| PRELIMINARY   CY14B101LA, CY14B101NA   1 Mbit (128K x 8/64K x 16) nvSRAM   Features   Functional Description   ■ 20 ns, 25 ns, and 45 ns Access Times   The Cypress CY14B101LA/CY14B101NA is a fast static RAM,   with a nonvolatile element in each memory cell. The memory is   ■ Internally organized as 128K x 8 (CY14B101LA) or 64K x 16   organized as 128K bytes of 8 bits each or 64K words of 16 bits   each. The embedded nonvolatile elements incorporate   QuantumTrap technology, producing the world’s most reliable   nonvolatile memory. The SRAM provides infinite read and write   cycles, while independent nonvolatile data resides in the highly   reliable QuantumTrap cell. Data transfers from the SRAM to the   nonvolatile elements (the STORE operation) takes place   automatically at power down. On power up, data is restored to   the SRAM (the RECALL operation) from the nonvolatile memory.   Both the STORE and RECALL operations are also available   under software control.   (CY14B101NA)   ■ Hands off Automatic STORE on power down with only a small   Capacitor   ® ■ STORE to QuantumTrap nonvolatile elements initiated by   Software, device pin, or AutoStore on power down   ® ■ RECALL to SRAM initiated by software or power up   ■ Infinite Read, Write, and Recall Cycles   ■ 200,000 STORE cycles to QuantumTrap   ■ 20 year data retention   ■ Single 3V +20% to -10% operation   ■ Commercial and Industrial Temperatures   ■ 48-ball FBGA, 44-pin TSOP - II, 48-pin SSOP, and 32-pin SOIC   packages   ■ Pb-free and RoHS compliance   9&$3   9&&   4XDWUXPꢀ7UDS   ꢁꢂꢃꢄꢀ;ꢀꢁꢂꢃꢄ   5 2 : $ $ $ 32:(5   &21752/   ꢈ 6725(   ꢉ ꢊ 5(&$//   $ $ ' ( & 2 ' ( 5 ꢋ 6725(ꢅ5(&$//   &21752/   ꢌ +6%   67$7,&ꢀ5$0   $55$<   ꢁꢂꢃꢄꢀ;ꢀꢁꢂꢃꢄ   $ ꢁꢃ   $ ꢁꢆ   $ $ ꢁꢄ   ꢁꢈ   62)7:$5(   '(7(&7   $ꢁꢄꢀꢇꢀ$ꢃ   $ ꢁꢉ   '4ꢂ   '4ꢁ   '4ꢃ   '4ꢆ   '4ꢄ   , 1 3 8 7 % 8 ) ) ( 5 6 '4ꢈ   '4ꢉ   '4ꢊ   &2/801ꢀ,ꢅ2   '4ꢋ   '4ꢌ   '4ꢁꢂ   2(   &2/801ꢀ'(&   :(   '4ꢁꢁ   '4ꢁꢃ   '4ꢁꢆ   '4ꢁꢄ   &(   %/(   $ $ $ $ $ $ $ ꢂ ꢁ ꢃ ꢆ ꢄ ꢁꢂ ꢁꢁ   '4ꢁꢈ   %+(   Note   1. Address A - A for x8 configuration and Address A - A for x16 configuration.   0 16   0 15   2. Data DQ - DQ for x8 configuration and Data DQ - DQ for x16 configuration.   0 7 0 15   3. BHE and BLE are applicable for x16 configuration only.   Cypress Semiconductor Corporation   Document #: 001-42879 Rev. *B   • 198 Champion Court   • San Jose, CA 95134-1709   • 408-943-2600   Revised January 29, 2009   CY14B101LA, CY14B101NA   PRELIMINARY   Pinouts (continued)   Figure 3. Pin Diagram - 48-Pin SSOP and 32-Pin SOIC   V CAP   48   47   V CC   1 2 A 16   A 15   A 14   3 46   45   44   43   42   HSB   WE   A 12   4 A 7 5 A A 13   8 A 6 6 A 5 A 9 7 INT   A 4 8 41   40   NC   A 11   9 48-SSOP   NC   NC   NC   10   11   12   13   14   39   NC   NC   NC   38   37   36   Top View   (not to scale)   V SS   V SS   NC   NC   NC   35   NC   DQ0   15   16   17   18   19   20   21   34   33   32   31   DQ6   OE   A 3 A 2 A 10   A 1 30   29   28   27   26   25   CE   DQ7   A 0 DQ1   DQ2   NC   DQ5   DQ4   DQ3   22   23   24   NC   V CC   Table 1. Pin Definitions   Pin Name   I/O Type   Description   A – A   Address Inputs Used to Select one of the 131,072 bytes of the nvSRAM for x8 Configuration.   Address Inputs Used to Select one of the 65,536 words of the nvSRAM for x16 Configuration.   Bidirectional Data I/O Lines for x8 Configuration. Used as input or output lines depending on operation.   0 16   15   Input   A – A   0 DQ – DQ   0 7 Input/Output   Input   DQ – DQ   Bidirectional Data I/O Lines for x16 Configuration. Used as input or output lines depending on   operation.   0 15   WE   Write Enable Input, Active LOW. When the chip is enabled and WE is LOW, data on the I/O pins is written   to the specific address location.   Input   Input   Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.   CE   OE   Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read   cycles. I/O pins are tri-stated on deasserting OE HIGH.   Input   Input   Byte High Enable, Active LOW. Controls DQ - DQ .   BHE   BLE   15   8 Byte Low Enable, Active LOW. Controls DQ - DQ .   7 0 V Ground   Ground for the Device. Must be connected to the ground of the system.   SS   V Power   Supply   Power Supply Inputs to the Device. 3.0V +20%, –10%   CC   Input/Output Hardware STORE Busy (HSB). When LOW this output indicates that a Hardware STORE is in progress.   When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull up   resistor keeps this pin HIGH if not connected (connection optional). After each STORE operation HSB is   driven HIGH for short time with standard output high current.   HSB   V Power   Supply   AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to   nonvolatile elements.   CAP   NC   No Connect No Connect. This pin is not connected to the die.   