follows.   Operation   Add. Used CE   CE   X L CE ZZ ADSP ADSC ADV WRITE OE CLK   DQ   1 2 3 Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Deselect Cycle, Power Down   Sleep Mode, Power Down   Read Cycle, Begin Burst   Read Cycle, Begin Burst   Write Cycle, Begin Burst   None   None   H L X X H X H X L L L L L L H L L L L L L L L L L L L L L L L L X L L X X L X X X X X X X X X X X L X X X X X X X X L X X X X X X L L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   L-H Tri-State   None   L X L L None   L H H X L None   L X X H H H H H X X X X X X X X X X X X L None   X L X X X L X Tri-State   Q External   External   External   External   External   Next   L-H   L L L H X L L-H Tri-State   L L H H H H H X X H X H H X X H X L-H   L-H   D Q Read Cycle, Begin Burst   Read Cycle, Begin Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Read Cycle, Continue Burst   Write Cycle, Continue Burst   Write Cycle, Continue Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Read Cycle, Suspend Burst   Write Cycle, Suspend Burst   Write Cycle, Suspend Burst   L L L H H H H H H L L L L H L L-H Tri-State   L-H   L-H Tri-State   L-H   L-H Tri-State   X X H H X H X X H H X H X X X X X X X X X X X X H H H H H H H H H H H H Q Next   L H L Next   L Q Next   L H X X L Next   L L-H   L-H   L-H   D D Q Next   L L Current   Current   Current   Current   Current   Current   H H H H H H H H H H L H L L-H Tri-State   L-H   L-H Tri-State   Q H X X L-H   L-H   D D L Notes   3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.   4. WRITE = L when any one or more Byte Write Enable signals and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals, BWE, GW = H.   5. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.   6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks   X after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to enable the outputs to tri-state. OE is a   don't care for the remainder of the write cycle   7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is   inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).   Document #: 38-05282 Rev. *H   Page 10 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Truth Table for Read/Write   The read/write truth table for the CY7C1480V25 follows.   [5]   Function   GW   BWE   BW   BW   BW   BW   A D C B Read   Read   H H H H H H H H H H H H H H H H H L H L L L L L L L L L L L L L L L L X X H H H H H H H H L X H H H H L X H H L X H L Write Byte A – (DQ and DQP )   A A Write Byte B – (DQ and DQP )   H L B B Write Bytes B, A   Write Byte C – (DQ and DQP )   L H H L H L C C Write Bytes C, A   Write Bytes C, B   Write Bytes C, B, A   L L H L L L Write Byte D – (DQ and DQP )   H H H H L H H L H L D D Write Bytes D, A   Write Bytes D, B   Write Bytes D, B, A   Write Bytes D, C   L L H L L L L H H L H L Write Bytes D, C, A   Write Bytes D, C, B   Write All Bytes   L L L L H L L L L Write All Bytes   X X X X Truth Table for Read/Write   The read/write truth table for the CY7C1482V25 follows.   [5]   Function   GW   BWE   BW   BW   A B Read   Read   H H H H H H L H L L L L L X X H H L X H L Write Byte A – (DQ and DQP )   A A Write Byte B – (DQ and DQP )   H L B B Write Bytes B, A   Write All Bytes   Write All Bytes   L L L X X Truth Table for Read/Write   The read/write truth table for the CY7C1486V25 follows.   [8]   Function   GW   BWE   BW   X Read   H H H H L H L L L X X Read   All BW = H   Write Byte x – (DQx and DQPx)   Write All Bytes   L All BW = L   X Write All Bytes   Note   8. BWx represents any byte write signal BW[0..7]. To enable any byte write BWx, a Logic LOW signal must be applied at clock rise. Any number of byte writes can   be enabled at the same time for any given write.   Document #: 38-05282 Rev. *H   Page 11 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Test Mode Select (TMS)   IEEE 1149.1 Serial Boundary Scan (JTAG)   The TMS input gives commands to the TAP controller and is   sampled on the rising edge of TCK. You can leave this ball   unconnected if the TAP is not used. The ball is pulled up inter-   nally, resulting in a logic HIGH level.   The CY7C1480V25/CY7C1482V25/CY7C1486V25 incorpo-   rates a serial boundary scan test access port (TAP). This port   operates in accordance with IEEE Standard 1149.1-1990 but   does not have the set of functions required for full 1149.1   compliance. These functions from the IEEE specification are   excluded because their inclusion places an added delay in the   critical speed path of the SRAM. Note that the TAP controller   functions in a manner that does not conflict with the operation   of other devices using 1149.1 fully compliant TAPs. The TAP   operates using JEDEC-standard 2.5V or 1.8V I/O logic levels.   Test Data-In (TDI)   The TDI ball serially inputs information into the registers and   can be connected to the input of any of the registers. The   register between TDI and TDO is chosen by the instruction   that is loaded into the TAP instruction register. For information   on loading the instruction register, see the TAP Controller   State Diagram. TDI is internally pulled up and can be uncon-   nected if the TAP is unused in an application. TDI is connected   to the most significant bit (MSB) of any register. (See TAP   The CY7C1480V25/CY7C1482V25/CY7C1486V25 contains   a TAP controller, instruction register, boundary scan register,   bypass register, and ID register.   