| INTEGRATED CIRCUITS   DATA SHEET   TDA1563Q   2 × 25 W high efficiency car radio   power amplifier   Product specification   2000 Feb 09   Supersedes data of 1998 Jul 14   File under Integrated Circuits, IC01   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   BLOCK DIAGRAM   V V P2   P1   5 13   + − SLAVE   CONTROL   10   11   OUT2−   MUTE   − + 16   17   IV   OUT2+   − IN2−   VI   + − + IN2+   VI   60   kΩ   60   kΩ   V P 4 V ref   CSE   25 kΩ   3 − CIN   + 60   kΩ   60   kΩ   + − VI   2 1 IN1−   + − + − VI   7 8 IN1+   OUT1−   IV   MUTE   − + OUT1+   SLAVE   CONTROL   TDA1563Q   STANDBY   LOGIC   CLIP AND   DIAGNOSTIC   6 12   14   15   9 MGR173   MODE   SC   DIAG   CLIP   GND   Fig.1 Block diagram.   3 2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   PINNING   SYMBOL   PIN   DESCRIPTION   non-inverting input 1   handbook, halfpage   1 2 IN1+   IN1−   CIN   IN1+   1 2 IN1−   CIN   inverting input 1   3 3 common input   CSE   4 electrolytic capacitor for SE mode   supply voltage 1   4 CSE   VP1   5 V 5 P1   MODE   OUT1−   OUT1+   GND   OUT2−   OUT2+   SC   6 mute/standby/operating   inverting output 1   6 MODE   OUT1−   OUT1+   GND   7 7 8 non-inverting output 1   ground   8 9 9 TDA1563Q   10   11   12   13   14   15   16   17   inverting output 2   10   11   12   13   14   15   16   17   non-inverting output 2   selectable clip   OUT2−   OUT2+   SC   VP2   supply voltage 2   DIAG   CLIP   IN2−   IN2+   diagnostic: protection/temperature   diagnostic: clip detection   inverting input 2   V P2   DIAG   CLIP   IN2−   IN2+   non-inverting input 2   MGR174   Fig.2 Pin configuration.   2000 Feb 09   4 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   FUNCTIONAL DESCRIPTION   To avoid plops during switching from ‘mute’ to ‘on’ or from   ‘on’ to ‘mute/standby’ while an input signal is present, a   built-in zero-crossing detector only allows switching at   zero input voltage. However, when the supply voltage   drops below 6 V (e.g. engine start), the circuit mutes   immediately, avoiding clicks from the electronic circuit   preceding the power amplifier.   The TDA1563Q contains two identical amplifiers with   differential inputs. At low output power (up to output   amplitudes of 3 V (RMS) at VP = 14.4 V), the device   operates as a normal SE amplifier. When a larger output   voltage swing is needed, the circuit switches to BTL   operation.   The voltage of the SE electrolytic capacitor (pin 4) is kept   at 0.5VP by a voltage buffer (see Fig.1). The value of this   capacitor has an important influence on the output power   in SE mode. Especially at low signal frequencies, a high   value is recommended to minimize dissipation.   With a sine wave input signal, the dissipation of a   conventional BTL amplifier up to 2 W output power is more   than twice the dissipation of the TDA1563Q (see Fig.10).   In normal use, when the amplifier is driven with music-like   signals, the high (BTL) output power is only needed for a   small percentage of the time. Assuming that a music signal   has a normal (Gaussian) amplitude distribution, the   dissipation of a conventional BTL amplifier with the same   output power is approximately 70% higher (see Fig.11).   The two diagnostic outputs (clip and diag) are   open-collector outputs and require a pull-up resistor.   The clip output will be LOW when the THD of the output   signal is higher than the selected clip level (10% or 2.5%).   The heatsink has to be designed for use with music   signals. With such a heatsink, the thermal protection will   disable the BTL mode when the junction temperature   exceeds 150 °C. In this case, the output power is limited to   5 W per amplifier.   The diagnostic output gives information:   • about short circuit protection:   – When a short circuit (to ground or the supply voltage)   occurs at the outputs (for at least 10 µs), the output   stages are switched off to prevent excessive   dissipation. The outputs are switched on again   approximately 50 ms after the short circuit is   removed. During this short circuit condition, the   protection pin is LOW.   The gain of each amplifier is internally fixed at 26 dB. With   the MODE pin, the device can be switched to the following   modes:   • Standby with low standby current (<50 µA)   • Mute condition, DC adjusted   • On, operation.   – When a short circuit occurs across the load (for at   least 10 µs), the output stages are switched off for   approximately 50 ms. After this time, a check is made   to see whether the short circuit is still present.   The power dissipation in any short circuit condition is   very low.   