Mitsubishi Electronics Mitsubishi Digital Electronics Car Amplifier MR J3 B User Manual

General-Purpose AC Servo  
J3 Series  
SSCNET Compatible  
MODEL  
MR-J3- B  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
D
Safety Instructions  
(Always read these instructions before using the equipment.)  
Do not attempt to install, operate, maintain or inspect the converter unit, servo amplifier (drive unit) and servo  
motor until you have read through this Instruction Manual, Installation guide, Servo motor Instruction Manual  
(Vol.2) and appended documents carefully and can use the equipment correctly. Do not use the converter unit,  
servo amplifier (drive unit) and servo motor until you have a full knowledge of the equipment, safety information  
and instructions.  
In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".  
Indicates that incorrect handling may cause hazardous conditions,  
WARNING  
resulting in death or severe injury.  
Indicates that incorrect handling may cause hazardous conditions,  
CAUTION  
resulting in medium or slight injury to personnel or may cause physical  
damage.  
Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the  
instructions of both levels because they are important to personnel safety.  
What must not be done and what must be done are indicated by the following diagrammatic symbols.  
: Indicates what must not be done. For example, "No Fire" is indicated by  
: Indicates what must be done. For example, grounding is indicated by  
.
.
In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so  
on are classified into "POINT".  
After reading this installation guide, always keep it accessible to the operator.  
A - 1  
1. To prevent electric shock, note the following  
WARNING  
Before wiring or inspection, turn off the power and wait for 15 minutes or more (20 minutes or for drive  
unit 30kW or more) until the charge lamp turns off. Then, confirm that the voltage between P( ) and  
N( ) (L and L  
is safe with a voltage tester and others. Otherwise, an  
for drive unit 30kW or more)  
electric shock may occur. In addition, always confirm from the front of the servo amplifier (converter unit),  
whether the charge lamp is off or not.  
Connect the converter unit, servo amplifier (drive unit) and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire the converter unit, servo amplifier (drive unit) and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed loaded, or pinched. Otherwise, you may get an electric  
shock.  
During power-on or operation, do not open the front cover. You may get an electric shock.  
Do not operate the converter unit and servo amplifier (drive unit) with the front cover removed. High-  
voltage terminals and charging area are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even if the power is off. The servo  
amplifier (drive unit) is charged and you may get an electric shock.  
2. To prevent fire, note the following  
CAUTION  
Install the converter unit, servo amplifier (drive unit), servo motor and regenerative resistor on  
incombustible material. Installing them directly or close to combustibles will lead to a fire.  
Always connect a magnetic contactor (MC) between the main circuit power supply and L1, L2, and L3 of  
the converter unit, servo amplifier (drive unit), and configure the wiring to be able to shut down the power  
supply on the side of the converter unit, servo amplifier (drive unit) power supply. If a magnetic contactor  
(MC) is not connected, continuous flow of a large current may cause a fire when the converter unit, servo  
amplifier (drive unit) malfunctions.  
When a regenerative resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative transistor fault or the like may overheat the regenerative resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the instruction manual should be applied to each terminal, Otherwise, a burst,  
damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the converter unit and servo amplifier (drive unit) heat sink, regenerative resistor, servo motor, etc.  
since they may be hot while power is on or for some time after power-off. Their temperatures may be high  
and you may get burnt or a parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock,  
etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport the converter unit and servo amplifier (drive unit). The converter  
unit and servo amplifier (drive unit) may drop.  
Install the converter unit and servo amplifier (drive unit) in a load-bearing place in accordance with the  
Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The converter unit, servo amplifier (drive unit), and servo motor must be installed in the specified  
direction.  
Leave specified clearances between the converter unit, servo amplifier (drive unit), and control enclosure  
walls or other equipment.  
Do not install or operate the converter unit, servo amplifier (drive unit), and servo motor which has been  
damaged or has any parts missing.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Converter unit servo amplifier (drive unit)  
0 to 55 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
In  
[
[
[
[
]
]
]
]
operation  
Ambient  
32 to 131 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
temperature  
20 to 65 (non-freezing)  
In storage  
4 to 149 (non-freezing)  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
90%RH or less (non-condensing)  
80%RH or less (non-condensing)  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HF-MP series HF-KP series  
HF-SP51 81 HF-SP52 to 152  
HF-SP524 to 1524 HC-RP Series  
HC-UP72 152  
X, Y: 49 m/s2  
X, Y: 24.5 m/s2  
HF-SP121 201 HF-SP202 352  
HF-SP2024 3524 HC-UP202 to 502  
HF-SP301 421 HF-SP502 702  
HF-SP5024 7024  
X: 24.5 m/s2 Y: 49 m/s2  
X: 24.5 m/s2 Y: 29.4 m/s2  
(Note)  
[m/s2]  
5.9 or less  
Vibration  
HC-LP52 to 152  
X: 9.8 m/s2 Y: 24.5 m/s2  
X: 19.6 m/s2 Y: 49 m/s2  
HC-LP202 to 302  
HA-LP601 to 12K1 HA-LP701M to 15K1M  
HA-LP502 to 22K2 HA-LP6014 12K14  
X: 11.7 m/s2 Y: 29.4 m/s2  
HA-LP701M4 15K1M4 HA-LP11K24 to 22K24  
HA-LP15K1 to 37K1 HA-LP22K1M to 37K1M  
HA-LP30K2 37K2 HA-LP15K14 to 37K14  
HA-LP22K1M4 to 50K1M4 HA-LP30K24 to 55K24  
X, Y: 9.8 m/s2  
Note. Except the servo motor with reduction gear.  
A - 3  
CAUTION  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering the converter unit, servo amplifier (drive unit), and servo motor.  
Do not drop or strike converter unit, servo amplifier (drive unit), or servo motor. Isolate from all impact  
loads.  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF (-H) option) between the  
servo motor and servo amplifier (drive unit).  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier (drive unit) and servo  
motor. Otherwise, the servo motor does not operate properly.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
Servo amplifier  
(drive unit)  
Servo amplifier  
(drive unit)  
Servo motor  
Servo motor  
U
V
U
V
U
V
U
V
M
M
W
W
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier (drive unit) must  
be wired in the specified direction. Otherwise, the forced stop (EM1) and other protective circuits may not  
operate.  
Servo amplifier  
(drive unit)  
Servo amplifier  
(drive unit)  
24VDC  
24VDC  
DOCOM  
DICOM  
DOCOM  
DICOM  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
When the cable is not tightened enough to the terminal block (connector), the cable or terminal block  
(connector) may generate heat because of the poor contact. Be sure to tighten the cable with specified  
torque.  
A - 4  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
(4) Usage  
CAUTION  
Provide an external emergency stop circuit to ensure that operation can be stopped and power switched  
off immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier (drive unit) is off to prevent  
an accident. A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near the converter unit and servo amplifier (drive unit).  
Burning or breaking a converter unit and servo amplifier (drive unit) may cause a toxic gas. Do not burn or  
break a converter unit and servo amplifier (drive unit).  
Use the converter unit and servo amplifier (drive unit) with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
A - 5  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with an electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier (drive unit)  
signals but also by an external forced stop (EM1).  