Document #: 001-42879 Rev. *B   Page 3 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Figure 4 shows the proper connection of the storage capacitor   Device Operation   CAP   The CY14B101LA/CY14B101NA nvSRAM is made up of two   functional components paired in the same physical cell. They are   an SRAM memory cell and a nonvolatile QuantumTrap cell. The   SRAM memory cell operates as a standard fast static RAM. Data   in the SRAM is transferred to the nonvolatile cell (the STORE   operation), or from the nonvolatile cell to the SRAM (the RECALL   operation). Using this unique architecture, all cells are stored and   recalled in parallel. During the STORE and RECALL operations,   SRAM read and write operations are inhibited. The   CY14B101LA/CY14B101NA supports infinite reads and writes   similar to a typical SRAM. In addition, it provides infinite RECALL   operations from the nonvolatile cells and up to 200K STORE   page 15 for a complete description of read and write modes.   . The voltage on   CAP   the V   pin is driven to V by a regulator on the chip. Place a   CAP   CC   pull up on WE to hold it inactive during power up. This pull up is   only effective if the WE signal is tri-state during power up. Many   MPUs tri-state their controls on power up. This must be verified   when using the pull up. When the nvSRAM comes out of   power-on-recall, the MPU must be active or the WE held inactive   until the MPU comes out of reset.   To reduce unnecessary nonvolatile stores, AutoStore and   Hardware STORE operations are ignored unless at least one   write operation has taken place since the most recent STORE or   RECALL cycle. Software initiated STORE cycles are performed   regardless of whether a write operation has taken place. The   HSB signal is monitored by the system to detect if an AutoStore   cycle is in progress.   SRAM Read   Figure 4. AutoStore Mode   The CY14B101LA/CY14B101NA performs a read cycle when   CE and OE are LOW and WE and HSB are HIGH. The address   Vcc   specified on pins A   or A   determines which of the 131,072   0-16   0-15   data bytes or 65,536 words of 16 bits each are accessed. Byte   enables (BHE, BLE) determine which bytes are enabled to the   output, in the case of 16-bit words. When the read is initiated by   0.1uF   an address transition, the outputs are valid after a delay of t   AA   Vcc   (read cycle 1). If the read is initiated by CE or OE, the outputs   are valid at t or at t , whichever is later (read cycle 2). The   ACE   DOE   data output repeatedly responds to address changes within the   access time without the need for transitions on any control   WE   VCAP   t AA   input pins. This remains valid until another address change or   until CE or OE is brought HIGH, or WE or HSB is brought LOW.   VCAP   VSS   SRAM Write   A write cycle is performed when CE and WE are LOW and HSB   is HIGH. The address inputs must be stable before entering the   write cycle and must remain stable until CE or WE goes HIGH at   Hardware STORE Operation   the end of the cycle. The data on the common I/O pins DQ   0–15   [8]   The CY14B101LA/CY14B101NA provides the HSB pin to   control and acknowledge the STORE operations. Use the HSB   pin to request a Hardware STORE cycle. When the HSB pin is   driven LOW, the CY14B101LA/CY14B101NA conditionally   are written into the memory if the data is valid t before the end   SD   of a WE-controlled write or before the end of a CE-controlled   write. The Byte Enable inputs (BHE, BLE) determine which bytes   are written, in the case of 16-bit words. Keep OE HIGH during   the entire write cycle to avoid data bus contention on common   I/O lines. If OE is left LOW, internal circuitry turns off the output   initiates a STORE operation after t   . An actual STORE cycle   DELAY   only begins if a write to the SRAM has taken place since the last   STORE or RECALL cycle. The HSB pin also acts as an open   drain driver that is internally driven LOW to indicate a busy   condition when the STORE (initiated by any means) is in   progress.   buffers t   after WE goes LOW.   HZWE   AutoStore Operation   The CY14B101LA/CY14B101NA stores data to the nvSRAM   using one of the following three storage operations: Hardware   STORE activated by HSB; Software STORE activated by an   address sequence; AutoStore on device power down. The   AutoStore operation is a unique feature of QuantumTrap   SRAM read and write operations that are in progress when HSB   is driven LOW by any means are given time to complete before   the STORE operation is initiated. After HSB goes LOW, the   CY14B101LA/CY14B101NA continues SRAM operations for   t . However, any SRAM write cycles requested after HSB   technology   CY14B101LA/CY14B101NA.   and   is   enabled   by   default   on   the   DELAY   goes LOW are inhibited until HSB returns HIGH. If the write latch   is not set, HSB is not driven low by the   CY14B101LA/CY14B101NA, but any SRAM read/write cycles   are inhibited until HSB is returned HIGH by MPU or another   external source.   During a normal operation, the device draws current from V to   charge a capacitor connected to the V   charge is used by the chip to perform a single STORE operation.   