The information on pin 12 (selectable clip) determines at   which distortion figures a clip detection signal will be   generated at the clip output. A logic 0 applied to pin 12 will   select clip detection at THD = 10%, a logic 1 selects   THD = 2.5%. A logic 0 can be realised by connecting this   pin to ground. A logic 1 can be realised by connecting it to   • during startup/shutdown, when the device is internally   muted.   • temperature detection: This signal (junction temperature   > 145°C) indicates that the temperature protection will   become active. The temperature detection signal can be   used to reduce the input signal and thus reduce the   power dissipation.   V logic (see Fig.7) or the pin can also be left open. Pin 12   may not be connected to VP because its maximum input   voltage is 18 V (VP > 18 V under load dump conditions).   The device is fully protected against a short circuit of the   output pins to ground and to the supply voltage. It is also   protected against a short circuit of the loudspeaker and   against high junction temperatures. In the event of a   permanent short circuit to ground or the supply voltage, the   output stage will be switched off, causing low dissipation.   With a permanent short circuit of the loudspeaker, the   output stage will be repeatedly switched on and off. In the   ‘on’ condition, the duty cycle is low enough to prevent   excessive dissipation.   2000 Feb 09   5 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   LIMITING VALUES   In accordance with the Absolute Maximum Rating System (IEC 134).   SYMBOL   VP   PARAMETER   CONDITIONS   operating   MIN.   MAX.   18   UNIT   supply voltage   − − − − − − − V V V V V A non-operating   30   45   18   6 load dump; tr > 2.5 ms   VP(sc)   Vrp   short-circuit safe voltage   reverse polarity voltage   repetitive peak output current   total power dissipation   storage temperature   IORM   Ptot   4 60   +150   150   − W Tstg   Tvj   −55   − −40   °C   °C   °C   virtual junction temperature   ambient temperature   Tamb   THERMAL CHARACTERISTICS   SYMBOL   PARAMETER   CONDITIONS   VALUE   UNIT   Rth(j-c)   Rth(j-a)   thermal resistance from junction to case   thermal resistance from junction to ambient   see note 1   1.3   40   K/W   K/W   Note   1. The value of Rth(c-h) depends on the application (see Fig.3).   Heatsink design   There are two parameters that determine the size of the   heatsink. The first is the rating for the virtual junction   temperature and the second is the ambient temperature at   which the amplifier must still deliver its full power in the   BTL mode.   virtual junction   OUT 1   handbook, halfpage   OUT 1   OUT 2   OUT 2   With a conventional BTL amplifier, the maximum power   dissipation with a music-like signal (at each amplifier) will   be approximately two times 6.5 W.   3.6 K/W   3.6 K/W   3.6 K/W   3.6 K/W   At a virtual junction temperature of 150 °C and a maximum   ambient temperature of 65 °C, Rth(vj-c) = 1.3 K/W and   0.6 K/W   0.6 K/W   Rth(c-h) = 0.2 K/W, the thermal resistance of the heatsink   150 – 65   2 × 6.5   should be:   – 1.3 – 0.2 = 5 K/W   ----------------------   MGC424   0.1 K/W   Compared to a conventional BTL amplifier, the TDA1563Q   has a higher efficiency. The thermal resistance of the   145 – 65   2 × 6.5   case   heatsink should be:1.7   – 1.3 – 0.2 = 9 K/W   ----------------------   Fig.3 Thermal equivalent resistance network.   2000 Feb 09   6 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   DC CHARACTERISTICS   VP = 14.4 V; Tamb = 25 °C; measured in Fig.7; unless otherwise specified.   SYMBOL   Supplies   PARAMETER   CONDITIONS   MIN. TYP. MAX. UNIT   VP   supply voltage   note 1   6 14.4 18   V Iq(tot)   Istb   total quiescent current   RL = ∞   − − − − − 95   1 150   mA   µA   V standby current   50   VC   average electrolytic capacitor voltage at pin 4   DC output offset voltage   7.1   − − − 100   100   ∆VO   on state   mV   mV   mute state   Mode select switch (see Fig.4)   Vms   voltage at mode select pin (pin 6)   standby condition   mute condition   operating condition   Vms = 5 V   0 2 4 − − − 1 V 3 V 5 VP   40   V Ims   switch current through pin 6   25   µA   Diagnostic   Vdiag   output voltage at diagnostic outputs (pins 14 and during any fault condition   15): protection/temperature and detection   − − 0.5   V Idiag   VSC   current through pin 14 or 15   during any fault condition   clip detect at THD = 10%   2 − − − − 0.5   18   mA   V input voltage at selectable clip pin (pin 12)   − clip detect at THD = 2.5% 1.5   V Protection   Tpre   prewarning temperature   BTL disable temperature   − − 145   150   − − °C   °C   Tdis(BTL)   note 2   Notes   1. The circuit is DC biased at VP = 6 to 18 V and AC operating at VP = 8 to 18 V.   2. If the junction temperature exceeds 150 °C, the output power is limited to 5 W per channel.   