Disabling the JTAG Feature   Test Data-Out (TDO)   It is possible to operate the SRAM without using the JTAG   feature. To disable the TAP controller, TCK must be tied LOW   The TDO output ball is used to serially clock data-out from the   registers. The output is active depending upon the current   state of the TAP state machine. The output changes on the   falling edge of TCK. TDO is connected to the least significant   (V ) to prevent device clocking. TDI and TMS are internally   SS   pulled up and may be unconnected. They may alternatively be   connected to V through a pull up resistor. TDO must be left   DD   unconnected. At power up, the device comes up in a reset   state, which does not interfere with the operation of the device.   TAP Controller Block Diagram   TAP Controller State Diagram   0 TEST-LOGIC   1 RESET   0 Bypass Register   2 1 0 0 0 1 1 1 RUN-TEST/   IDLE   SELECT   DR-SCAN   SELECT   IR-SCAN   0 Selection   Circuitry   Selection   Circuitry   Instruction Register   31 30 29   Identification Register   0 0 TDI   TDO   1 1 . . . 2 1 CAPTURE-DR   CAPTURE-IR   0 0 x . . . . . 2 1 SHIFT-DR   0 SHIFT-IR   0 Boundary Scan Register   1 1 1 1 EXIT1-DR   EXIT1-IR   0 0 PAUSE-DR   0 PAUSE-IR   1 0 TCK   TAP CONTROLLER   TM S   1 0 0 EXIT2-DR   1 EXIT2-IR   1 Performing a TAP Reset   UPDATE-DR   UPDATE-IR   Perform a RESET by forcing TMS HIGH (V ) for five rising   DD   1 0 1 0 edges of TCK. This RESET does not affect the operation of   the SRAM and may be performed while the SRAM is   operating.   At power up, the TAP is reset internally to ensure that TDO   comes up in a High-Z state.   The 0/1 next to each state represents the value of TMS at the   rising edge of TCK.   TAP Registers   Test Access Port (TAP)   Registers are connected between the TDI and TDO balls and   enable data to be scanned into and out of the SRAM test   circuitry. Only one register can be selected at a time through   the instruction register. Data is serially loaded into the TDI ball   on the rising edge of TCK. Data is output on the TDO ball on   the falling edge of TCK.   Test Clock (TCK)   The test clock is used only with the TAP controller. All inputs   are captured on the rising edge of TCK. All outputs are driven   from the falling edge of TCK.   Document #: 38-05282 Rev. *H   Page 12 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Instruction Register   SAMPLE/PRELOAD; rather, it performs a capture of the IO   ring when these instructions are executed.   Three-bit instructions can be serially loaded into the instruction   register. This register is loaded when it is placed between the   TDI and TDO balls as shown in the “TAP Controller Block   Diagram” on page 12. At power up, the instruction register is   loaded with the IDCODE instruction. It is also loaded with the   IDCODE instruction if the controller is placed in a reset state,   as described in the previous section.   Instructions are loaded into the TAP controller during the   Shift-IR state when the instruction register is placed between   TDI and TDO. During this state, instructions are shifted   through the instruction register through the TDI and TDO balls.   To execute the instruction after it is shifted in, the TAP   controller needs to be moved into the Update-IR state.   When the TAP controller is in the Capture-IR state, the two   least significant bits are loaded with a binary “01” pattern to   enable fault isolation of the board-level serial test data path.   EXTEST   EXTEST is a mandatory 1149.1 instruction that is to be   executed whenever the instruction register is loaded with all   0s. EXTEST is not implemented in this SRAM TAP controller,   and therefore this device is not compliant to 1149.1. The TAP   controller does recognize an all-0 instruction.   Bypass Register   To save time when serially shifting data through registers, it is   sometimes advantageous to skip certain chips. The bypass   register is a single-bit register that can be placed between the   TDI and TDO balls. This enables data to be shifted through the   SRAM with minimal delay. The bypass register is set LOW   When an EXTEST instruction is loaded into the instruction   register, the SRAM responds as if a SAMPLE/PRELOAD   instruction has been loaded. There is one difference between   the two instructions. Unlike the SAMPLE/PRELOAD   instruction, EXTEST places the SRAM outputs in a High-Z   state.   (V ) when the BYPASS instruction is executed.   SS   Boundary Scan Register   The boundary scan register is connected to all the input and   bidirectional balls on the SRAM. The x36 configuration has a   IDCODE   73-bit-long register, and the x18 configuration has   54-bit-long register.   