If the voltage on the V pin drops below V , the part   CC   pin. This stored   CAP   CC   SWITCH   automatically disconnects the V   operation is initiated with power provided by the V   pin from V . A STORE   CAP   CC   capacitor.   CAP   Document #: 001-42879 Rev. *B   Page 4 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   During any STORE operation, regardless of how it is initiated,   the CY14B101LA/CY14B101NA continues to drive the HSB pin   LOW, releasing it only when the STORE is complete. Upon   The software sequence may be clocked with CE controlled reads   or OE controlled reads. After the sixth address in the sequence   is entered, the STORE cycle commences and the chip is   disabled. HSB is driven low. It is important to use read cycles and   not write cycles in the sequence, although it is not necessary that   completion   of   the   STORE   operation,   the   CY14B101LA/CY14B101NA remains disabled until the HSB pin   returns HIGH. Leave the HSB unconnected if it is not used.   OE be LOW for a valid sequence. After the t   cycle time is   STORE   fulfilled, the SRAM is activated again for the read and write   operation.   Hardware RECALL (Power Up)   During power up or after any low power condition   Software RECALL   (V < V   ), an internal RECALL request is latched. When   CC   SWITCH   V again exceeds the sense voltage of V   , a RECALL   to complete.   CC   SWITCH   Data is transferred from nonvolatile memory to the SRAM by a   software address sequence. A Software RECALL cycle is   initiated with a sequence of read operations in a manner similar   to the Software STORE initiation. To initiate the RECALL cycle,   the following sequence of CE controlled read operations must be   performed:   cycle is automatically initiated and takes t   During this time, HSB is driven low by the HSB driver.   HRECALL   Software STORE   Data is transferred from SRAM to the nonvolatile memory by a   software address sequence. The CY14B101LA/CY14B101NA   Software STORE cycle is initiated by executing sequential CE   controlled read cycles from six specific address locations in   exact order. During the STORE cycle an erase of the previous   nonvolatile data is first performed, followed by a program of the   nonvolatile elements. After a STORE cycle is initiated, further   input and output are disabled until the cycle is completed.   1. Read Address 0x4E38 Valid READ   2. Read Address 0xB1C7 Valid READ   3. Read Address 0x83E0 Valid READ   4. Read Address 0x7C1F Valid READ   5. Read Address 0x703F Valid READ   6. Read Address 0x4C63 Initiate RECALL Cycle   Because a sequence of READs from specific addresses is used   for STORE initiation, it is important that no other read or write   accesses intervene in the sequence, or the sequence is aborted   and no STORE or RECALL takes place.   Internally, RECALL is a two step procedure. First, the SRAM data   is cleared. Next, the nonvolatile information is transferred into the   SRAM cells. After the t   cycle time, the SRAM is again   RECALL   ready for read and write operations. The RECALL operation   does not alter the data in the nonvolatile elements.   To initiate the Software STORE cycle, the following read   sequence must be performed:   1. Read Address 0x4E38 Valid READ   2. Read Address 0xB1C7 Valid READ   3. Read Address 0x83E0 Valid READ   4. Read Address 0x7C1F Valid READ   5. Read Address 0x703F Valid READ   6. Read Address 0x8FC0 Initiate STORE Cycle   Table 2. Mode Selection   A - A   X Mode   I/O   Power   Standby   Active   CE   WE   OE, BHE, BLE   15   0 H X X Not Selected   Read SRAM   Write SRAM   Output High Z   Output Data   Input Data   L L L H L L X L X X Active   H 0x4E38   0xB1C7   0x83E0   0x7C1F   0x703F   0x8B45   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Read SRAM   AutoStore   Output Data   Output Data   Output Data   Output Data   Output Data   Output Data   Active   Disable   Notes   9. While there are 17 address lines on the CY14B101LA (16 address lines on the CY14B101NA), only the 13 address lines (A - A ) are used to control software modes.   14   2 Rest of the address lines are don’t care.   10. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.   