2000 Feb 09   7 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   V 18   mode   handbook, halfpage   Operating   4 3 2 1 0 Mute   Standby   MGR176   Fig.4 Switching levels of the mode select switch.   2000 Feb 09   8 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   AC CHARACTERISTICS   VP = 14.4 V; RL = 4 Ω; CSE = 1000 µF; f = 1 kHz; Tamb = 25 °C; measured in Fig.7; unless otherwise specified.   SYMBOL   PARAMETER   output power   CONDITIONS   THD = 0.5%   MIN.   TYP.   MAX. UNIT   Po   15   23   − − − 19   25   38   16   20   0.1   − − − − − − W W W W W % W Hz   THD = 10%   EIAJ   VP = 13.2 V; THD = 0.5%   VP = 13.2 V; THD = 10%   Po = 1 W; note 1   THD   Pd   total harmonic distortion   dissipated power   − see Figs 10 and 11   Bp   power bandwidth   THD = 1%; Po = −1 dB   with respect to 15 W   − 20 to 15000 −   fro(l)   low frequency roll-off   −1 dB; note 2   −1 dB   − 130   25   25   − − − Hz   fro(h)   Gv   high frequency roll-off   kHz   dB   closed loop voltage gain   supply voltage ripple rejection   Po = 1 W   26   27   SVRR   Rs = 0 Ω; Vripple = 2 V (p-p)   on/mute   45   65   − 80   120   1 − − − 150   − dB   dB   dB   kΩ   % standby; f = 100 Hz to 10 kHz 80   CMRR   Zi   common mode rejection ratio   input impedance   Rs = 0 Ω   − 90   − ∆Zi   VSE-BTL   mismatch in input impedance   SE to BTL switch voltage level   note 3   − 3 − V Vo(mute) output voltage mute (RMS value)   Vi = 1 V (RMS)   on; Rs = 0 Ω; note 4   on; Rs = 10 kΩ; note 4   mute; note 5   − − − − 40   − 100   100   105   100   70   − 150   150   − 150   − µV   µV   µV   µV   dB   dB   Vn(o)   noise output voltage   αcs   ∆Gv   channel separation   channel unbalance   Rs = 0 Ω; Po = 15 W   1 Notes   1. The distortion is measured with a bandwidth of 10 Hz to 30 kHz.   2. Frequency response externally fixed (input capacitors determine low frequency roll-off).   3. The SE to BTL switch voltage level depends on VP.   4. Noise output voltage measured with a bandwidth of 20 Hz to 20 kHz.   5. Noise output voltage is independent of Rs.   2000 Feb 09   9 Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   handbook, halfpage   I o 10 µs   max   MGR177   handbook, halfpage   V o t 0 short circuit   removed   max   short circuit   to ground   DIAG   CLIP   0 t 50   ms   50   ms   50   ms   0 t maximum current   short circuit to supply pins   MGR178   Fig.5 Clip detection waveforms.   Fig.6 Protection waveforms.   2000 Feb 09   10   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   TEST AND APPLICATION INFORMATION   V 220 nF   2200 µF   P V 5 V P1   P2   13   TDA1563Q   − + 100 nF   3.9 Ω   OUT2−   10   0.5R   0.5R   s IN2− 16   100 nF   220 nF   4 Ω   11 OUT2+   3.9 Ω   − + s IN2+ 17   220 nF   60   60   kΩ   kΩ   V ref   25 kΩ   4 CIN   3 2 CSE   1000 µF   1 µF   60   kΩ   60   kΩ   0.5R   0.5R   s IN1−   + − 7 8 OUT1−   220 nF   3.9 Ω   4 Ω   s IN1+   1 100 nF   100 nF   3.9 Ω   + − OUT1+   220 nF   CLIP AND   DIAGNOSTIC   STANDBY   LOGIC   signal ground   power ground   6 12 14   15   9 MODE   SC DIAG CLIP   GND   V ms   R pu   V logic   R pu   2.5%   10%   MGR180   Connect Boucherot filter to pin 8 or pin 10 with the shortest possible connection.   Fig.7 Application diagram.   11   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   76.20   35.56   + Out2   − − Out2   + RL-98   Mode   2.5%   − In2   + − In1   + 10%   Mute   Prot   Clip   gnd   On   Off   gnd   Vp   TDA1563Q   GND   MGR189   Dimensions in mm.   Fig.8 PCB layout (component side) for the application of Fig.7.   12   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   76.20   35.56   2× 25 W high efficiency   Out2   Out1   1 1 µF   17   220 nF   220 nF   220 nF   In2   In1   GND   Vp   MGR190   Dimensions in mm.   Fig.9 PCB layout (soldering side) for the application of Fig.7.   13   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   MBH692   MBH693   25   25   handbook, halfpage   handbook, halfpage   P P d d (W)   20   (W)   20   (1)   (2)   (1)   (2)   15   10   15   10   5 5 0 0 0 0 2 4 6 8 10   2 4 6 8 10   P (W)   P (W)   o o (1) For a conventional BTL amplifier.   (2) For TDA1563Q.   Input signal 1 kHz, sinusoidal; VP = 14.4 V.   (1) For a conventional BTL amplifier.   (2) For TDA1563Q.   Fig.11 Dissipation; pink noise through IEC-268   filter.   Fig.10 Dissipation; sine wave driven.   2.2 µF   2.2 µF   470 nF   430 Ω   330 Ω   91   nF   68   nF   3.3   kΩ   3.3   kΩ   10   kΩ   input   output   MGC428   Fig.12 IEC-268 filter.   