Contacts must be open when  
servo-off, when an trouble (ALM)  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the converter unit and servo amplifier (drive unit) will deteriorate. To  
prevent a secondary accident due to a fault, it is recommended to replace the electrolytic capacitor every  
10 years when used in general environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Specifications and Instruction Manual may have  
been drawn without covers and safety guards. When the equipment is operated, the covers and safety  
guards must be installed as specified. Operation must be performed in accordance with this Specifications  
and Instruction Manual.  
A - 6  
About processing of waste  
When you discard converter unit and servo amplifier (drive unit), a battery (primary battery), and other option  
articles, please follow the law of each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the converter unit, servo amplifier (drive unit)  
and/or converter unit may fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Write to the EEP-ROM due to device changes  
Precautions for Choosing the Products  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 7  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in January,  
1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January, 1997) of the  
EC directives require that products to be sold should meet their fundamental safety requirements and carry the  
CE marks (CE marking). CE marking applies to machines and equipment into which servo have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment.  
This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply  
with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation  
Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to servo units alone. Hence, they are designed to comply with the low  
voltage directive.  
This servo is certified by TUV, third-party assessment organization, to comply with the low voltage directive.  
(3) Machine directive  
Not being machines, the converter unit, servo amplifiers (drive unit) need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Converter unit, servo amplifiers (drive unit), and servo motors used  
Use the converter unit, servo amplifiers (drive unit), and servo motors which comply with the standard  
model.  
Converter unit series  
:MR-J3-CR55K  
MR-J3-CR55K4  
Servo amplifier (drive unit) series :MR-J3-10B to MR-J3-22KB  
MR-J3-10B1 to MR-J3-40B1  
MR-J3-60B4 to MR-J3-22KB4  
MR-J3-DU30KB to MR-J3-DU37KB  
MR-J3-DU30KB4 to MR-J3-DU55KB4  
Servo motor series  
:HF-MP  
HF-KP  
HF-SP (Note)  
HF-SP 4(Note)  
HC-RP  
HC-UP  
HC-LP  
HA-LP (Note)  
HA-LP 4 (Note)  
Note. For the latest information of compliance, contact Mitsubishi.  
A - 8  
(2) Configuration  
The control circuit provide safe separation to the main circuit in the converter unit and servo amplifier (drive  
unit).  
(a) MR-J3-22KB(4) or less  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
Servo  
amplifier  
NFB  
MC  
M
(b) MR-J3-DU30KB(4) or more  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
Converter  
unit  
Drive  
unit  
NFB  
MC  
M
(3) Environment  
Operate the converter unit and servo amplifier (drive unit) at or above the contamination level 2 set forth in  
IEC60664-1. For this purpose, install the converter unit and servo amplifier (drive unit) in a control box  
which is protected against water, oil, carbon, dust, dirt, etc. (IP54).  
(4) Power supply  
(a) This converter unit and servo amplifier (drive unit) can be supplied from star-connected supply with  
earthed neutral point of overvoltage category III set forth in IEC60664-1. However, when using the  
neutral point of 400V class for single-phase supply, a reinforced insulating transformer is required in the  
power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been insulation-  
reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
converter unit and servo amplifier (drive unit) to the protective earth (PE) of the control box.  
A - 9  
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the  
cables to the terminals one-to-one.  
PE terminals  
PE terminals  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals of  
the converter unit and servo amplifier (drive unit) must be connected to the corresponding earth  
terminals.  
(6) Wiring  
(a) The cables to be connected to the terminal block of the converter unit and servo amplifier (drive unit)  
must have crimping terminals provided with insulating tubes to prevent contact with adjacent terminals.  
Crimping terminal  
Insulating tube  
Cable  
(b) Use the servo motor side power connector which complies with the EN Standard. The EN Standard  
compliant power connector sets are available from us as options. (Refer to section 11.1)  
(7) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in section 11.12 (Section 13.9.5 for 30kW or more).  
Use a type B (Note) breaker. When it is not used, provide insulation between the converter unit, servo  
amplifier (drive unit) and other device by double insulation or reinforced insulation, or install a  
transformer between the main power supply, converter unit and servo amplifier (drive unit).  
Note. Type A: AC and pulse detectable  
Type B: Both AC and DC detectable  
(b) The sizes of the cables described in section 11.8 meet the following requirements. To meet the other  
requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [°C (°F)]  
Sheath: PVC (polyvinyl chloride)  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(8) Performing EMC tests  
When EMC tests are run on a machine/device into which the converter unit and servo amplifier (drive unit)  
has been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after  
it has satisfied the operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on the converter unit and servo amplifier (drive unit), refer to the  
EMC Installation Guidelines(IB(NA)67310).  
A - 10  
CONFORMANCE WITH UL/C-UL STANDARD  
(1) Converter unit, servo amplifiers (drive unit) and servo motors used  
Use the converter unit, servo amplifiers (drive unit) and servo motors which comply with the standard model.  
Converter unit series  
:MR-J3-CR55K  
MR-J3-CR55K4  
Servo amplifier (drive unit) series :MR-J3-10B to MR-J3-22KB  
MR-J3-10B1 to MR-J3-40B1  
MR-J3-60B4 to MR-J3-22KB4  
MR-J3-DU30KB to MR-J3-DU37KB  
MR-J3-DU30KB4 to MR-J3-DU55KB4  
Servo motor series  
:HF-MP  
HF-KP  
HF-SP (Note)  
HF-SP 4 (Note)  
HC-RP  
HC-UP  
HC-LP  
HA-LP (Note)  
HA-LP 4 (Note)  
Note. For the latest information of compliance, contact Mitsubishi.  
(2) Installation  
Install a fan of 100CFM (2.8m3/min) air flow 4[in] (10.16[cm]) above the servo amplifier (drive unit) or  
provide cooling of at least equivalent capability to ensure that the ambient temperature conforms to the  
environment conditions (55 or less).  
(3) Short circuit rating: SCCR (Short Circuit Current Rating)  
This servo amplifier (drive unit) conforms to the circuit whose peak current is limited to 100kA or less,  
500Volts Maximum. Having been subjected to the short-circuit tests of the UL in the alternating-current  
circuit, the servo amplifier (drive unit) conforms to the above circuit.  
A - 11  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for 15  
minutes (more than 20 minutes in case drive unit is 30kW or more) after power-off.  
Servo amplifier  
MR-J3-10B 20B  
Discharge time [min]  
1
2
MR-J3-40B 60B(4) 10B1 20B1  
MR-J3-70B  
3
MR-J3-40B1  
4
MR-J3-100B(4)  
5
MR-J3-200B(4) 350B  
MR-J3-350B4 500B(4) 700B(4)  
MR-J3-11KB(4)  
9
10  
4
MR-J3-15KB(4)  
6
MR-J3-22KB(4)  
8
Converter unit  
MR-J3-CR55K  
Drive unit  
Discharge time [min]  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
20  
MR-J3-CR55K4  
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE WITH  
UL/C-UL STANDARD” in the Servo Motor Instruction Manual (Vol.2).  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the National  
Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
A - 12  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual (Vol.2) are required if you use  
the General-Purpose AC servo MR-J3-B for the first time. Always purchase them and use the MR-J3-B  
safely.  
Relevant manuals  
Manual name  
Manual No.  
MELSERVO-J3 Series Instructions and Cautions for Safe Use of AC Servos  
(Enclosed in converter unit and servo amplifier (drive unit).)  