Document #: 001-42879 Rev. *B   Page 5 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Table 2. Mode Selection (continued)   [9]   [3]   A - A   Mode   I/O   Power   CE   WE   OE, BHE, BLE   15   0 L H L 0x4E38   0xB1C7   0x83E0   0x7C1F   0x703F   0x4B46   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Read SRAM   AutoStore Enable   Output Data   Output Data   Output Data   Output Data   Output Data   Output Data   Active   Active I   CC2   L L H H L L 0x4E38   0xB1C7   0x83E0   0x7C1F   0x703F   0x8FC0   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Nonvolatile   STORE   Output Data   Output Data   Output Data   Output Data   Output Data   Output High Z   0x4E38   0xB1C7   0x83E0   0x7C1F   0x703F   0x4C63   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Read SRAM   Nonvolatile   Recall   Output Data   Output Data   Output Data   Output Data   Output Data   Output High Z   Active   Preventing AutoStore   Data Protection   The AutoStore function is disabled by initiating an AutoStore   disable sequence. A sequence of read operations is performed   in a manner similar to the Software STORE initiation. To initiate   the AutoStore disable sequence, the following sequence of CE   controlled read operations must be performed:   The CY14B101LA/CY14B101NA protects data from corruption   during low voltage conditions by inhibiting all externally initiated   STORE and write operations. The low voltage condition is   detected when   V is less than   V . If the   CC   SWITCH   CY14B101LA/CY14B101NA is in a write mode (both CE and WE   are LOW) at power up, after a RECALL or STORE, the write is   1. Read address 0x4E38 Valid READ   2. Read address 0xB1C7 Valid READ   3. Read address 0x83E0 Valid READ   4. Read address 0x7C1F Valid READ   5. Read address 0x703F Valid READ   6. Read address 0x8B45 AutoStore Disable   inhibited until the SRAM is enabled after t   (HSB to output   LZHSB   active). This protects against inadvertent writes during power up   or brown out conditions.   Noise Considerations   The AutoStore is reenabled by initiating an AutoStore enable   sequence. A sequence of read operations is performed in a   manner similar to the Software RECALL initiation. To initiate the   AutoStore enable sequence, the following sequence of CE   controlled read operations must be performed:   1. Read address 0x4E38 Valid READ   2. Read address 0xB1C7 Valid READ   3. Read address 0x83E0 Valid READ   4. Read address 0x7C1F Valid READ   5. Read address 0x703F Valid READ   6. Read address 0x4B46 AutoStore Enable   If the AutoStore function is disabled or reenabled, a manual   STORE operation (Hardware or Software) must be issued to   save the AutoStore state through subsequent power down   cycles. The part comes from the factory with AutoStore enabled.   Document #: 001-42879 Rev. *B   Page 6 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Package Power Dissipation   Maximum Ratings   Capability (T = 25°C) ................................................... 1.0W   A Exceeding maximum ratings may impair the useful life of the   device. These user guidelines are not tested.   Surface Mount Pb Soldering   Temperature (3 Seconds).......................................... +260°C   Storage Temperature ................................. –65°C to +150°C   Maximum Accumulated Storage Time:   DC Output Current (1 output at a time, 1s duration)......15 mA   Static Discharge Voltage.......................................... > 2001V   (per MIL-STD-883, Method 3015)   At 150°C Ambient Temperature ........................1000h   At 85°C Ambient Temperature..................... 20 Years   Ambient Temperature with Power Applied.. –55°C to +150°C   Latch Up Current ................................................... > 200 mA   Operating Range   Supply Voltage on V Relative to GND ..........–0.5V to 4.1V   CC   Range   Commercial   Industrial   Ambient Temperature   0°C to +70°C   V CC   Voltage Applied to Outputs in High-Z State–0.5V to V + 0.5V   CC   2.7V to 3.6V   2.7V to 3.6V   Input Voltage.............................................–0.5V to Vcc+0.5V   –40°C to +85°C   Transient Voltage (<20 ns) on   Any Pin to Ground Potential ..................–2.0V to V + 2.0V   CC   DC Electrical Characteristics   Over the Operating Range (V = 2.7V to 3.6V)   CC   Parameter   Description   Average V Current   Test Conditions   Min   Max   Unit   I t t t = 20 ns   = 25 ns   = 45 ns   Commercial   Industrial   65   65   50   mA   mA   mA   CC1   CC   RC   RC   RC   Values obtained without output loads (I   = 0 mA)   = 0 mA)   OUT   70   70   52   mA   mA   mA   I I Average V Current All Inputs Don’t Care, V = Max   10   mA   CC2   CC   CC   during STORE   Average current for duration t   STORE   AverageV Currentat All I/P cycling at CMOS levels.   35   mA   CC3   CC   t = 200 ns, 3V, 25°C Values obtained without output loads (I   RC   OUT   typical   I I Average V   Current All Inputs Don’t Care, V = Max   5 5 mA   mA   CC4   CAP   CC   during AutoStore Cycle Average current for duration t   STORE   V Standby Current CE > (V – 0.2V). All others V < 0.2V or > (V – 0.2V). Standby   CC IN CC   SB   CC   current level after nonvolatile cycle is complete.   Inputs are static. f = 0 MHz   I Input Leakage Current V = Max, V < V < V   (except HSB)   –1   –100   –1   +1   +1   +1   µA   µA   µA   IX   CC   SS   IN   CC   Input Leakage Current V = Max, V < V < V   CC   SS   IN   CC   (for HSB)   I Off-State Output   Leakage Current   V = Max, V < V   < V , CE or OE > V or BHE/BLE > V   OZ   CC   SS   OUT CC IH IH   or WE < V   IL   V V V V V Input HIGH Voltage   Input LOW Voltage   Output HIGH Voltage   Output LOW Voltage   Storage Capacitor   2.0   V +0.5   V V IH   CC   V –0.5   0.8   IL   ss   I I = –2 mA   = 4 mA   2.4   V OH   OL   OUT   OUT   0.4   V Between V   pin and V , 5V Rated   61   180   µF   CAP   CAP   SS   Notes   11. Typical conditions for the active current shown on the DC Electrical characteristics are average values at 25°C (room temperature), and V = 3V. Not 100% tested.   