2000 Feb 09   14   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   V 220 nF   2200 µF   P V V P1   P2   13   5 TDA1563Q   − 100 nF   3.9   Ω OUT2−   10   IN2− 16   + 100 nF   3.9   220 nF   4 Ω Ω − 11 OUT2+   IN2+ 17   + 220 nF   60   60   kΩ   kΩ   V ref   25 kΩ   4 CIN   3 2 CSE   1000 µF   1 µF   IEC-268   FILTER   60   kΩ   60   kΩ   IN1−   + − 7 8 OUT1−   220 nF   pink   noise   3.9   Ω 4 Ω IN1+   220 nF   1 100 nF   100 nF   3.9   Ω + − OUT1+   CLIP AND   DIAGNOSTIC   STANDBY   LOGIC   signal ground   power ground   6 12 14   15   9 MODE   SC DIAG   CLIP   GND   V ms   R pu   V logic   R pu   MGR181   Fig.13 Test and application diagram for dissipation measurements with a music-like signal (pink noise).   2000 Feb 09   15   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   MDA845   MDA844   150   250   handbook, halfpage   handbook, halfpage   I p I (mA)   q (mA)   200   100   150   100   50   50   0 0 0 0 8 16   24   2 4 6 V (V)   V (V)   ms   p Vms = 5 V; RI = ∞.   VP = 14.4 V; Vi = 25 mV   Fig.14 Quiescent current as a function of VP.   Fig.15 IP as a function of Vms (pin 3).   MDA843   MDA842   60   10   handbook, halfpage   handbook, halfpage   P o THD + N   (%)   (W)   (1)   40   1 (1)   (2)   (3)   (2)   (3)   −1   20   10   −2   10   0 2 −1   −2   8 10   12   14   16   18   1 10   10   10   10   P (W)   V (V)   o p (1) EIAJ, 100 Hz.   (2) THD = 10 %.   (3) THD = 0.5 %.   (1) f = 10 kHz.   (2) f = 1 kHz.   (3) f = 100 Hz.   Fig.16 Output power as a function of VP.   Fig.17 THD + noise as a function of Po.   2000 Feb 09   16   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   MDA841   MDA840   10   28   handbook, halfpage   handbook, halfpage   G v (dB)   THD + N   (%)   26   (1)   (2)   1 24   22   −1   10   −2   10   20   10   2 3 5 4 2 3 4 5 6 10   10   10   10   10   10   10   10   10   10   f (Hz)   f (Hz)   (1) Po = 10 W.   (2) Po = 1 W.   Vi = 100 mV.   Fig.18 THD + noise as a function of frequency.   Fig.19 Gain as a function of frequency.   MDA838   MDA839   −10   0 handbook, halfpage   handbook, halfpage   α (dB)   cs   SVRR   (dB)   −30   −20   −40   −60   −50   −70   (1)   (2)   2 −90   −80   3 4 5 2 3 4 5 10   10   10   10   10   10   10   10   10   10   f (Hz)   f (Hz)   (1) Po = 10 W.   (2) Po = 1 W.   Vripple(p-p) = 2 V.   Fig.20 Channel separation as a function of   frequency.   Fig.21 SVRR as a function of frequency.   2000 Feb 09   17   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   MDA846   0.8   handbook, halfpage   P o (W)   0.6   0.4   0.2   0 0 8 16   24   V (V)   p Vi = 70 mV.   Fig.22 AC operating as a function of VP.   2000 Feb 09   18   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   MGL914   V P V load   0 −V   P V P V master   1/2 V   P 0 V P V slave   1/2 V   P 0 0 1 2 t (ms)   3 See Fig.7:   Vload = V7 −V8 or V11 − V10   Vmaster = V7 or V11   Vslave = V8 or V10   Fig.23 Output waveforms.   19   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   APPLICATION NOTES   5. Connect the supply decoupling capacitors of 220 nF   as closely as possible to the TDA1563Qs.   Example of the TDA1563Q in a car radio system   solution   6. Place the tracks of the differential inputs as close   together as possible. If disturbances are injected at the   inputs, they will be amplified 20 times. Oscillation may   occur if this is not done properly.   The PCB shown here is used to demonstrate an audio   system solution with Philips Semiconductors devices for   car audio applications. The board includes the SAA7705H:   a high-end CarDSP (Digital Signal Processor), the   TDA3617J: a voltage regulator providing 9 V, 5 V and   3.3 V outputs, and two TDA1563Qs to provide four 25 W   power outputs. A complete kit (application report, software   and demo board) of this “car-audio chip-set demonstrator”   is available.   7. The SE line output signal of the CarDSP here is   offered as a quasi differential input signal to the   amplifiers by splitting the 100 Ω unbalance series   resistance into two 47 Ω balanced series resistances.   The return track from the minus inputs of the amplifiers   are not connected to ground (plane) but to the line out   reference voltage of the CarDSP, VrefDA.   The TDA1563Q is a state of the art device, which is   different to conventional amplifiers in power dissipation   because it switches between SE mode and conventional   BTL mode, depending on the required output voltage   swing. As a result, the PCB layout is more critical than with   conventional amplifiers.   