a The IDCODE instruction causes a vendor-specific, 32-bit code   to be loaded into the instruction register. It also places the   instruction register between the TDI and TDO balls and   enables the IDCODE to be shifted out of the device when the   TAP controller enters the Shift-DR state.   The boundary scan register is loaded with the contents of the   RAM IO ring when the TAP controller is in the Capture-DR   state and is then placed between the TDI and TDO balls when   the controller moves to the Shift-DR state. The EXTEST,   SAMPLE/PRELOAD, and SAMPLE Z instructions can be used   to capture the contents of the IO ring.   The IDCODE instruction is loaded into the instruction register   at power up or whenever the TAP controller is in a test logic   reset state.   The Boundary Scan Order tables show the order in which the   bits are connected. Each bit corresponds to one of the bumps   on the SRAM package. The MSB of the register is connected   to TDI and the LSB is connected to TDO.   SAMPLE Z   The SAMPLE Z instruction causes the boundary scan register   to be connected between the TDI and TDO balls when the TAP   controller is in a Shift-DR state. It also places all SRAM outputs   into a High-Z state.   Identification (ID) Register   The ID register is loaded with a vendor-specific, 32-bit code   during the Capture-DR state when the IDCODE command is   loaded in the instruction register. The IDCODE is hardwired   into the SRAM and can be shifted out when the TAP controller   is in the Shift-DR state. The ID register has a vendor code and   other information described in “Identification Register Defini-   SAMPLE/PRELOAD   SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The   PRELOAD portion of this instruction is not implemented, so   the device TAP controller is not fully 1149.1 compliant.   When the SAMPLE/PRELOAD instruction is loaded into the   instruction register and the TAP controller is in the Capture-DR   state, a snapshot of data on the inputs and bidirectional balls   is captured in the boundary scan register.   TAP Instruction Set   Overview   Be aware that the TAP controller clock can only operate at a   frequency up to 10 MHz, while the SRAM clock operates more   than an order of magnitude faster. Because there is a large   difference in the clock frequencies, it is possible that during the   Capture-DR state, an input or output may undergo a transition.   The TAP may then try to capture a signal while in transition   (metastable state). This does not harm the device, but there is   no guarantee as to the value that may be captured.   Repeatable results may not be possible.   Eight different instructions are possible with the three-bit   instruction register. All combinations are listed in “Identification   Codes” on page 16. Three of these instructions are listed as   RESERVED and must not be used. The other five instructions   are described in detail below.   The TAP controller used in this SRAM is not fully compliant to   the 1149.1 convention because some of the mandatory 1149.1   instructions are not fully implemented.   To guarantee that the boundary scan register captures the   correct value of a signal, the SRAM signal must be stabilized   long enough to meet the TAP controller’s capture setup plus   The TAP controller cannot be used to load address data or   control signals into the SRAM and cannot preload the IO   buffers. The SRAM does not implement the 1149.1 commands   EXTEST or INTEST or the PRELOAD portion of   hold time (t plus t ).   CS   CH   Document #: 38-05282 Rev. *H   Page 13 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   The SRAM clock input might not be captured correctly if there   is no way in a design to stop (or slow) the clock during a   SAMPLE/PRELOAD instruction. If this is an issue, it is still   possible to capture all other signals and simply ignore the   value of the CLK captured in the boundary scan register.   BYPASS   When the BYPASS instruction is loaded in the instruction   register and the TAP is placed in a Shift-DR state, the bypass   register is placed between the TDI and TDO balls. The   advantage of the BYPASS instruction is that it shortens the   boundary scan path when multiple devices are connected   together on a board.   After the data is captured, it is possible to shift out the data by   putting the TAP into the Shift-DR state. This places the   boundary scan register between the TDI and TDO balls.   Reserved   Note that because the PRELOAD part of the command is not   implemented, putting the TAP to the Update-DR state while   performing a SAMPLE/PRELOAD instruction has the same   effect as the Pause-DR command.   These instructions are not implemented but are reserved for   future use. Do not use these instructions.   