MELSERVO Servo Motor Instruction Manual Vol.2  
EMC Installation Guidelines  
IB(NA)0300077  
SH(NA)030041  
IB(NA)67310  
Details of MR-J3-CR55K(4) and MR-J3-DU30KB(4) to MR-J3-DU55KB4 are described in chapter 13 of this  
INSTRUCTION MANUAL.  
For the products of 30kW or more, refer to chapter 13.  
<<About the wires used for wiring>>  
Wiring wires mentioned in this instruction manual are selected based on the ambient temperature of 40°C  
(104 ).  
A - 13  
MEMO  
A - 14  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1 - 1 to 1 -28  
1.1 Introduction............................................................................................................................................... 1 - 1  
1.2 Function block diagram............................................................................................................................ 1 - 2  
1.3 Servo amplifier standard specifications................................................................................................... 1 - 5  
1.4 Function list .............................................................................................................................................. 1 - 7  
1.5 Model code definition............................................................................................................................... 1 - 8  
1.6 Combination with servo motor................................................................................................................1 -10  
1.7 Structure..................................................................................................................................................1 -11  
1.7.1 Parts identification............................................................................................................................1 -11  
1.7.2 Removal and reinstallation of the front cover..................................................................................1 -18  
1.8 Configuration including auxiliary equipment...........................................................................................1 -21  
2. INSTALLATION  
2 - 1 to 2 - 6  
2.1 Installation direction and clearances ....................................................................................................... 2 - 1  
2.2 Keep out foreign materials....................................................................................................................... 2 - 3  
2.3 Cable stress ............................................................................................................................................. 2 - 3  
2.4 SSCNET cable laying............................................................................................................................ 2 - 4  
2.5 Inspection items ....................................................................................................................................... 2 - 6  
2.6 Parts having service lives ........................................................................................................................ 2 - 6  
3. SIGNALS AND WIRING  
3 - 1 to 3 -52  
3.1 Input power supply circuit ........................................................................................................................ 3 - 2  
3.2 I/O signal connection example ...............................................................................................................3 -10  
3.3 Explanation of power supply system......................................................................................................3 -12  
3.3.1 Signal explanations ..........................................................................................................................3 -12  
3.3.2 Power-on sequence .........................................................................................................................3 -13  
3.3.3 CNP1, CNP2, CNP3 wiring method ................................................................................................3 -14  
3.4 Connectors and signal arrangements ....................................................................................................3 -23  
3.5 Signal (device) explanations...................................................................................................................3 -24  
3.6 Alarm occurrence timing chart................................................................................................................3 -27  
3.7 Interfaces.................................................................................................................................................3 -28  
3.7.1 Internal connection diagram ............................................................................................................3 -28  
3.7.2 Detailed description of interfaces.....................................................................................................3 -29  
3.7.3 Source I/O interfaces .......................................................................................................................3 -31  
3.8 Treatment of cable shield external conductor........................................................................................3 -32  
3.9 SSCNET cable connection ..................................................................................................................3 -33  
3.10 Connection of servo amplifier and servo motor ...................................................................................3 -35  
3.10.1 Connection instructions..................................................................................................................3 -35  
3.10.2 Power supply cable wiring diagrams.............................................................................................3 -36  
3.11 Servo motor with an electromagnetic brake.........................................................................................3 -46  
3.11.1 Safety precautions .........................................................................................................................3 -46  
3.11.2 Timing charts..................................................................................................................................3 -47  
3.11.3 Wiring diagrams (HF-MP series HF-KP series servo motor) .....................................................3 -50  
3.12 Grounding..............................................................................................................................................3 -51  
1
3.13 Control axis selection............................................................................................................................3 -52  
4. STARTUP 4 - 1 to 4 -10  
4.1 Switching power on for the first time ....................................................................................................... 4 - 1  
4.1.1 Startup procedure.............................................................................................................................. 4 - 1  
4.1.2 Wiring check...................................................................................................................................... 4 - 2  
4.1.3 Surrounding environment.................................................................................................................. 4 - 3  
4.2 Start up ..................................................................................................................................................... 4 - 4  
4.3 Servo amplifier display............................................................................................................................. 4 - 5  
4.4 Test operation .......................................................................................................................................... 4 - 7  
4.5 Test operation mode................................................................................................................................ 4 - 8  
4.5.1 Test operation mode in MR Configurator......................................................................................... 4 - 8  
4.5.2 Motorless operation in controller......................................................................................................4 -10  
5. PARAMETERS  
5 - 1 to 5 -28  
5.1 Basic setting parameters (No.PA  
)..................................................................................................... 5 - 1  
5.1.1 Parameter list .................................................................................................................................... 5 - 2  
5.1.2 Parameter write inhibit ...................................................................................................................... 5 - 3  
5.1.3 Selection of regenerative option ....................................................................................................... 5 - 4  
5.1.4 Using absolute position detection system ........................................................................................ 5 - 5  
5.1.5 Forced stop input selection............................................................................................................... 5 - 5  
5.1.6 Auto tuning ........................................................................................................................................ 5 - 6  
5.1.7 In-position range................................................................................................................................ 5 - 7  
5.1.8 Selection of servo motor rotation direction....................................................................................... 5 - 8  
5.1.9 Encoder output pulse ........................................................................................................................ 5 - 8  
5.2 Gain/filter parameters (No. PB  
).......................................................................................................5 - 10  
5.2.1 Parameter list ..................................................................................................................................5 - 10  
5.2.2 Detail list ...........................................................................................................................................5 -11  
5.3 Extension setting parameters (No. PC  
) ...........................................................................................5 -18  
5.3.1 Parameter list ...................................................................................................................................5 -18  
5.3.2 List of details.....................................................................................................................................5 -19  
5.3.3 Analog monitor .................................................................................................................................5 -22  
5.3.4 Alarm history clear............................................................................................................................5 -24  
5.4 I/O setting parameters (No. PD  
).......................................................................................................5 -25  
5.4.1 Parameter list ...................................................................................................................................5 -25  
5.4.2 List of details.....................................................................................................................................5 -26  
6. GENERAL GAIN ADJUSTMENT  
6 - 1 to 6 -12  
6.1 Different adjustment methods.................................................................................................................. 6 - 1  
6.1.1 Adjustment on a single servo amplifier............................................................................................. 6 - 1  
6.1.2 Adjustment using MR Configurator................................................................................................... 6 - 2  
6.2 Auto tuning ............................................................................................................................................... 6 - 3  
6.2.1 Auto tuning mode .............................................................................................................................. 6 - 3  
6.2.2 Auto tuning mode operation.............................................................................................................. 6 - 4  
6.2.3 Adjustment procedure by auto tuning............................................................................................... 6 - 5  
6.2.4 Response level setting in auto tuning mode .................................................................................... 6 - 6  
6.3 Manual mode 1 (simple manual adjustment).......................................................................................... 6 - 7  
2
6.4 Interpolation mode ..................................................................................................................................6 -11  
6.5 Differences between MELSERVO-J2-Super and MELSERVO-J3 in auto tuning................................6 -12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7 - 1 to 7 -16  
7.1 Function block diagram............................................................................................................................ 7 - 1  
7.2 Adaptive filter ......................................................................................................................................... 7 - 1  
7.3 Machine resonance suppression filter..................................................................................................... 7 - 4  
7.4 Advanced vibration suppression control ................................................................................................. 7 - 6  
7.5 Low-pass filter .........................................................................................................................................7 -10  
7.6 Gain changing function ...........................................................................................................................7 -10  
7.6.1 Applications ......................................................................................................................................7 -10  
7.6.2 Function block diagram....................................................................................................................7 -11  
7.6.3 Parameters.......................................................................................................................................7 -12  
7.6.4 Gain changing operation..................................................................................................................7 -14  
8. TROUBLESHOOTING  
8 - 1 to 8 -10  
8.1 Alarms and warning list............................................................................................................................ 8 - 1  
8.2 Remedies for alarms................................................................................................................................ 8 - 2  
8.3 Remedies for warnings ............................................................................................................................ 8 - 8  