8. The output signal of the CarDSP needs an additional   1st order filter. This is done by the two balanced series   resistances of 47 Ω (see note 7) and a ceramic   capacitor of 10 nF. The best position to place these   10 nF capacitors is directly on the input pins of the   amplifiers. Now, any high frequency disturbance at the   inputs of the amplifiers will be rejected.   NOTES AND LAYOUT DESIGN RECOMMENDATIONS   9. Only the area underneath the CarDSP is a ground   plane. A ground plane is necessary in PCB areas   where high frequency digital noise occurs. The audio   outputs are low frequency signals. For these outputs,   it is better to use two tracks (feed and return) as closely   as possible to each other to make the disturbances   common mode. The amplifiers have differential inputs   with a very high common mode rejection.   1. The TDA1563Q mutes automatically during switch-on   and switch-off and suppresses biasing clicks coming   from the CarDSP circuit preceding the power amplifier.   Therefore, it is not necessary to use a plop reduction   circuit for the CarDSP. To mute or to enlarge the mute   time of the system, the voltage at the mode pin of the   amplifiers should be kept between 2 V and 3 V.   2. The input reference capacitor at pin 3 is specified as   1 µF but has been increased to 10 µF to improve the   switch-on plop performance of the amplifiers. By doing   this, the minimum switch-on time increases from   standby, via internal mute, to operating from 150 ms to   600 ms.   10. The ground pin of the voltage regulator is the   reference for the regulator outputs. This ground   reference should be connected to the ground plane of   the CarDSP by one single track. The ground plane of   the CarDSP may not be connected to “another” ground   by a second connection.   3. It is important that the copper tracks to and from the   electrolytic capacitors (SE capacitors and supply   capacitors) are close together. Because of the   switching principle, switching currents flow here.   Combining electrolytic capacitors in a 4-channel   application is not recommended.   11. Prevent power currents from flowing through the   ground connection between CarDSP and voltage   regulator. The currents in the ground from the   amplifiers are directly returned to the ground pin of the   demo board. By doing this so, no ground interference   between the components will occur.   4. Filters at the outputs are necessary for stability   reasons. The filters at output pins 8 and 10 to ground   should be connected as close as possible to the   device (see layout of PCB).   2000 Feb 09   20   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   (3)   (3)   Car-audio chip-set demonstrator   TDA3617J   TDA1563Q   TDA1563Q   + + Rear   V Front   − FL   + + 2.5%   10%   FR   BATT   − Line-in   − RL   + + IO-98   RR   Error On Diag Clip   − Car DSP   10 V to 16 V   SAA7704/05/08   on bottom side   Left   V battery   GND   Right   Power ON   Mute   2 I C   PHILIPS Semiconductors   Top copper layer   (4)   (5)   (6)   (8)   Car-audio chip-set demonstrator   Version 0.1   DSP   MGS827   Bottom copper layer   Fig.24 PCB layout.   2000 Feb 09   21   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   VOLTAGE REGULATOR   V V V V en1   P MICROCONTROLLER   3 V BATT   2 1 BATT   TDA3617J   220 nF   GND   power   en3   GND   8 6 7 9 5 PLANE GND   47 nF   REG2 HOLD   V REG3   4.7 kΩ   en2   power   on   5 V   47 µF   47 µF   47 nF   10 kΩ   GND   GND   GND   5 V   3.3 V DIG 3.3 V ANA   BAS16/A6   A 4.7 kΩ   error   10 kΩ   1 MΩ   BC848B/1k   mute   GND   4.7 kΩ   B C diagnostic   clip   4.7 kΩ   5 V   3.3 V DIG   3.3 V ANA   100 nF   PLANE   100 Ω   3.3 V ANA   BLM21A10   100 nF   22 nF   22 nF   22 nF   PLANE PLANE   PLANE   PLANE   100 nF   100 Ω   PLANE   FLV   VDACP   74   75 76   21 22   23   36   37   46   47   48 51 52 55 49 50 53 54 11   1 2 47 Ω   16   15   D E 100 µF   2.2   nF   VDACN1   47 Ω   FLI   PLANE   330 pF   47 Ω   FRV   FRI   13   14   F CDLB   CDLI   73   72   2.2   nF   8.2 kΩ   1 µF   47 Ω   15 kΩ   G LEFT   330 pF   47 Ω   RRV   RRI   CDRB   CDRI   6 7 H I 71   70   Car DSP   SAA7704/05/08H   8.2 kΩ   LINE   IN   2.2   nF   1 µF   15 kΩ   47 Ω   RIGHT   1 µF   CDGND   47 Ω   CD-GND   77   RLV   RLI   9 8 J 2.2   nF   1 MΩ   82 kΩ   VREFAD   47 Ω   78   K AMAFR   AMAFL   TAPER   TAPEL   66   67   68   69   VREFDA   12   10   22 µF   V SSA2   4 3 61   65   62   63   64   42   57 58 56 24 25 26 27 28 29 43 44 45   PLANE   22 µF   47 nF   PLANE   MGS825   220 nF   220   Ω X1   100 nF   220   Ω PLANE   PLANE   BLM21A10   PLANE   PLANE   18   pF   18 100   1 to 5   100 pF   PLANE   pF   pF   PLANE   5 V   6 8 7 3.3 V DIG   PLANE PLANE   PLANE   2 I C SCL   SDA   Fig.25 Car-audio chip-set demonstrator (continued in Fig.26).   