TAP Timing   1 2 3 4 5 6 Test Clock   (TCK)   t t t TH   CYC   TL   t t t t TMSS   TDIS   TMSH   Test Mode Select   (TMS)   TDIH   Test Data-In   (TDI)   t TDOV   t TDOX   Test Data-Out   (TDO)   DON’T CARE   UNDEFINED   TAP AC Switching Characteristics Over the Operating Range   Parameter   Clock   Description   Min   Max   Unit   t t t t TCK Clock Cycle Time   TCK Clock Frequency   TCK Clock HIGH time   TCK Clock LOW time   50   ns   MHz   ns   TCYC   TF   20   20   20   TH   ns   TL   Output Times   t t TCK Clock LOW to TDO Valid   10   ns   ns   TDOV   TDOX   TCK Clock LOW to TDO Invalid   0 Setup Times   t t t TMS Setup to TCK Clock Rise   TDI Setup to TCK Clock Rise   Capture Setup to TCK Rise   5 5 5 ns   ns   ns   TMSS   TDIS   CS   Hold Times   t t t TMS Hold after TCK Clock Rise   TDI Hold after Clock Rise   5 5 5 ns   ns   ns   TMSH   TDIH   CH   Capture Hold after Clock Rise   Notes   9.   10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.   t and t refer to the setup and hold time requirements of latching data from the boundary scan register.   CH   CS   R F Document #: 38-05282 Rev. *H   Page 14 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   2.5V TAP AC Test Conditions   1.8V TAP AC Test Conditions   Input pulse levels ................................................ V to 2.5V   Input pulse levels..................................... 0.2V to V   – 0.2   SS   DDQ   Input rise and fall time..................................................... 1 ns   Input timing reference levels.........................................1.25V   Output reference levels.................................................1.25V   Test load termination supply voltage.............................1.25V   Input rise and fall time .....................................................1 ns   Input timing reference levels........................................... 0.9V   Output reference levels .................................................. 0.9V   Test load termination supply voltage .............................. 0.9V   2.5V TAP AC Output Load Equivalent   1.8V TAP AC Output Load Equivalent   1.25V   0.9V   50Ω   50Ω   TDO   TDO   ZO= 50Ω   ZO= 50Ω   20pF   20pF   TAP DC Electrical Characteristics And Operating Conditions   (0°C < T < +70°C; V = 2.5V ±0.125V unless otherwise noted)   A DD   Parameter   Description   Test Conditions   Min   1.7   2.1   1.6   Max   Unit   V V V Output HIGH Voltage   Output HIGH Voltage   I I = –1.0 mA   V V V V V V V V V V = 2.5V   = 2.5V   = 1.8V   = 2.5V   = 2.5V   = 1.8V   = 2.5V   = 1.8V   = 2.5V   = 1.8V   OH1   OH   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   DDQ   = –100 µA   V OH2   OH   V V V Output LOW Voltage   Output LOW Voltage   I I = 1.0 mA   0.4   0.2   0.2   V OL1   OL   OL   = 100 µA   V OL2   V V V I Input HIGH Voltage   Input LOW Voltage   Input Load Current   1.7   1.26   –0.3   –0.3   –5   V V + 0.3   V IH   DD   DD   + 0.3   V 0.7   V IL   0.36   5 V GND ≤ V ≤ V   DDQ   µA   X I Identification Register Definitions   CY7C1480V25   Instruction Field   CY7C1482V25   (4M x 18)   CY7C1486V25   (1M x72)   Description   (2M x36)   Revision Number (31:29)   Device Depth (28:24)   000   000   000   Describes the version number   Reserved for internal use   01011   000000   01011   000000   01011   000000   Architecture/Memory   Type(23:18)   Defines memory type and   architecture   Bus Width/Density(17:12)   100100   010100   110100   Defines width and density   Cypress JEDEC ID Code   (11:1)   00000110100   00000110100   00000110100   Enables unique identification   of SRAM vendor   ID Register Presence   Indicator (0)   1 1 1 Indicates the presence of an   ID register   Note   11. All voltages referenced to V (GND).   SS   Document #: 38-05282 Rev. *H   Page 15 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Scan Register Sizes   Register Name   Bit Size (x36)   Bit Size (x18)   Bit Size (x72)   Instruction   3 1 3 1 3 1 Bypass   ID   32   73   - 32   54   - 32   - Boundary Scan Order – 165FBGA   Boundary Scan Order – 209BGA   112   Identification Codes   Instruction   EXTEST   Code   000   Description   Captures the IO ring contents.   IDCODE   001   Loads the ID register with the vendor ID code and places the register between TDI and   TDO. This operation does not affect SRAM operations.   SAMPLE Z   010   Captures the IO ring contents. Places the boundary scan register between TDI and TDO.   Forces all SRAM output drivers to a High-Z state.   RESERVED   011   100   Do Not Use: This instruction is reserved for future use.   SAMPLE/PRELOAD   Captures the IO ring contents. Places the boundary scan register between TDI and TDO.   Does not affect SRAM operation.   RESERVED   RESERVED   BYPASS   101   110   111   Do Not Use: This instruction is reserved for future use.   Do Not Use: This instruction is reserved for future use.   Places the bypass register between TDI and TDO. This operation does not affect SRAM   operations.   