9. OUTLINE DRAWINGS  
9 - 1 to 9 -12  
9.1 Servo amplifier ......................................................................................................................................... 9 - 1  
9.2 Connector................................................................................................................................................9 -10  
10. CHARACTERISTICS  
10- 1 to 10-10  
10.1 Overload protection characteristics......................................................................................................10- 1  
10.2 Power supply equipment capacity and generated loss .......................................................................10- 3  
10.3 Dynamic brake characteristics..............................................................................................................10- 6  
10.3.1 Dynamic brake operation...............................................................................................................10- 6  
10.3.2 The dynamic brake at the load inertia moment.............................................................................10- 9  
10.4 Cable flexing life...................................................................................................................................10-10  
10.5 Inrush currents at power-on of main circuit and control circuit...........................................................10-10  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11- 1 to 11-90  
11.1 Cable/connector sets ............................................................................................................................11- 1  
11.1.1 Combinations of cable/connector sets ..........................................................................................11- 2  
11.1.2 Encoder cable/connector sets .......................................................................................................11- 8  
11.1.3 Motor power supply cables...........................................................................................................11-17  
11.1.4 Motor brake cables........................................................................................................................11-18  
11.1.5 SSCNET cable ...........................................................................................................................11-19  
11.2 Regenerative options...........................................................................................................................11-21  
11.3 FR-BU2-(H) Brake unit.........................................................................................................................11-34  
11.3.1 Selection........................................................................................................................................11-35  
11.3.2 Brake unit parameter setting.........................................................................................................11-35  
11.3.3 Connection example .....................................................................................................................11-36  
3
11.3.4 Outline dimension drawings..........................................................................................................11-43  
11.4 Power regeneration converter .............................................................................................................11-45  
11.5 Power regeneration common converter..............................................................................................11-48  
11.6 External dynamic brake .......................................................................................................................11-56  
11.7 Junction terminal block PS7DW-20V14B-F (recommended).............................................................11-61  
11.8 MR Configurator...................................................................................................................................11-62  
11.9 Battery MR-J3BAT...............................................................................................................................11-64  
11.10 Heat sink outside mounting attachment (MR-J3ACN)......................................................................11-65  
11.11 Selection example of wires................................................................................................................11-67  
11.12 No-fuse breakers, fuses, magnetic contactors .................................................................................11-72  
11.13 Power factor improving DC reactor ...................................................................................................11-72  
11.14 Power factor improving AC reactors .................................................................................................11-74  
11.15 Relays (recommended) .....................................................................................................................11-75  
11.16 Surge absorbers (recommended) .....................................................................................................11-76  
11.17 Noise reduction techniques ...............................................................................................................11-76  
11.18 Leakage current breaker....................................................................................................................11-83  
11.19 EMC filter (recommended) ................................................................................................................11-85  
12. ABSOLUTE POSITION DETECTION SYSTEM  
12- 1 to 12- 6  
12.1 Features ................................................................................................................................................12- 1  
12.2 Specifications ........................................................................................................................................12- 2  
12.3 Battery installation procedure...............................................................................................................12- 3  
12.4 Confirmation of absolute position detection data.................................................................................12- 5  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13- 1 to 13-102  
13.1. Functions and menus...........................................................................................................................13- 1  
13.1.1 Function block diagram..................................................................................................................13- 2  
13.1.2 Packing list .....................................................................................................................................13- 4  
13.1.3 Standard specifications..................................................................................................................13- 5  
13.1.4 Model definition ..............................................................................................................................13- 8  
13.1.5 Combinations of converter units, drive unit and servo motors .....................................................13- 9  
13.1.6 Parts identification.........................................................................................................................13-10  
13.1.7 Removal and reinstallation of the terminal block cover ...............................................................13-13  
13.1.8 Servo system with auxiliary equipment ........................................................................................13-19  
13.2 Installation ............................................................................................................................................13-20  
13.2.1 Installation direction and clearances ............................................................................................13-21  
13.2.2 Inspection ......................................................................................................................................13-22  
13.3 Signals and wiring................................................................................................................................13-23  
13.3.1 Magnetic contactor control connector (CNP1).............................................................................13-24  
13.3.2 Input power supply circuit .............................................................................................................13-26  
13.3.3 Terminal.........................................................................................................................................13-31  
13.3.4 How to use the connection bars ...................................................................................................13-32  
13.3.5 Connectors and signal arrangements ..........................................................................................13-33  
13.3.6 Converter unit signal (device) explanations .................................................................................13-35  
13.3.7 Timing chart...................................................................................................................................13-37  
13.3.8 Servo motor side details ...............................................................................................................13-47  
13.4 Display section and operation section of the converter unit...............................................................13-49  
4
13.4.1 Display flowchart ...........................................................................................................................13-49  
13.4.2 Status display mode......................................................................................................................13-50  
13.4.3 Diagnostic mode............................................................................................................................13-51  
13.4.4 Alarm mode ...................................................................................................................................13-53  
13.4.5 Parameter mode ...........................................................................................................................13-54  
13.5. Parameters for converter unit.............................................................................................................13-55  
13.5.1 Parameter list ................................................................................................................................13-55  
13.5.2 List of details..................................................................................................................................13-56  
13.6 Troubleshooting ...................................................................................................................................13-57  
13.6.1 Converter unit................................................................................................................................13-57  
13.6.2 Drive unit........................................................................................................................................13-62  
13.7 Outline drawings ..................................................................................................................................13-64  
13.7.1 Converter unit (MR-J3-CR55K(4))................................................................................................13-64  
13.7.2 Drive unit........................................................................................................................................13-65  
13.8 Characteristics......................................................................................................................................13-67  
13.8.1 Overload protection characteristics ..............................................................................................13-67  
13.8.2 Power supply equipment capacity and generated loss ...............................................................13-68  
13.8.3 Dynamic brake characteristics......................................................................................................13-69  
13.8.4 Inrush currents at power-on of main circuit and control circuit....................................................13-72  
13.9 Options .................................................................................................................................................13-72  
13.9.1 Cables and connectors .................................................................................................................13-72  
13.9.2 Regenerative option......................................................................................................................13-75  
13.9.3 External dynamic brake ................................................................................................................13-79  
13.9.4 Selection example of wires...........................................................................................................13-82  
13.9.5 No-fuse breakers, fuses, magnetic contactors.............................................................................13-84  
13.9.6 Power factor improving DC reactor ..............................................................................................13-84  
13.9.7 Line noise filter (FR-BLF)..............................................................................................................13-85  
13.9.8 Leakage current breaker...............................................................................................................13-86  
13.9.9 EMC filter (recommended)............................................................................................................13-88  
13.9.10 FR-BU2-(H) Brake Unit...............................................................................................................13-90  
APPENDIX  
App.- 1 to App.- 9  
App. 1 Parameter list..................................................................................................................................App.- 1  
App. 2 Signal layout recording paper ........................................................................................................App.- 3  
App. 3 Twin type connector : Outline drawing for 721-2105/026-000 (WAGO).......................................App.- 3  
App. 4 Change of connector sets to the RoHS compatible products.......................................................App.- 4  
App. 5 MR-J3-200B-RT servo amplifier ....................................................................................................App.- 5  
App. 6 Selection example of servo motor power cable ............................................................................App.- 9  
5
MEMO  
6
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Introduction  
The Mitsubishi MELSERVO-J3 series general-purpose AC servo has further higher performance and higher  
functions compared to the current MELSERVO-J2-Super series.  