CC   12. The HSB pin has I   = -2 uA for V of 2.4V when both active high and low drivers are disabled. When they are enabled standard V and V are valid. This   OUT   O H O H O L parameter is characterized but not tested.   13. V (Storage capacitor) nominal value is 68 uF.   CAP   Document #: 001-42879 Rev. *B   Page 7 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Data Retention and Endurance   Parameter   Description   Min   20   Unit   Years   K DATA   Data Retention   R NV   Nonvolatile STORE Operations   200   C Capacitance   Description   Input Capacitance   Output Capacitance   Test Conditions   T = 25°C, f = 1 MHz,   Max   7 Unit   pF   Parameter   C IN   A V = 0 to 3.0V   CC   C 7 pF   OUT   Thermal Resistance   Description   Test Conditions   48-FBGA 48-SSOP 44-TSOP II 32-SOIC   Unit   Parameter   ΘJA   Thermal Resistance Test conditions follow standard   (Junction to Ambient) test methods and procedures for   28.82   TBD   31.11   TBD   °C/W   measuring thermal impedance,   in accordance with EIA/JESD51.   (Junction to Case)   ΘJC   Thermal Resistance   7.84   TBD   5.56   TBD   °C/W   Figure 5. AC Test Loads   577Ω   R1   for tri-state specs   577Ω   3.0V   R1   3.0V   OUTPUT   OUTPUT   R2   789Ω   R2   789Ω   5 pF   30 pF   AC Test Conditions   Input Pulse Levels.................................................... 0V to 3V   Input Rise and Fall Times (10% - 90%)........................ <3 ns   Input and Output Timing Reference Levels.................... 1.5V   Note   14. These parameters are guaranteed by design and are not tested.   Document #: 001-42879 Rev. *B   Page 8 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   AC Switching Characteristics   Parameters   20 ns   25 ns   45 ns   Description   Unit   Cypress   Parameters   Alt   Min   Max   Min   Max   Min   Max   Parameters   SRAM Read Cycle   t t t t t t t t t t t t Chip Enable Access Time   Read Cycle Time   20   25   45   ns   ns   ACE   RC   ACS   RC   20   25   45   t t t t t t t t t Address Access Time   20   10   25   12   45   20   ns   ns   ns   ns   ns   ns   ns   ns   ns   AA   AA   Output Enable to Data Valid   Output Hold After Address Change   Chip Enable to Output Active   Chip Disable to Output Inactive   Output Enable to Output Active   Output Disable to Output Inactive   Chip Enable to Power Active   Chip Disable to Power Standby   OE   OH   LZ   DOE   OHA   3 3 3 3 3 3 LZCE   HZCE   LZOE   8 8 10   10   15   15   HZ   0 0 0 0 0 0 OLZ   OHZ   PA   HZOE   PU   20   10   25   12   45   20   t t t t PS   PD   - - - Byte Enable to Data Valid   Byte Enable to Output Active   Byte Disable to Output Inactive   ns   ns   ns   DBE[   LZBE   0 0 0 8 10   15   HZBE   SRAM Write Cycle   t t t t t t t t t t t t t t t t t Write Cycle Time   Write Pulse Width   20   15   15   8 0 15   0 25   20   20   10   0 20   0 0 45   30   30   15   0 30   0 0 ns   ns   ns   ns   ns   ns   ns   ns   ns   WC   PWE   SCE   SD   WC   WP   CW   DW   DH   AW   AS   Chip Enable To End of Write   Data Setup to End of Write   Data Hold After End of Write   Address Setup to End of Write   Address Setup to Start of Write   Address Hold After End of Write   Write Enable to Output Disable   HD   AW   SA   0 HA   WR   WZ   8 10   15   t HZWE   t Output Active after End of Write   Byte Enable to End of Write   3 3 3 ns   ns   t t OW   LZWE   - 15   20   30   BW   Switching Waveforms   Figure 6. SRAM Read Cycle #1: Address Controlled   tRC   Address   Address Valid   tAA   Output Data Valid   Previous Data Valid   tOHA   Data Output   Notes   15. WE must be HIGH during SRAM read cycles.   16. Device is continuously selected with CE, OE and BHE / BLE LOW.   17. Measured ±200 mV from steady state output voltage.   18. If WE is low when CE goes low, the outputs remain in the high impedance state.   19. HSB must remain HIGH during READ and WRITE cycles.   Document #: 001-42879 Rev. *B   Page 9 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Figure 7. SRAM Read Cycle #2: CE and OE Controlled   Address   CE   Address Valid   tRC   tHZCE   tACE   tAA   tLZCE   tHZOE   tDOE   OE   tHZBE   tLZOE   tDBE   BHE, BLE   tLZBE   High Impedance   Standby   Data Output   Output Data Valid   tPD   tPU   Active   ICC   Figure 8. SRAM Write Cycle #1: WE Controlled   tWC   Address   Address Valid   tSCE   tHA   CE   tBW   BHE, BLE   tAW   tPWE   WE   Data Input   Data Output   tSA   tHD   tSD   Input Data Valid   tLZWE   tHZWE   High Impedance   Previous Data   Note   21. CE or WE must be > V during address transitions.   