Boundary Scan Exit Order (2M x 36)   Bit #   1 165-Ball ID   C1   Bit #   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   165-Ball ID   R3   Bit #   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   165-Ball ID   L10   K11   J11   Bit #   61   62   63   64   65   66   67   68   69   70   71   72   73   165-Ball ID   B8   A7   B7   B6   A6   B5   A5   A4   B4   B3   A3   A2   B2   2 D1   P2   3 E1   R4   4 D2   P6   K10   J10   5 E2   R6   6 F1   N6   H11   G11   F11   7 G1   F2   P11   R8   8 9 G2   J1   P3   E11   D10   D11   C11   G10   F10   E10   A10   B10   A9   10   11   12   13   14   15   16   17   18   19   20   P4   K1   P8   L1   P9   J2   P10   R9   M1   N1   R10   R11   N11   M11   L11   M10   K2   L2   M2   R1   B9   R2   A8   Document #: 38-05282 Rev. *H   Page 16 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Boundary Scan Exit Order (4M x 18)   Bit #   1 165-Ball ID   D2   Bit #   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   165-Ball ID   R8   Bit #   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   165-Ball ID   C11   A11   A10   B10   A9   2 E2   P3   3 F2   P4   4 G2   P8   5 J1   P9   6 K1   P10   R9   B9   7 L1   A8   8 M1   N1   R10   R11   M10   L10   K10   J10   H11   G11   F11   E11   D11   B8   9 A7   10   11   12   13   14   15   16   17   18   R1   B7   R2   B6   R3   A6   P2   B5   R4   A4   P6   B3   R6   A3   N6   A2   P11   B2   Document #: 38-05282 Rev. *H   Page 17 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Boundary Scan Exit Order (1M x 72)   Bit #   1 209-Ball ID   A1   Bit #   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   209-Ball ID   T1   Bit #   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   209-Ball ID   V10   U11   U10   T11   Bit #   85   209-Ball ID   C11   C10   B11   B10   A11   A10   A9   2 A2   T2   86   3 B1   U1   87   4 B2   U2   88   5 C1   C2   D1   D2   E1   V1   T10   R11   R10   P11   P10   N11   N10   M11   M10   L11   89   6 V2   90   7 W1   W2   T6   91   8 92   U8   9 93   A7   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   E2   V3   94   A5   F1   V4   95   A6   F2   U4   96   D6   G1   G2   H1   H2   J1   W5   V6   97   B6   98   D7   W6   U3   L10   99   K3   P6   100   101   102   103   104   105   106   107   108   109   110   111   112   A8   U9   J11   B4   J2   V5   J10   B3   L1   U5   H11   H10   G11   G10   F11   C3   L2   U6   C4   M1   M2   N1   N2   P1   W7   V7   C8   C9   U7   B9   V8   F10   E10   E11   D11   D10   B8   V9   A4   P2   W11   W10   V11   C6   R2   R1   B7   A3   Document #: 38-05282 Rev. *H   Page 18 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   DC Input Voltage ................................... –0.5V to V + 0.5V   Maximum Ratings   DD   Current into Outputs (LOW)......................................... 20 mA   Exceeding the maximum ratings may impair the useful life of   the device. These user guidelines are not tested.   Static Discharge Voltage........................................... >2001V   (MIL-STD-883, Method 3015)   Storage Temperature .................................–65°C to +150°C   Latch Up Current .................................................... >200 mA   Ambient Temperature with   Power Applied.............................................–55°C to +125°C   Operating Range   Supply Voltage on V Relative to GND........ –0.3V to +3.6V   DD   Ambient   Range   V V DDQ   DD   Supply Voltage on V   Relative to GND ......–0.3V to +V   Temperature   DDQ   DD   DC Voltage Applied to Outputs   in Tri-State........................................... –0.5V to V   Commercial 0°C to +70°C   2.5V –5%/+5%   1.7V to   + 0.5V   V DDQ   DD   Industrial   –40°C to +85°C   Electrical Characteristics Over the Operating Range   Parameter   Description   Power Supply Voltage   IO Supply Voltage   Test Conditions   Min   2.375   2.375   1.7   Max   2.625   Unit   V V V DD   V V V V V I for 2.5V IO   for 1.8V IO   V DD   DDQ   1.9   V Output HIGH Voltage   Output LOW Voltage   for 2.5V IO, I = –1.0 mA   2.0   V OH   OL   IH   OH   for 1.8V IO, I = –100 µA   1.6   V OH   for 2.5V IO, I = 1.0 mA   0.4   0.2   V OL   for 1.8V IO, I = 100 µA   V OL   Input HIGH Voltage   for 2.5V IO   for 1.8V IO   for 2.5V IO   for 1.8V IO   1.7   1.26   –0.3   –0.3   –5   V V + 0.3V   + 0.3V   0.7   V DD   DD   V Input LOW Voltage   V IL   0.36   5 V Input Leakage Current GND ≤ V ≤ V   except ZZ and MODE   µA   X I DDQ   Input Current of MODE Input = V   –30   –5   µA   µA   SS   Input = V   5 DD   Input Current of ZZ   Input = V   Input = V   µA   SS   DD   30   5 µA   I I Output Leakage Current GND ≤ V ≤ V   Output Disabled   –5   µA   OZ   I DDQ,   V Operating Supply   V f = f   = Max., I   = 0 mA,   4.0-ns cycle, 250 MHz   5.0-ns cycle, 200 MHz   6.0-ns cycle, 167 MHz   4.0-ns cycle, 250 MHz   5.0-ns cycle, 200 MHz   6.0-ns cycle, 167 MHz   All speeds   450   450   400   200   200   200   120   mA   mA   mA   mA   mA   mA   mA   DD   DD   DD   OUT   CYC   Current   = 1/t   MAX   I Automatic CE   Power Down   Current—TTL Inputs   V = Max, Device Deselected,   DD   SB1   V ≥ V or V ≤ V   IN   IH   IN   IL   f = f   = 1/t   MAX CYC   I I Automatic CE   Power Down   Current—CMOS Inputs f = 0   V = Max, Device Deselected,   DD   SB2   V ≤ 0.3V or V > V – 0.3V,   IN   IN   DDQ   Automatic CE   Power Down   Current—CMOS Inputs f = f   V V = Max, Device Deselected, or 4.0-ns cycle, 250 MHz   200   200   200   135   mA   mA   mA   mA   SB3   DD   ≤ 0.3V or V > V   – 0.3V   IN   IN   DDQ   5.0-ns cycle, 200 MHz   6.0-ns cycle, 167 MHz   All speeds   = 1/t   MAX   CYC   I Automatic CE   V = Max, Device Deselected,   DD   SB4   Power Down   Current—TTL Inputs   V ≥ V or V ≤ V , f = 0   IN   IH IN IL   Notes   12. Overshoot: V (AC) < V +1.5V (Pulse width less than t   /2), undershoot: V (AC) > –2V (Pulse width less than t /2).   