The MR-J3-B servo amplifier connects to servo system controller and others via high speed synchronous  
network and operates by directly reading position data. The rotation speed/direction control of servo motor and  
the high accuracy positioning are executed with the data from command module. SSCNET equipped by the  
MR-J3-B servo amplifier greatly improved its communication speed and noise tolerance by adopting optical  
communication system compared to the current SSCNET. For wiring distance, 50m of the maximum distance  
between electrodes is also offered.  
The torque limit with clamping circuit is put on the servo amplifier in order to protect the power transistor of  
main circuit from the overcurrent caused by rapid acceleration/deceleration or overload. In addition, torque limit  
value can be changed to desired value in the controller.  
As this new series has the USB communication function, a MR Configurator-installed personal computer or the  
like can be used to perform parameter setting, test operation, status display monitoring, gain adjustment, etc.  
With real-time auto tuning, you can automatically adjust the servo gains according to the machine.  
The MELSERVO-J3 series servo motor is with an absolute position encoder which has the resolution of  
262144 pulses/rev to ensure more accurate control as compared to the MELSERVO-J2-Super series. Simply  
adding a battery to the servo amplifier makes up an absolute position detection system. This makes home  
position return unnecessary at power-on or alarm occurrence by setting a home position once.  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
The function block diagram of this servo is shown below.  
(1) MR-J3-350B or less MR-J3-200B4 or less  
Power factor  
improving DC Regenerative  
reactor  
option  
N(  
)
Servo amplifier  
P( ) C  
D
Servo motor  
U
P1  
P2  
Diode  
stack  
(Note 1)  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note 2)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
(Note 3)Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
circuit  
power  
supply  
24VDC B1  
B2  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Position  
command  
input  
Virtual  
encoder  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-J3BAT  
USB  
CN5  
D/A  
I/F Control  
Optional battery  
(for absolute position  
detection system)  
CN1A  
CN1B  
CN3  
Personal  
computer  
Analog monitor  
(2 channels)  
Digital I/O  
control  
Controller or Servo amplifier  
servo amplifier or cap  
USB  
Note 1. The built-in regenerative resistor is not provided for the MR-J3-10B (1).  
2. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
3. Servo amplifiers MR-J3-70B or greater have a cooling fan.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-350B4 MR-J3-500B(4) MR-J3-700B(4)  
Power factor  
improving DC Regenerative  
reactor  
option  
N
Servo amplifier  
P
C
Servo motor  
U
P1  
P2  
Diode  
stack  
Relay  
NFB MC  
U
V
L1  
L2  
L3  
(Note)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
24VDC B1  
B2  
circuit  
power  
supply  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Position  
command  
input  
Virtual  
encoder  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-J3BAT  
USB  
CN5  
D/A  
I/F Control  
Optional battery  
(for absolute position  
detection system)  
CN1A  
CN1B  
CN3  
Personal  
computer  
Analog monitor  
(2 channels)  
Digital I/O  
control  
Controller or Servo amplifier  
servo amplifier or cap  
USB  
Note. Refer to section 1.3 for the power supply specification.  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-11KB(4) to 22KB(4)  
Power factor  
improving DC Regenerative  
reactor  
option  
N
Servo amplifier  
P
C
Servo motor  
U
P1  
Diode  
stack  
Thyristor  
NFB MC  
U
V
L1  
L2  
L3  
(Note)  
Power  
supply  
V
Current  
detector  
M
W
W
CHARGE  
lamp  
Regene-  
rative  
TR  
Dynamic  
brake  
Cooling fan  
RA  
L11  
Electro-  
magnetic  
brake  
Control  
24VDC B1  
B2  
circuit  
power  
supply  
L21  
Base  
amplifier  
Voltage Overcurrent Current  
detection protection detection  
Encoder  
Position  
command  
input  
Virtual  
encoder  
Model position  
control  
Model speed  
control  
Virtual  
motor  
Model  
position  
Model  
speed  
Model  
torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
MR-J3BAT  
USB  
CN5  
D/A  
I/F Control  
Optional battery  
(for absolute position  
detection system)  
CN1A  
CN1B  
CN3  
Personal  
computer  
Analog monitor  
(2 channels)  
Digital I/O  
control  
Controller or Servo amplifier  
servo amplifier or cap  
USB  
Note. Refer to section 1.3 for the power supply specification.  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
1.3 Servo amplifier standard specifications  
(1) 200V class, 100V class  
Servo amplifier  
MR-J3-  
10B 20B 40B 60B 70B 100B 200B 350B 500B 700B 11KB 15KB 22KB 10B1 20B1 40B1  
Item  
Voltage/frequency  
3-phase or 1-phase 200  
to 230VAC, 50/60Hz  
3-phase or 1-phase 200  
to 230VAC: 170 to  
253VAC  
1-phase 100V to  
120VAC, 50/60Hz  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
1-phase 85 to  
132VAC  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
Power supply capacity  
Inrush current  
Voltage,  
Within 5%  
Refer to section 10.2  
Refer to section 10.5  
1-phase 100 to  
1-phase 200 to 230VAC, 50/60Hz  
frequency  
120VAC, 50/60Hz  
Permissible  
1-phase 85 to  
132VAC  
voltage  
1-phase 170 to 253VAC  
fluctuation  
Permissible  
frequency  
fluctuation  
Input  
Control circuit  
power supply  
Within 5%  
30W  
45W  
30W  
Inrush current  
Voltage  
Refer to section 10.5  
24VDC 10%  
Interface power  
supply  
Power supply  
capacity  
(Note 1) 150mA or more  
Control System  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
External option  
Built-in  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay),  
servo motor overheat protection, encoder error protection, regenerative error protection,  
undervoltage, instantaneous power failure protection, overspeed protection, excessive error  
protection.  