22   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   100 µH/6A   V battery   GND   V BATT   A GND PGND   5 V   clip select   2.5%   10%   GND   V B C 2200 µF   PGND   BATT   (16 V)   220 nF   V V GND   P1 P2   1000 µF   (16 V)   5 6 13   9 4 MODE   CSE   CLIP   DIAG   SC   OUT2+   15   14   12   OUT+   11   10   3.9 Ω   FRONT   LEFT   IN2+   100 nF   OUT2−   17   OUT−   D E 220 nF   220 nF   10 nF   PGND   3.9 Ω   TDA1563Q   IN2−   100 nF   100 nF   16   1 3.9 Ω   IN1+   PGND   OUT+   F OUT1+   220 nF   220 nF   8 7 10 nF   100 nF   IN1−   FRONT   RIGHT   2 3 G 3.9 Ω   CIN   OUT1−   OUT−   H I 10 µF   PGND   2× HIGH EFFICIENCY POWER AMPLIFIER   10 µF   OUT1−   CIN   3 1 7 OUT−   J 3.9 Ω   IN1+   REAR   RIGHT   220 nF   220 nF   100 nF   K OUT1+   10 nF   8 OUT+   IN1−   PGND   2 3.9 Ω   100 nF   100 nF   IN2+   17   3.9 Ω   TDA1563Q   220 nF   220 nF   PGND   OUT−   10 nF   OUT2−   10   11   IN2−   16   12   14   15   100 nF   SC   REAR   LEFT   3.9 Ω   DIAG   CLIP   OUT2+   OUT+   1000 µF   (16 V)   CSE   MODE   6 5 4 9 13   V V GND   P1 P2   220 nF   2200 µF   MGS826   V PGND   BATT   (16 V)   Fig.26 Car-audio chip-set demonstrator (continued from Fig.25).   23   2000 Feb 09   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   Advantages of high efficiency   • Power conversion improvement (power supply)   V = 14.4 V   handbook, halfpage   P Usually, the fact that the reduction of dissipation is   directly related to supply current reduction is neglected.   One advantage is less voltage drop in the whole supply   chain. Another advantage is less stress for the coil in the   supply line. Even the adapter or supply circuit remains   cooler than before as a result of the reduced heat   dissipation in the whole chain because more supply   current will be converted to output power.   Power   dissipation   reduction of 40%   Supply   current   at P = 1.6 W   o reduction of   32%   Same junction   temperature   Same heatsink   size   choice   • Power dissipation reduction   This is the best known advantage of high efficiency   amplifiers.   • Heatsink size reduction   Heatsink   size   reduction of   50%   Heatsink   temperature   reduction of   40%   The heatsink size of a conventional amplifier may be   reduced by approximately 50% at VP = 14.4 V when the   TDA1563Q is used. In this case, the maximum heatsink   temperature will remain the same.   MGS824   • Heatsink temperature reduction   The power dissipation and the thermal resistance of the   heatsink determine the heatsink temperature rise. When   the same heatsink size is used as in a conventional   amplifier, the maximum heatsink temperature   decreases and also the maximum junction temperature,   which extends the life of this semiconductor device.   The maximum dissipation with music-like input signals   decreases by 40%.   Fig.27 Heatsink design   Advantage of the concept used by the TDA1563Q   The TDA1563Q is highly efficient under all conditions,   because it uses a SE capacitor to create a non-dissipating   half supply voltage. Other concepts rely on both input   signals being the same in amplitude and phase. With the   concept of an SE capacitor, it does not matter what kind of   signal processing is done on the input signals.   For example, amplitude difference, phase shift or delays   between both input signals, or other DSP processing, have   no impact on the efficiency.   It is clear that the use of the TDA1563Q saves a significant   amount of energy. The maximum supply current   decreases by approximately 32%, which reduces the   dissipation in the amplifier as well in the whole supply   chain. The TDA1563Q allows a heatsink size reduction of   approximately 50% or a heatsink temperature decrease of   40% when the heatsink size is not changed.   2000 Feb 09   24   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   INTERNAL PIN CONFIGURATIONS   PIN   NAME   EQUIVALENT CIRCUIT   1, 2, 16,   17 and 3 IN2+ and CIN   IN1+, IN1−, IN2−,   V V P1, P2   V V P1, P2   1, 2, 16, 17   3 MGR182   4 CSE   V V P2   P1   4 MGR183   6 MODE   6 MGR184   7, 11   OUT1−, OUT2+   V V P1, P2   7, 11   4 MGR185   2000 Feb 09   25   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   PIN   8, 10   NAME   EQUIVALENT CIRCUIT   OUT1+, OUT2−   V V P1, P2   8, 10   4 MGR186   12   SC   V P2   12   MGR187   14, 15   PROT, CLIP   V P2   14, 15   MGR188   2000 Feb 09   26   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   PACKAGE OUTLINE   DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)   SOT243-1   non-concave   D h x D E h view B: mounting base side   d A 2 B j E A L 3 L Q c 2 v M 1 17   e e m w M 1 Z b p e 0 5 10 mm   scale   DIMENSIONS (mm are the original dimensions)   (1)   (1)   (1)   UNIT   A A b c D d D E e e e E j L L 3 m Q v w x Z 2 p h 1 2 h 17.0 4.6 0.75 0.48 24.0 20.0   15.5 4.4 0.60 0.38 23.6 19.6   12.2   11.8   3.4 12.4 2.4   3.1 11.0 1.6   2.00   1.45   2.1   1.8   6 mm   10   2.54 1.27 5.08   0.8   4.3   0.4 0.03   Note   1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.   