CYC   IH   DD   CYC   IL   13. Power up: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V   < V   . DD   IH   DD   DDQ   DD   Document #: 38-05282 Rev. *H   Page 19 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Capacitance[14]   100 TQFP 165 FBGA 209 FBGA   Parameter   Description   Test Conditions   Unit   Package   Package   Package   C C C C C Address Input Capacitance   Data Input Capacitance   Control Input Capacitance   Clock Input Capacitance   Input/Output Capacitance   T = 25°C, f = 1 MHz,   6 5 8 6 5 6 5 8 6 5 6 5 8 6 5 pF   pF   pF   pF   pF   ADDRESS   DATA   CTRL   CLK   A V = 2.5V   = 2.5V   DD   V DDQ   I/O   Thermal Resistance[14]   100 TQFP   Max.   165 FBGA 209 FBGA   Parameter   Description   Test Conditions   Unit   Max.   Max.   Θ Thermal Resistance   (Junction to Ambient)   Test conditions follow   standard test methods and   procedures for measuring   thermal impedance, per   EIA/JESD51.   24.63   16.3   15.2   °C/W   JA   Θ Thermal Resistance   (Junction to Case)   2.28   2.1   1.7   °C/W   JC   AC Test Loads and Waveforms   2.5V I/O Test Load   R = 1667Ω   2.5V   OUTPUT   OUTPUT   ALL INPUT PULSES   90%   VDDQ   90%   10%   Z = 50Ω   0 R = 50Ω   10%   L GND   5 pF   R = 1583Ω   ≤ 1 ns   ≤ 1 ns   V = 1.25V   L INCLUDING   JIG AND   SCOPE   (c)   (a)   (b)   1.8V I/O Test Load   R = 14KΩ   1.8V   OUTPUT   R = 50Ω   OUTPUT   ALL INPUT PULSES   90%   VDDQ-0.2   0.2   90%   10%   Z = 50Ω   0 10%   L 5 pF   R = 14KΩ   ≤ 1 ns   ≤ 1 ns   V = 0.9V   L INCLUDING   JIG AND   SCOPE   (c)   (a)   (b)   Note   14. Tested initially and after any design or process change that may affect these parameters.   Document #: 38-05282 Rev. *H   Page 20 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Switching Characteristics Over the Operating Range   250 MHz   200 MHz   167 MHz   Unit   Parameter   Description   Min. Max. Min. Max. Min. Max.   t V (Typical) to the first access   1 1 1 ms   POWER   DD   Clock   t t t Clock Cycle Time   Clock HIGH   4.0   2.0   2.0   5.0   2.0   2.0   6.0   2.4   2.4   ns   ns   ns   CYC   CH   Clock LOW   CL   Output Times   t t t t t t t Data Output Valid After CLK Rise   Data Output Hold After CLK Rise   3.0   3.0   3.4   ns   ns   ns   ns   ns   ns   ns   CO   1.3   1.3   1.3   1.3   1.5   1.5   DOH   CLZ   Clock to Low-Z   Clock to High-Z   3.0   3.0   3.0   3.0   3.4   3.4   CHZ   OEV   OELZ   OEHZ   OE LOW to Output Valid   OE LOW to Output Low-Z   0 0 0 OE HIGH to Output High-Z   3.0   3.0   3.4   Setup Times   t t t t t t Address Setup Before CLK Rise   ADSC, ADSP Setup Before CLK Rise   ADV Setup Before CLK Rise   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.4   1.5   1.5   1.5   1.5   1.5   1.5   ns   ns   ns   ns   ns   ns   AS   ADS   ADVS   WES   DS   GW, BWE, BW Setup Before CLK Rise   X Data Input Setup Before CLK Rise   Chip Enable Setup Before CLK Rise   CES   Hold Times   t t t t t t Address Hold After CLK Rise   ADSP, ADSC Hold After CLK Rise   ADV Hold After CLK Rise   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.5   0.5   0.5   0.5   0.5   ns   ns   ns   ns   ns   ns   AH   ADH   ADVH   WEH   DH   GW, BWE, BW Hold After CLK Rise   X Data Input Hold After CLK Rise   Chip Enable Hold After CLK Rise   CEH   Notes   15. Timing reference level is 1.25V when V   = 2.5V and is 0.9V when V   = 1.8V.   DDQ   DDQ   16. Test conditions shown in (a) of “AC Test Loads and Waveforms” on page 20 unless otherwise noted.   17. This part has a voltage regulator internally; t   is the time that the power needs to be supplied above V (minimum) initially before a read or write operation   POWER   DD   can be initiated.   18. t   , t   , t   , and t   are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms. Transition is measured ±200 mV from   CHZ CLZ OELZ   OEHZ   steady-state voltage.   19. At any possible voltage and temperature, t   is less than t   and t   is less than t   to eliminate bus contention between SRAMs when sharing the same   CLZ   OEHZ   OELZ   CHZ   data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed   to achieve High-Z before Low-Z under the same system conditions.   20. This parameter is sampled and not 100% tested.   Document #: 38-05282 Rev. *H   Page 21 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Switching Waveforms   Read Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t ADH   ADS   t t AH   AS   A1   A2   A3   ADDRESS   Burst continued with   new base address   t t WEH   WES   GW, BWE,   BWx   Deselect   cycle   t t CEH   CES   CE   t t ADVH   ADVS   ADV   OE   ADV   suspends   burst.   t t OEV   CO   t t OEHZ   t t CHZ   OELZ   DOH   t CLZ   t Q(A2)   Q(A2   + 1)   Q(A2   + 2)   Q(A2   + 3)   Q(A2)   Q(A2   + 1)   Q(A1)   Data Out (Q)   High-Z   CO   Burst wraps around   to its initial state   Single READ   BURST READ   DON’T CARE   UNDEFINED   Note   21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.   