Protective functions  
Self-cooled, open  
(IP00)  
Self-cooled, open  
(IP00)  
Structure  
Force-cooling, open (IP00)  
In  
operation  
[
[
[
[
]
(Note 2) 0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
]
temperature  
]
In storage  
]
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
Ambient  
Altitude  
Vibration  
5.9 [m/s2] or less  
[kg] 0.8 0.8 1.0 1.0 1.4 1.4 2.1 2.3 4.6 6.2  
18  
18  
19  
0.8  
0.8  
1.0  
Mass  
[lb] 1.76 1.76 2.21 2.21 3.09 3.09 4.63 5.07 10.1 13.7 39.7 39.7 41.9 1.76 1.76 2.21  
Note 1. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
2. When closely mounting the servo amplifier of 3.5kW or less, operate them at the ambient temperatures of 0 to 45 or at 75% or  
smaller effective load ratio.  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
(2) 400V class  
Servo amplifier  
MR-J3-  
60B4  
100B4  
200B4  
350B4  
500B4  
700B4  
11KB4  
15KB4  
22KB4  
Item  
Voltage/frequency  
3-phase 380 to 480VAC, 50/60Hz  
3-phase 323 to 528VAC  
Permissible voltage fluctuation  
Permissible frequency  
fluctuation  
Within 5%  
Power supply capacity  
Inrush current  
Voltage,  
Refer to section 10.2  
Refer to section 10.5  
1-phase 380 to 480VAC, 50/60Hz  
frequency  
Permissible  
voltage  
1-phase 323 to 528VAC  
fluctuation  
Permissible  
frequency  
fluctuation  
Input  
Control circuit  
power supply  
Within 5%  
30W  
45W  
Inrush current  
Voltage  
Refer to section 10.5  
24VDC 10%  
Interface power  
supply  
Power supply  
capacity  
(Note) 150mA  
Control System  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
External option  
Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic thermal relay),  
servo motor overheat protection, encoder error protection, regenerative error protection,  
undervoltage, instantaneous power failure protection, overspeed protection, excessive error  
protection.  
Protective functions  
Self-cooled, open  
Force-cooling, open (IP00)  
(IP00)  
Structure  
In  
operation  
[
[
[
[
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
]
temperature  
]
In storage  
]
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
Ambient  
Altitude  
Vibration  
5.9 [m/s2] or less  
[kg]  
[lb]  
1.7  
1.7  
2.1  
4.6  
4.6  
6.2  
18  
18  
19  
Mass  
3.75  
3.75  
4.63  
10.14  
10.14  
13.67  
39.68  
39.68  
41.88  
Note. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the reference field.  
Function  
Description  
Reference  
High-resolution encoder of 262144 pulses/rev is used as a servo motor  
encoder.  
High-resolution encoder  
Absolute position detection  
system  
Merely setting a home position once makes home position return  
unnecessary at every power-on.  
Chapter 12  
You can switch between gains during rotation and gains during stop or use  
an input device to change gains during operation.  
Gain changing function  
Section 7.6  
Section 7.4  
Section 7.2  
Section 7.5  
Advanced vibration  
suppression control  
This function suppresses vibration at the arm end or residual vibration.  
Servo amplifier detects mechanical resonance and sets filter characteristics  
automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo system  
response is increased.  
Adaptive filter  
Low-pass filter  
Analyzes the frequency characteristic of the mechanical system by simply  
connecting a MR Configurator installed personal computer and servo  
amplifier.  
Machine analyzer function  
MR Configurator is necessary for this function.  
Can simulate machine motions on a personal computer screen on the basis  
of the machine analyzer results.  
Machine simulation  
Gain search function  
MR Configurator is necessary for this function.  
Personal computer changes gains automatically and searches for overshoot-  
free gains in a short time.  
MR Configurator is necessary for this function.  
Slight vibration suppression  
control  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
Parameters No.PB24  
Chapter 6  
Automatically adjusts the gain to optimum value if load applied to the servo  
motor shaft varies. Higher in performance than MR-J2-Super series servo  
amplifier.  
Auto tuning  
Brake unit  
Used when the regenerative option cannot provide enough regenerative  
power.  
Can be used the 5kW or more servo amplifier.  
Used when the regenerative option cannot provide enough regenerative  
power.  
Section 11.3  
Section 11.4  
Return converter  
Can be used the 5kW or more servo amplifier.  
Used when the built-in regenerative resistor of the servo amplifier does not  
have sufficient regenerative capability for the regenerative power generated.  
Alarm history is cleared.  
Regenerative option  
Section 11.2  
Alarm history clear  
Output signal (DO)  
forced output  
Parameter No.PC21  
Section 4.5.1 (1) (d)  
Output signal can be forced on/off independently of the servo status.  
Use this function for output signal wiring check, etc.  
JOG operation positioning operation DO forced output.  
However, MR Configurator is necessary for positioning operation.  
Servo status is output in terms of voltage in real time.  
Using a personal computer, parameter setting, test operation, status display,  
etc. can be performed.  
Test operation mode  
Analog monitor output  
MR Configurator  
Section 4.5  
Parameter No.PC09  
Section 11.8  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
1.5 Model code definition  
(1) Rating plate  
AC SERVO  
Model  
MR-J3-10B  
Capacity  
POWER : 100W  
Applicable power supply  
INPUT : 0.9A 3PH+1PH200-230V 50Hz  
3PH+1PH200-230V 60Hz  
1.3A 1PH 200-230V 50/60Hz  
OUTPUT: 170V 0-360Hz 1.1A  
SERIAL : A34230001  
Rated output current  
Serial number  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
(2) Model  
MR-J3-100B or less  
MR-J3-60B4 100B4  
MR J3  
B
With no regenerative resistor  
Symbol  
Description  
Series  
Indicates a servo  
amplifier of 11k to 22kW  
that does not use a  
regenerative resistor as  
standard accessory.  
-PX  
Power supply  
Symbol  
Power supply  
Rating plate  
MR-J3-350B  
Rating plate  
3-phase or 1-phase 200  
to 230VAC  
(Note 1)  
None  
MR-J3-200B(4)  
(Note 2)  
1
1-phase 100 to 120VAC  
3-phase 380 to 480VAC  
4
Note 1. 1-phase 200 to 230V is  
supported by 750W or less.  
2. 1-phase 100 to 120V is  
supported by 400W or less.  
SSCNET compatible  
Rated output  
Rated  
Symbol  
output [kW]  
Rating plate  
Rating plate  
10  
20  
0.1  
0.2  
0.4  
0.6  
0.75  
1
MR-J3-350B4 500B(4)  
MR-J3-700B(4)  
40  
60  
70  
100  
200  
350  
500  
700  
11K  
15K  
22K  
2
3.5  
5
7
11  
15  
22  
Rating plate  
Rating plate  
MR-J3-11KB(4) to 22KB(4)  
Rating plate  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
1.6 Combination with servo motor  
The following table lists combinations of servo amplifiers and servo motors. The same combinations apply to  
the models with an electromagnetic brake and the models with a reduction gear.  
Servo motors  
Servo amplifier  
HF-SP  
1000r/min  
HF-MP  
HF-KP  
HC-RP  
HC-UP  
HC-LP  
2000r/min  
MR-J3-10B (1)  
MR-J3-20B (1)  
MR-J3-40B (1)  
MR-J3-60B  
053 13  
23  
053 13  
23  
43  
43  
51  
52  
52  
MR-J3-70B  
73  
73  
72  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
81  
121 201  
301  
102  
152 202  
352  
102  
152  
202  
302  
103  
152  
202  
153  
503  
203  
421  
502  
353  
352  
502  
702  
Servo motors  
HA-LP  
Servo amplifier  
1000r/min  
1500r/min  
2000r/min  
502  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
601  
701M  
11K1M  
15K1M  
22K1M  
702  
801 12K1  
15K1  
11K2  
15K2  
22K2  
20K1 25K1  
Servo motors  
Servo amplifier  
HA-LP  
HF-SP  
1000r/min  
1500r/min  
2000r/min  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
MR-J3-700B4  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
524  
1024  
1524 2024  
3524  
5024  
7024  
6014  
8014 12K14  
15K14  
701M4  
11K1M4  
15K1M4  
22K1M4  
11K24  
15K24  
22K24  
20K14  
1 - 10  
1. FUNCTIONS AND CONFIGURATION  
1.7 Structure  
1.7.1 Parts identification  
(1) MR-J3-100B or less  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
Section 3.13  
Spare (Be sure to set to the "Down"  
position).  