REFERENCES   OUTLINE   EUROPEAN   PROJECTION   ISSUE DATE   VERSION   IEC   JEDEC   EIAJ   97-12-16   99-12-17   SOT243-1   2000 Feb 09   27   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   SOLDERING   The total contact time of successive solder waves must not   exceed 5 seconds.   Introduction to soldering through-hole mount   packages   The device may be mounted up to the seating plane, but   the temperature of the plastic body must not exceed the   specified maximum storage temperature (Tstg(max)). If the   printed-circuit board has been pre-heated, forced cooling   may be necessary immediately after soldering to keep the   temperature within the permissible limit.   This text gives a brief insight to wave, dip and manual   soldering. A more in-depth account of soldering ICs can be   found in our “Data Handbook IC26; Integrated Circuit   Packages” (document order number 9398 652 90011).   Wave soldering is the preferred method for mounting of   through-hole mount IC packages on a printed-circuit   board.   Manual soldering   Apply the soldering iron (24 V or less) to the lead(s) of the   package, either below the seating plane or not more than   2 mm above it. If the temperature of the soldering iron bit   is less than 300 °C it may remain in contact for up to   10 seconds. If the bit temperature is between   Soldering by dipping or by solder wave   The maximum permissible temperature of the solder is   260 °C; solder at this temperature must not be in contact   with the joints for more than 5 seconds.   300 and 400 °C, contact may be up to 5 seconds.   Suitability of through-hole mount IC packages for dipping and wave soldering methods   SOLDERING METHOD   PACKAGE   DIPPING   WAVE   DBS, DIP, HDIP, SDIP, SIL   suitable   suitable(1)   Note   1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.   DEFINITIONS   Data sheet status   Objective specification   Preliminary specification   Product specification   This data sheet contains target or goal specifications for product development.   This data sheet contains preliminary data; supplementary data may be published later.   This data sheet contains final product specifications.   Limiting values   Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or   more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation   of the device at these or at any other conditions above those given in the Characteristics sections of the specification   is not implied. Exposure to limiting values for extended periods may affect device reliability.   Application information   Where application information is given, it is advisory and does not form part of the specification.   LIFE SUPPORT APPLICATIONS   These products are not designed for use in life support appliances, devices, or systems where malfunction of these   products can reasonably be expected to result in personal injury. Philips customers using or selling these products for   use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such   improper use or sale.   2000 Feb 09   28   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   NOTES   2000 Feb 09   29   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   NOTES   2000 Feb 09   30   Philips Semiconductors   Product specification   2 × 25 W high efficiency car radio power   amplifier   TDA1563Q   NOTES   2000 Feb 09   31   Philips Semiconductors – a worldwide company   Argentina: see South America   Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,   Tel. +31 40 27 82785, Fax. +31 40 27 88399   Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,   Tel. +61 2 9704 8141, Fax. +61 2 9704 8139   New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,   Tel. +64 9 849 4160, Fax. +64 9 849 7811   Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,   Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210   Norway: Box 1, Manglerud 0612, OSLO,   Tel. +47 22 74 8000, Fax. +47 22 74 8341   Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,   220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773   Pakistan: see Singapore   Belgium: see The Netherlands   Philippines: Philips Semiconductors Philippines Inc.,   