IH   Document #: 001-42879 Rev. *B   Page 10 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Figure 9. SRAM Write Cycle #2: CE Controlled   tWC   Address Valid   Address   tSA   tSCE   tHA   CE   tBW   BHE, BLE   tPWE   WE   tHD   tSD   Input Data Valid   Data Input   High Impedance   Data Output   Figure 10. SRAM Write Cycle #3: BHE and BLE Controlled   tWC   Address   CE   Address Valid   tSCE   tSA   tHA   tBW   BHE, BLE   WE   tAW   tPWE   tSD   tHD   Data Input   Input Data Valid   High Impedance   Data Output   Document #: 001-42879 Rev. *B   Page 11 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   AutoStore/Power Up RECALL   20 ns   25 ns   45 ns   Parameters   Description   Unit   Min   Max   Min   Max   Min   Max   Power Up RECALL Duration   STORE Cycle Duration   20   20   20   ms   ms   ns   V t t t HRECALL   8 8 8 STORE   DELAY   Time Allowed to Complete SRAM Cycle   Low Voltage Trigger Level   VCC Rise Time   20   25   25   2.65   2.65   2.65   V SWITCH   150   150   150   µs   V t VCCRISE   HSB Output Driver Disable Voltage   1.9   1.9   1.9   V HDIS   LZHSB   HHHD   t t HSB To Output Active Time   HSB High Active Time   5 5 5 µs   ns   500   500   500   Switching Waveforms   Figure 11. AutoStore or Power Up RECALL   VSWITCH   VHDIS   Note23   Note23   VVCCRISE   tSTORE   tSTORE   Note26   tHHHD   tHHHD   HSB OUT   Autostore   tDELAY   tLZHSB   tLZHSB   tDELAY   POWER-   UP   RECALL   tHRECALL   tHRECALL   Read & Write   Inhibited   (RWI)   Read & Write   Read & Write   POWER-UP   RECALL   BROWN   OUT   Autostore   POWER   DOWN   Autostore   POWER-UP   RECALL   Notes   22. t   starts from the time V rises above V   SWITCH.   HRECALL   CC   23. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.   24. On a Hardware STORE, Software STORE / Recall, AutoStore Enable / Disable and AutoStore initiation, SRAM operation continues to be enabled for time t   . DELAY   25. Read and Write cycles are ignored during STORE, RECALL, and while VCC is below V   SWITCH.   26. HSB pin is driven high to VCC only by internal 100kOhm resistor, HSB driver is disabled.   Document #: 001-42879 Rev. *B   Page 12 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Software Controlled STORE/RECALL Cycle   20 ns   Max   25 ns   Max   45 ns   Max   Parameters   Description   Unit   Min   Min   Min   t t t t t STORE/RECALL Initiation Cycle Time   Address Setup Time   20   25   45   ns   ns   ns   ns   µs   RC   0 15   0 0 20   0 0 30   0 SA   Clock Pulse Width   CW   Address Hold Time   HA   RECALL Duration   200   200   200   RECALL   Switching Waveforms   Figure 12. CE and OE Controlled Software STORE/RECALL Cycle   tRC   tRC   Address   CE   Address #1   tCW   Address #6   tCW   tSA   tHA   tHA   tHA   tSA   tHA   OE   tDELAY   tHHHD   tHZCE   HSB (STORE only)   DQ (DATA)   tLZCE   tLZHSB   High Impedance   tSTORE/tRECALL   RWI   Figure 13. Autostore Enable / Disable Cycle   tRC   tRC   Address   CE   Address #1   tCW   Address #6   tCW   tSA   tHA   tHA   tHA   tSA   tHA   OE   tSS   tHZCE   tLZCE   tDELAY   DQ (DATA)   Notes   27. The software sequence is clocked with CE controlled or OE controlled reads.   28. The six consecutive addresses must be read in the order listed in Table 2 on page 5. WE must be HIGH during all six consecutive cycles.   Document #: 001-42879 Rev. *B   Page 13 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Hardware STORE Cycle   20ns   25ns   45ns   Parameters   Description   Unit   Min   Max   Min   Max   Min   Max   t t t HSB To Output Active Time when write latch not set   Hardware STORE Pulse Width   20   25   25   ns   ns   μs   DHSB   15   15   15   PHSB   Soft Sequence Processing Time   100   100   100   SS   Switching Waveforms   Figure 14. Hardware STORE Cycle   Write latch set   tPHSB   HSB (IN)   tSTORE   tHHHD   tDELAY   HSB (OUT)   DQ (Data Out)   RWI   tLZHSB   Write latch not set   tPHSB   HSB pin is driven high to VCC only by Internal   100kOhm resistor,   HSB (IN)   HSB driver is disabled   SRAM is disabled as long as HSB (IN) is driven low.   tDELAY   tDHSB   tDHSB   HSB (OUT)   RWI   Figure 15. Soft Sequence Processing   tSS   tSS   Soft Sequence   Command   Soft Sequence   Command   Address   Address #1   tSA   Address #6   tCW   Address #1   Address #6   tCW   CE   VCC   Notes   29. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.   30. Commands such as STORE and RECALL lock out IO until operation is complete which further increases this time. See the specific command.   Document #: 001-42879 Rev. *B   Page 14 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Truth Table For SRAM Operations   HSB must remain HIGH for SRAM operations.   