1
2
Main circuit power supply connector (CNP1)  
Connect the input power supply.  
Section 3.1  
Section 3.3  
USB communication connector (CN5)  
Connect the personal computer.  
Section 11.8  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
Control circuit connector (CNP2)  
Connect the control circuit power supply/regenerative  
option.  
Section 3.1  
Section 3.3  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Servo motor power connector (CNP3)  
Connect the servo motor.  
Section 3.1  
Section 3.3  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
Fixed part  
(2 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Rating plate  
Section 1.5  
1 - 11  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-60B4 MR-J3-100B4  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
SW2  
Section 3.13  
Spare (Be sure to set to the "Down"  
position).  
1
2
Main circuit power supply connector (CNP1)  
Connect the input power supply.  
Section 3.1  
Section 3.3  
USB communication connector (CN5)  
Connect the personal computer.  
Section 11.8  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
Control circuit connector (CNP2)  
Connect the control circuit power supply/regenerative  
option.  
Section 3.1  
Section 3.3  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Servo motor power connector (CNP3)  
Connect the servo motor.  
Section 3.1  
Section 3.3  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Fixed part  
(3 places)  
Battery holder  
Section 12.3  
Contains the battery for absolute position data backup.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Rating plate  
Section 1.5  
1 - 12  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-200B(4)  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
SW2  
Section 3.13  
Spare (Be sure to set to the "Down"  
position).  
1
2
Main circuit power supply connector (CNP1)  
Connect the input power supply.  
Section 3.1  
Section 3.3  
USB communication connector (CN5)  
Connect the personal computer.  
Section 11.8  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
(Note)  
Section 3.2  
Section 3.4  
Servo motor power connector (CNP3)  
Connect the servo motor.  
Section 3.1  
Section 3.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Control circuit connector (CNP2)  
Connect the control circuit power supply/regenerative  
option.  
Section 3.1  
Section 3.3  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Cooling Fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Fixed part  
(3 places)  
Rating plate  
Section 1.5  
Note. Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200B servo amplifier have been changed from January 2008  
production. Model name of the existing servo amplifier is changed to MR-J3-200B-RT. For MR-J3-200B-RT, refer to appendix 5.  
1 - 13  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J3-350B  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
SW2  
Section 3.13  
Spare (Be sure to set to the "Down"  
position).  
1
2
Main circuit power supply connector (CNP1)  
Connect the input power supply.  
Section 3.1  
Section 3.3  
USB communication connector (CN5)  
Connect the personal computer.  
Section 11.8  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
Servo motor power connector (CNP3)  
Connect the servo motor.  
Section 3.1  
Section 3.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Control circuit connector (CNP2)  
Connect the control circuit power supply/regenerative  
option.  
Section 3.1  
Section 3.3  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Cooling fan  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Fixed part  
(3 places)  
Rating plate  
Section 1.5  
1 - 14  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J3-350B4 MR-J3-500B(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.7.2.  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
Section 3.13  
Section 11.8  
Spare (Be sure to set to the "Down"  
position).  
1
2
Cooling fan  
USB communication connector (CN5)  
Connect the personal computer.  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
DC reactor terminal block (TE3)  
Used to connect the DC reactor.  
Section 3.4  
Section 11.1  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section 3.1  
Section 3.3  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section 3.1  
Section 3.3  
Fixed part  
(4 places)  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Rating plate  
Section 1.5  
1 - 15  
1. FUNCTIONS AND CONFIGURATION  
(6) MR-J3-700B(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.7.2.  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
Section 3.13  
Section 11.8  
Spare (Be sure to set to the "Down"  
position).  
Cooling fan  
1
2
Fixed part  
(4 places)  
USB communication connector (CN5)  
Connect the personal computer.  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
DC reactor terminal block (TE3)  
Used to connect the DC reactor.  
Section 3.4  
Section 11.1  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Control circuit terminal block (TE2)  
Used to connect the control circuit power supply.  
Section 3.1  
Section 3.3  
Main circuit terminal block (TE1)  
Used to connect the input power supply and servo  
motor.  
Section 3.1  
Section 3.3  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Rating plate  
Section 1.5  
1 - 16  
1. FUNCTIONS AND CONFIGURATION  
(7) MR-J3-11KB(4) to MR-J3-22KB(4)  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 1.7.2.  
Detailed  
explanation  
Name/Application  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
Section 3.13  
Section 11.8  
Spare (Be sure to set to the "Down"  
position).  
1
2
Cooling fan  
Fixed part  
(4 places)  
USB communication connector (CN5)  
Connect the personal computer.  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Rating plate  
Section 1.5  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Main circuit terminal block control circuit protective  
earth (TE)  
Used to connect the input power supply, servo motor,  
regenerative option and ground.  
Section 3.1  
Section 3.3  
1 - 17  
1. FUNCTIONS AND CONFIGURATION  
1.7.2 Removal and reinstallation of the front cover  
Before removing or installing the front cover, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P( ) and N( ) is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
(1) For MR-J3-350B4 MR-J3-500B(4) MR-J3-700B(4)  
Removal of the front cover  
A)  
A)  
Hold the ends of lower side of the front cover with  
both hands.  
Pull up the cover, supporting at point  
.
A)  
Pull out the front cover to remove.  
1 - 18  
1. FUNCTIONS AND CONFIGURATION  
Reinstallation of the front cover  
Front cover  
setting tab  
A)  
A)  
Insert the front cover setting tabs into the sockets of  
servo amplifier (2 places).  
Pull up the cover, supporting at point  
.
A)  
Setting tab  
Push the setting tabs until they click.  
1 - 19  
1. FUNCTIONS AND CONFIGURATION  
(2) For MR-J3-11KB(4) to MR-J3-22KB(4)  
Removal of the front cover  
C)  
B)  
A)  
1) Press the removing knob on the lower side of the  
front cover ( A) and B) ) and release the installation  
hook.  
3) Pull it to remove the front cover.  
2) Press the removing knob of C) and release the  
external hook.  
Reinstallation of the front cover  
(Note 1)  
(Note 1)  
C)  
D)  
(Note 2)  
B)  
A)  
Installation hook  
1) Fit the front cover installation hooks on the sockets 2) Push the front cover until you hear the clicking  
of body cover ( A) to D) ) to reinstall it.  
noise of the installation hook.  
Note 1. The cooling fan cover can be locked with enclosed screws (M4  
40).  
2. By drilling approximately 4 of a hole on the front cover, the front cover can be locked on the body with an enclosed screw (M4  
14).  