106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,   Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474   Brazil: see South America   Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,   51 James Bourchier Blvd., 1407 SOFIA,   Tel. +359 2 68 9211, Fax. +359 2 68 9102   Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,   Tel. +48 22 5710 000, Fax. +48 22 5710 001   Portugal: see Spain   Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,   Tel. +1 800 234 7381, Fax. +1 800 943 0087   Romania: see Italy   China/Hong Kong: 501 Hong Kong Industrial Technology Centre,   72 Tat Chee Avenue, Kowloon Tong, HONG KONG,   Tel. +852 2319 7888, Fax. +852 2319 7700   Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,   Tel. +7 095 755 6918, Fax. +7 095 755 6919   Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,   Colombia: see South America   Tel. +65 350 2538, Fax. +65 251 6500   Czech Republic: see Austria   Slovakia: see Austria   Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,   Slovenia: see Italy   Tel. +45 33 29 3333, Fax. +45 33 29 3905   South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,   2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,   Tel. +27 11 471 5401, Fax. +27 11 471 5398   Finland: Sinikalliontie 3, FIN-02630 ESPOO,   Tel. +358 9 615 800, Fax. +358 9 6158 0920   France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,   Tel. +33 1 4099 6161, Fax. +33 1 4099 6427   South America: Al. Vicente Pinzon, 173, 6th floor,   04547-130 SÃO PAULO, SP, Brazil,   Tel. +55 11 821 2333, Fax. +55 11 821 2382   Germany: Hammerbrookstraße 69, D-20097 HAMBURG,   Tel. +49 40 2353 60, Fax. +49 40 2353 6300   Spain: Balmes 22, 08007 BARCELONA,   Tel. +34 93 301 6312, Fax. +34 93 301 4107   Hungary: see Austria   Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,   Tel. +46 8 5985 2000, Fax. +46 8 5985 2745   India: Philips INDIA Ltd, Band Box Building, 2nd floor,   254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,   Tel. +91 22 493 8541, Fax. +91 22 493 0966   Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,   Tel. +41 1 488 2741 Fax. +41 1 488 3263   Indonesia: PT Philips Development Corporation, Semiconductors Division,   Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,   Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080   Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,   TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874   Ireland: Newstead, Clonskeagh, DUBLIN 14,   Tel. +353 1 7640 000, Fax. +353 1 7640 200   Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,   209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,   Tel. +66 2 745 4090, Fax. +66 2 398 0793   Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,   TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007   Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,   ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813   Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),   Tel. +39 039 203 6838, Fax +39 039 203 6800   Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,   252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461   Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,   TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057   United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,   MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421   Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,   Tel. +82 2 709 1412, Fax. +82 2 709 1415   United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,   Tel. +1 800 234 7381, Fax. +1 800 943 0087   Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,   Tel. +60 3 750 5214, Fax. +60 3 757 4880   Uruguay: see South America   Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,   Vietnam: see Singapore   Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087   Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,   Middle East: see Italy   Tel. +381 11 3341 299, Fax.+381 11 3342 553   For all other countries apply to: Philips Semiconductors,   Internet: http://www.semiconductors.philips.com   International Marketing & Sales Communications, Building BE-p, P.O. Box 218,   5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825   69   SCA   © Philips Electronics N.V. 2000   All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.   The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed   without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license   under patent- or other industrial or intellectual property rights.   Printed in The Netherlands   753503/25/02/pp32   Date of release: 2000 Feb 09   Document order number: 9397 750 06309   |