Table 3. Truth Table for x8 Configuration   [2]   CE   H L WE   X OE   X Inputs/Outputs   Mode   Deselect/Power down   Power   High Z   Standby   Active   Active   Active   H L Data Out (DQ –DQ );   Read   0 7 L H H High Z   Output Disabled   Write   L L X Data in (DQ –DQ );   0 7 Table 4. Truth Table for x16 Configuration   [2]   CE   H L WE   X OE   X BHE   X BLE   X Inputs/Outputs   Mode   Power   High-Z   High-Z   Deselect/Power down   Output Disabled   Read   Standby   Active   Active   Active   X X H H L H L L L Data Out (DQ –DQ   ) 0 15   L H L H L Data Out (DQ –DQ );   Read   0 7 DQ –DQ in High-Z   8 15   L H L L H Data Out (DQ –DQ );   Read   Active   8 15   DQ –DQ in High-Z   0 7 L L L L L H H H L H H H X X L H L L L H L L High-Z   Output Disabled   Output Disabled   Output Disabled   Write   Active   Active   Active   Active   Active   High-Z   High-Z   L Data In (DQ –DQ   ) 15   0 L H Data In (DQ –DQ );   Write   0 7 DQ –DQ in High-Z   8 15   L L X L H Data In (DQ –DQ );   Write   Active   8 15   DQ –DQ in High-Z   0 7 Document #: 001-42879 Rev. *B   Page 15 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Ordering Information   Speed   Package   Operating   Ordering Code   Package Type   (ns)   Diagram   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   Range   20   CY14B101LA-ZS20XCT   CY14B101LA-ZS20XC   CY14B101LA-BA20XCT   CY14B101LA-BA20XC   CY14B101LA-SP20XCT   CY14B101LA-SP20XC   CY14B101LA-SZ20XCT   CY14B101LA-SZ20XC   CY14B101NA-ZS20XCT   CY14B101NA-ZS20XC   CY14B101NA-BA20XCT   CY14B101NA-BA20XC   CY14B101LA-ZS20XIT   CY14B101LA-ZS20XI   CY14B101LA-BA20XIT   CY14B101LA-BA20XI   CY14B101LA-SP20XIT   CY14B101LA-SP20XI   CY14B101LA-SZ20XIT   CY14B101LA-SZ20XI   CY14B101NA-ZS20XIT   CY14B101NA-ZS20XI   CY14B101NA-BA20XIT   CY14B101NA-BA20XI   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Commercial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Industrial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   Document #: 001-42879 Rev. *B   Page 16 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Ordering Information (continued)   Speed   Package   Operating   Ordering Code   (ns)   Package Type   Diagram   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   Range   25   CY14B101LA-ZS25XCT   CY14B101LA-ZS25XC   CY14B101LA-BA25XCT   CY14B101LA-BA25XC   CY14B101LA-SP25XCT   CY14B101LA-SP25XC   CY14B101LA-SZ25XCT   CY14B101LA-SZ25XC   CY14B101NA-ZS25XCT   CY14B101NA-ZS25XC   CY14B101NA-BA25XCT   CY14B101NA-BA25XC   CY14B101LA-ZS25XIT   CY14B101LA-ZS25XI   CY14B101LA-BA25XIT   CY14B101LA-BA25XI   CY14B101LA-SP25XIT   CY14B101LA-SP25XI   CY14B101LA-SZ25XIT   CY14B101LA-SZ25XI   CY14B101NA-ZS25XIT   CY14B101NA-ZS25XI   CY14B101NA-BA25XIT   CY14B101NA-BA25XI   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Commercial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Industrial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   Document #: 001-42879 Rev. *B   Page 17 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Ordering Information (continued)   Speed   Package   Operating   Ordering Code   (ns)   Package Type   Diagram   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   51-85087   51-85087   51-85128   51-85128   51-85061   51-85061   51-85127   51-85127   51-85087   51-85087   51-85128   51-85128   Range   45   CY14B101LA-ZS45XCT   CY14B101LA-ZS45XC   CY14B101LA-BA45XCT   CY14B101LA-BA45XC   CY14B101LA-SP45XCT   CY14B101LA-SP45XC   CY14B101LA-SZ45XCT   CY14B101LA-SZ45XC   CY14B101NA-ZS45XCT   CY14B101NA-ZS45XC   CY14B101NA-BA45XCT   CY14B101NA-BA45XC   CY14B101LA-ZS45XIT   CY14B101LA-ZS45XI   CY14B101LA-BA45XIT   CY14B101LA-BA45XI   CY14B101LA-SP45XIT   CY14B101LA-SP45XI   CY14B101LA-SZ45XIT   CY14B101LA-SZ45XI   CY14B101NA-ZS45XIT   CY14B101NA-ZS45XI   CY14B101NA-BA45XIT   CY14B101NA-BA45XI   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Commercial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   48-pin SSOP   48-pin SSOP   32-pin SOIC   Industrial   32-pin SOIC   44-pin TSOP II   44-pin TSOP II   48-ball FBGA   48-ball FBGA   All parts are Pb-free. The above table contains Preliminary information. Please contact your local Cypress sales representative for availability of these parts.   Document #: 001-42879 Rev. *B   Page 18 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Part Numbering Nomenclature   CY 14 B 101L A-ZS 20 X C T   Option:   T - Tape & Reel   Blank - Std.   Temperature:   C - Commercial (0 to 70°C)   I - Industrial (–40 to 85°C)   Speed:   20 - 20 ns   Pb-Free   25 - 25 ns   45 - 45 ns   Package:   BA - 48 FBGA   ZS - TSOP II   SP - 48 SSOP   SZ - 32 SOIC   Die revision:   Blank: No Rev   Data Bus:   st   L - x8   A - 1 Rev   N - x16   Density:   101 - 1 Mb   Voltage:   B - 3.0V   NVSRAM   14 - AutoStore + Software STORE + Hardware STORE   Cypress   Document #: 001-42879 Rev. *B   Page 19 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Package Diagrams   Figure 16. 44-Pin TSOP II (51-85087)   DIMENSION IN MM (INCH)   MAX   MIN.   PIN 1 I.D.   22   1 R O E K A X S G   EJECTOR PIN   23   44   TOP VIEW   BOTTOM VIEW   10.262 (0.404)   10.058 (0.396)   0.400(0.016)   0.300 (0.012)   0.800 BSC   (0.0315)   BASE PLANE   0.10 (.004)   0.210 (0.0083)   0.120 (0.0047)   0°-5°   18.517 (0.729)   18.313 (0.721)   0.597 (0.0235)   0.406 (0.0160)   SEATING   PLANE   51-85087-*A   Document #: 001-42879 Rev. *B   Page 20 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Package Diagrams (continued)   Figure 17. 