1 2 3 1 2 3 Document #: 38-05282 Rev. *H   Page 22 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Switching Waveforms (continued)   Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC extends burst   t t ADH   ADS   t t ADH   ADS   ADSC   ADDRESS   BWE,   t t AH   AS   A1   A2   A3   Byte write signals are   ignored for first cycle when   ADSP initiates burst   t t WEH   WES   BW   X t t WEH   WES   GW   t t CEH   CES   CE   t t ADVH   ADVS   ADV   OE   ADV suspends burst   t t DH   DS   Data In (D)   D(A2)   D(A2   + 1)   D(A2   + 1)   D(A2   + 2)   D(A2   + 3)   D(A3)   D(A3   + 1)   D(A3   + 2)   D(A1)   High-Z   t OEHZ   Data Out (Q)   BURST READ   Single WRITE   BURST WRITE   Extended BURST WRITE   DON’T CARE   UNDEFINED   Note   22. Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.   X Document #: 38-05282 Rev. *H   Page 23 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Switching Waveforms (continued)   Read/Write Cycle Timing   t CYC   CLK   t t CL   CH   t t ADH   ADS   ADSP   ADSC   t t AH   AS   A1   A2   A3   A4   A5   A6   ADDRESS   BWE, BW   t t WEH   WES   X t t CEH   CES   CE   ADV   OE   t t DH   t CO   DS   t OELZ   Data In (D)   High-Z   High-Z   D(A3)   D(A5)   D(A6)   t t OEHZ   CLZ   Data Out (Q)   Q(A1)   Q(A2)   Q(A4)   Q(A4+1)   Q(A4+2)   Q(A4+3)   Back-to-Back READs   Single WRITE   BURST READ   Back-to-Back   WRITEs   DON’T CARE   UNDEFINED   Notes   23. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.   24. GW is HIGH.   Document #: 38-05282 Rev. *H   Page 24 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Switching Waveforms (continued)   ZZ Mode Timing   CLK   t t ZZ   ZZREC   ZZ   t ZZI   I SUPPLY   I DDZZ   t RZZI   ALL INPUTS   (except ZZ)   DESELECT or READ Only   Outputs (Q)   High-Z   DON’T CARE   Notes   25. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.   26. DQs are in high-Z when exiting ZZ sleep mode.   Document #: 38-05282 Rev. *H   Page 25 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Ordering Information   Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   Speed   (MHz)   Package   Diagram   Operating   Range   Part and Package Type   Ordering Code   167 CY7C1480V25-167AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   CY7C1482V25-167AXC   Commercial   CY7C1480V25-167BZC   CY7C1482V25-167BZC   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   CY7C1482V25-167BZXC   CY7C1486V25-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1486V25-167BGXC   CY7C1480V25-167AXI   CY7C1482V25-167AXI   CY7C1480V25-167BZI   CY7C1482V25-167BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   lndustrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   CY7C1482V25-167BZXI   CY7C1486V25-167BGI   CY7C1486V25-167BGXI   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   200 CY7C1480V25-200AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   CY7C1482V25-200AXC   Commercial   CY7C1480V25-200BZC   CY7C1482V25-200BZC   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   CY7C1482V25-200BZXC   CY7C1486V25-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1486V25-200BGXC   CY7C1480V25-200AXI   CY7C1482V25-200AXI   CY7C1480V25-200BZI   CY7C1482V25-200BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free   lndustrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free   CY7C1482V25-200BZXI   CY7C1486V25-200BGI   CY7C1486V25-200BGXI   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free   Document #: 38-05282 Rev. *H   Page 26 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Ordering Information (continued)   Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or   Speed   (MHz)   Package   Diagram   Operating   Range   Part and Package Type   Ordering Code   250 CY7C1480V25-250AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   CY7C1482V25-250AXC   Commercial   CY7C1480V25-250BZC   CY7C1482V25-250BZC   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1482V25-250BZXC   CY7C1486V25-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   CY7C1486V25-250BGXC   CY7C1480V25-250AXI   CY7C1482V25-250AXI   CY7C1480V25-250BZI   CY7C1482V25-250BZI   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free   Industrial   51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)   CY7C1480V25-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free   CY7C1482V25-250BZXI   CY7C1486V25-250BGI   CY7C1486V25-250BGXI   51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)   209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free   Document #: 38-05282 Rev. *H   Page 27 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Package Diagrams   Figure 1. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050   16.00 0.20   14.00 0.10   1.40 0.05   100   81   80   1 0.30 0.08   0.65   TYP.   12° 1°   (8X)   SEE DETAIL   A 30   51   31   50   0.20 MAX.   1.60 MAX.   R 0.08 MIN.   0.20 MAX.   0° MIN.   SEATING PLANE   STAND-OFF   0.05 MIN.   0.15 MAX.   