48-Ball FBGA - 6 mm x 10 mm x 1.2 mm (51-85128)   BOTTOM VIEW   A1 CORNER   TOP VIEW   Ø0.05 M C   Ø0.25 M C A B   A1 CORNER   Ø0.30 0.05(48X)   1 2 3 4 5 6 6 5 4 3 2 1 A A B C D B C D E E F F G G H H 1.875   A A 0.75   B 6.00 0.10   3.75   B 6.00 0.10   0.15(4X)   SEATING PLANE   C 51-85128-*D   Document #: 001-42879 Rev. *B   Page 21 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Package Diagrams (continued)   Figure 18. 48-Pin SSOP (51-85061)   51-85061 *C   Document #: 001-42879 Rev. *B   Page 22 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Package Diagrams (continued)   Figure 19. 32-Pin SOIC (51-85127)   Document #: 001-42879 Rev. *B   Page 23 of 25   CY14B101LA, CY14B101NA   PRELIMINARY   Document History Page   Document Title: CY14B101LA/CY14B101NA 1 Mbit (128K x 8/64K x 16) nvSRAM   Document Number: 001-42879   Submission   Date   Orig. of   Change   Rev. ECN No.   Description of Change   **   2050747   See ECN   UNC/PYRS   New Data Sheet   *A   2607447 11/14/2008   GVCH/AESA Removed 15 ns access speed   Updated “Features”   Updated Logic block diagram   Added footnote 1 2, 3 and 7   Pin definition: Updated WE, HSB and NC pin description   Page 4: Updated SRAM READ, SRAM WRITE, Autostore operation description   Updated Figure 4   Page 4: Updated Hardware store operation and Hardware RECALL (Power   up)description   Page 4: Updated Software store and software recall description   Footnote 1 and 11 referenced for Mode selection Table   Added footnote 11   Updated footnote 9 and 10   Page 6: updated Data protection description   Maximum Ratings:Added Max. Accumulated storage time   Changed Output short circuit current parameter name to DC output current   Changed I   Changed I   Changed I   from 6mA to 10mA   from 15mA to 35mA   from 6mA to 5mA   CC2   CC3   CC4   Changed I from 3mA to 5mA   SB   Added I for HSB   IX   Updated I   I I and I Test conditions   CC1, CC3, SB   OZ   Changed V   voltage min value from 68uF to 61uF   voltage max value to 180uF   CAP   Added V   CAP   Updated footnote 12 and 13   Added footnote 14   Added Data retention and Endurance Table   Added thermal resistance value to 48-pin FBGA and 44-pin TSOP II packages   Updated Input Rise and Fall time in AC test Conditions   Referenced footnote 17 to t   parameter   OHA   Updated All switching waveforms   Updated footnote 17   Added footnote 20   Added Figure 10 (SRAM WRITE CYCLE:BHE and BLE controlled)   Changed t   max value from 12.5ms to 8ms   value   STORE   Updated t   DELAY   Added V   , t   and t   parameters   LZHSB   HDIS HHHD   Updated footnote 24   Added footnote 26 and 27   Software controlled STORE/RECALL Table: Changed t to t   AS   SA   Changed t   to t   GHAX   HA   Changed t value from 1ns to 0 ns   HA   Added Figure 13   Added t   Changed t   parameter   DHSB   to t   HLHX   PHSB   Updated t from 70us to 100us   SS   Added truth table for SRAM operations   Updated ordering information and part numbering nomenclature   *B   2654484   02/05/09   GVCH/PYRS Changed the data sheet from Advance information to Preliminary   Referenced Note 15 to parameters t   , t   , t   t t and t   LZCE HZCE LZOE, HZOE, LZWE HZWE   Updated Figure 12   Document #: 001-42879 Rev. *B   Page 24 of 25   PRELIMINARY   CY14B101LA, CY14B101NA   Sales, Solutions, and Legal Information   Worldwide Sales and Design Support   Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office   closest to you, visit us at cypress.com/sales.   Products   PSoC   PSoC Solutions   General   Clocks & Buffers   Wireless   Low Power/Low Voltage   Precision Analog   LCD Drive   Memories   Image Sensors   CAN 2.0b   USB   © Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of   any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for   medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as   critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems   application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),   United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,   and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress   integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without   the express written permission of Cypress.   Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not   assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where   a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer   assumes all risk of such use and in doing so indemnifies Cypress against all charges.   Use may be limited by and subject to the applicable Cypress software license agreement.   Document #: 001-42879 Rev. *B   Revised January 29, 2009   Page 25 of 25   AutoStore and QuantumTrap are registered trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective   holders.   |