NOTE:   1. JEDEC STD REF MS-026   0.25   GAUGE PLANE   2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH   MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE   R 0.08 MIN.   0.20 MAX.   BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH   3. DIMENSIONS IN MILLIMETERS   0°-7°   0.60 0.15   0.20 MIN.   1.00 REF.   51-85050-*B   DETAIL   A Document #: 38-05282 Rev. *H   Page 28 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Package Diagrams (continued)   Figure 2. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165   PIN 1 CORNER   BOTTOM VIEW   TOP VIEW   Ø0.05 M C   PIN 1 CORNER   1 Ø0.25 M C A B   Ø0.45 0.05(165X)   2 3 4 5 6 7 8 9 10   11   11 10   9 8 7 6 5 4 3 2 1 A B A B C D C D E E F F G G H J H J K K L L M M N P R N P R A 1.00   5.00   10.00   B 15.00 0.10   0.15(4X)   SEATING PLANE   C 51-85165-*A   Document #: 38-05282 Rev. *H   Page 29 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Package Diagrams (continued)   Figure 3. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167   51-85167-**   i486 is a trademark and Intel and Pentium are registered trademarks of Intel Corporation. All products and company names   mentioned in this document may be the trademarks of their respective holders.   Document #: 38-05282 Rev. *H   Page 30 of 32   © Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the   use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to   be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its   products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress   products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   CY7C1480V25   CY7C1482V25   CY7C1486V25   Document History Page   Document Title: CY7C1480V25/CY7C1482V25/CY7C1486V25 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM   Document Number: 38-05282   Orig. of   Change   REV.   ECN NO. Issue Date   Description of Change   **   114670   118281   08/06/02   01/21/03   PKS   New Data Sheet   *A   HGK   Changed t from 2.4 to 2.6 ns for 250 MHz   CO   Updated features on page 1 for package offering   Removed 300 MHz offering   Updated Ordering Information   Changed Advanced Information to Preliminary   *B   233368 See ECN   NJY   Changed timing diagrams   Changed logic block diagrams   Modified Functional Description   Modified “Functional Overview” section   Added boundary scan order for all packages   Included thermal numbers and capacitance values for all packages   Included IDD and ISB values   Removed 250-MHz speed grade offering and included 225 MHz speed bin   Changed package outline for 165FBGA package and 209-ball BGA package   Removed 119-BGA package offering   *C   *D   299452 See ECN   SYT   Removed 225-MHz offering and included 250-MHz speed bin   Changed t   from 4.4 ns to 4.0 ns for 250-MHz Speed Bin   CYC   Changed Θ from 16.8 to 24.63 °C/W and Θ from 3.3 to 2.28 °C/W for 100   JA   JC   TQFP Package on Page # 20   Added lead-free information for 100-Pin TQFP, 165 FBGA and 209 BGA   Packages   Added comment of ‘Lead-free BG packages availability’ below the Ordering   Information   323039 See ECN   PCI   Unshaded 200 and 167 MHz speed bin in the AC/DC Table and Selection   Guide   Address expansion pins/balls in the pinouts for all packages are modified as   per JEDEC standard   Added Address Expansion pins in the Pin Definitions Table   Added Truth Table and Note# 7 for CY7C1486V25 on page# 11   Modified V , V Test Conditions   OL   OH   Added Industrial temperature range   Removed comment of ‘Lead-free BG packages availability’ below the   Ordering Information   Updated Ordering Information Table   *E   416193 See ECN   NXR   Converted from Preliminary to Final   Changed address of Cypress Semiconductor Corporation on Page# 1 from   “3901 North First Street” to “198 Champion Court”   Changed the description of I from Input Load Current to Input Leakage   X Current on page# 19   Changed the I current values of MODE on page # 19 from -5 µA and 30 µA   X to -30 µA and 5 µA   Changed the I current values of ZZ on page # 19 from -30 µA and 5 µA   X to -5 µA and 30 µA   Changed V < V to V < V on page # 19   IH   DD   IH   DD   Replaced Package Name column with Package Diagram in the Ordering   Information table   Updated the Ordering Information Table   *F   470723 See ECN   VKN   Added the Maximum Rating for Supply Voltage on V   Relative to GND   DDQ   Changed t , t from 25 ns to 20 ns and t   from 5 ns to 10 ns in TAP   TH TL   TDOV   AC Switching Characteristics table   Updated the Ordering Information table   Document #: 38-05282 Rev. *H   Page 31 of 32   CY7C1480V25   CY7C1482V25   CY7C1486V25   Document Title: CY7C1480V25/CY7C1482V25/CY7C1486V25 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM   Document Number: 38-05282   Orig. of   Change   REV.   ECN NO. Issue Date   Description of Change   *G   486690 See ECN   VKN   Corrected the typo in the 209-Ball FBGA pinout.   (Corrected the ball name H9 to V from V   ).   SS   SSQ   *H   1026720 See ECN VKN/KKVTMP Added footnote #2 related to V   SSQ   Document #: 38-05282 Rev. *H   Page 32 of 32   |