1 - 20  
1. FUNCTIONS AND CONFIGURATION  
1.8 Configuration including auxiliary equipment  
POINT  
Equipment other than the servo amplifier and servo motor are optional or  
recommended products.  
(1) MR-J3-100B or less  
(a) For 3-phase or 1-phase 200V to 230VAC  
Personal  
computer  
R S T  
(Note 3)  
Power supply  
MR Configurator  
CN5  
CN3  
Servo amplifier  
No-fuse breaker  
(NFB) or fuse  
Junction terminal  
block  
Magnetic  
contactor  
(MC)  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
(Note 2)  
Line noise  
filter  
(FR-BSF01)  
Rear servo amplifier  
CN1A or Cap  
U V W  
CN2  
CN4  
L1  
L2  
(Note 1)  
Battery  
L3  
MR-J3BAT  
(Note 2)  
Power factor  
improving DC  
reactor  
P1  
P2  
Servo motor  
(FR-BEL)  
P
C
Regenerative option  
L11  
L21  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. A 1-phase 200V to 230VAC power supply may be used with the servo amplifier of MR-J3-70B or less.  
For 1-phase 200V to 230VAC, connect the power supply to L1 L2 and leave L3 open. Refer to section 1.3 for the power supply  
specification.  
1 - 21  
1. FUNCTIONS AND CONFIGURATION  
(b) For 1-phase 100V to 120VAC  
Personal  
computer  
R
S
MR Configurator  
(Note 3)  
Power supply  
CN5  
CN3  
Servo amplifier  
No-fuse breaker  
(NFB) or fuse  
Junction  
terminal  
block  
Magnetic  
contactor  
(MC)  
(Note 2)  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
Power factor  
improving  
(FR-BAL)  
Rear servo amplifier  
CN1A or Cap  
Line noise filter  
(FR-BSF01)  
W
U V  
CN2  
CN4  
L1  
(Note 1)  
Battery  
L2  
MR-J3BAT  
Servo motor  
P
C
Regenerative option  
L11  
L21  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The power factor improving DC reactor cannot be used.  
3. Refer to section 1.3 for the power supply specification.  
1 - 22  
1. FUNCTIONS AND CONFIGURATION  
(2) MR-J3-60B4 MR-J3-100B4  
Personal  
computer  
R S T  
MR Configurator  
(Note 3)  
Power supply  
CN5  
Servo amplifier  
No-fuse breaker  
(NFB) or fuse  
Junction  
CN3  
terminal  
block  
Magnetic  
contactor  
(MC)  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
(Note 2)  
Line noise  
filter  
(FR-BSF01)  
Rear servo amplifier  
CN1A or Cap  
CN2  
CN4  
L1  
L2  
L3  
(Note 1)  
Battery  
MR-J3BAT  
(Note 2)  
P1  
Power factor  
improving DC  
reactor  
Servo motor  
U V W  
P2  
(FR-BEL-H)  
P
C
Regenerative option  
L11  
L21  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. A 1-phase 200V to 230VAC power supply may be used with the servo amplifier of MR-J3-70B or less.  
For 1-phase 200V to 230VAC, connect the power supply to L1  
specification.  
L2 and leave L3 open. Refer to section 1.3 for the power supply  
1 - 23  
1. FUNCTIONS AND CONFIGURATION  
(3) MR-J3-200B(4)  
R S T  
(Note 3)  
Power supply  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
Personal  
computer  
MR Configurator  
CN5  
(Note 2)  
Line noise filter  
(FR-BSF01)  
Servo amplifier  
(Note 2)  
Power factor  
improving DC  
L1  
L2  
L3  
Junction  
terminal  
block  
reactor  
CN3  
(FR-BEL/  
FR-BEL-H)  
P1  
Servo system  
controller or Front axis  
servo amplifier CN1B  
(Note 4)  
CN1A  
P2  
Regenerative  
option  
P
C
L11  
L21  
CN1B  
CN2  
Rear servo amplifier  
CN1A or Cap  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
U V  
W
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.3 for the power supply specification.  
4. Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200B servo amplifier have been changed from January 2008  
production. Model name of the existing servo amplifier is changed to MR-J3-200B-RT. For MR-J3-200B-RT, refer to appendix 5.  
1 - 24  
1. FUNCTIONS AND CONFIGURATION  
(4) MR-J3-350B  
R S T  
(Note 3)  
Power supply  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
Personal  
computer  
MR Configurator  
CN5  
CN3  
(Note 2)  
Line noise filter  
(FR-BLF)  
Servo amplifier  
Junction  
terminal  
block  
L1  
L2  
L3  
P1  
P2  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
(Note 2)  
Power factor  
improving DC  
reactor  
Regenerative  
option  
(FR-BEL)  
L11  
P
C
Rear servo amplifier  
CN1A or Cap  
L21  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
W
U V  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.3 for the power supply specification.  
1 - 25  
1. FUNCTIONS AND CONFIGURATION  
(5) MR-J3-350B4 MR-J3-500B(4)  
R S T  
(Note 3)  
Power supply  
Personal  
computer  
MR Configurator  
CN5  
CN3  
No-fuse breaker  
(NFB) or fuse  
Servo amplifier  
Junction  
terminal  
block  
Magnetic  
contactor  
(MC)  
(Note 2)  
(Note 1)  
Battery  
MR-J3BAT  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
Line noise filter  
(FR-BLF)  
Rear servo amplifier  
CN1A or Cap  
CN2  
CN4  
L11 L21  
P1  
P2  
L3  
(Note 2)  
L2  
L1  
Power factor  
improving DC  
reactor  
(FR-BEL-(H))  
P
C
U V W  
Regenerative option  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.3 for the power supply specification.  
1 - 26  
1. FUNCTIONS AND CONFIGURATION  
(6) MR-J3-700B(4)  
R S T  
Personal  
computer  
(Note 3)  
Power supply  
MR Configurator  
CN5  
CN3  
No-fuse breaker  
Servo amplifier  
(NFB) or fuse  
Junction  
terminal  
block  
Magnetic  
contactor  
(MC)  
(Note 2)  
Servo system  
controller or Front axis  
servo amplifier CN1B  
Line noise filter  
(FR-BLF)  
CN1A  
CN1B  
(Note 1)  
L11 L21  
Battery  
Rear servo amplifier  
CN1A or Cap  
MR-J3BAT  
(Note 2)  
CN2  
CN4  
Power factor  
improving DC  
reactor  
(FR-BEL-(H))  
P2  
P1  
L3  
2
L
1
L
P
C
U V W  
Regenerative option  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P2.  
3. Refer to section 1.3 for the power supply specification.  
1 - 27  
1. FUNCTIONS AND CONFIGURATION  
(7) MR-J3-11KB(4) to MR-J3-22KB(4)  
(Note 3)  
Power supply  
R S T  
Personal  
computer  
MR Configurator  
CN5  
CN3  
No-fuse  
breaker (NFB)  
or fuse  
L21  
Servo amplifier  
L11  
Junction  
terminal  
block  
Magnetic  
contactor  
(MC)  
Servo system  
controller or Front axis  
servo amplifier CN1B  
(Note 2)  
(Note 1)  
Battery  
MR-J3BAT  
CN1A  
CN1B  
Line noise filter  
(FR-BLF)  
Rear servo amplifier  
CN1A or Cap  
CN2  
CN4  
L3  
L2  
L1  
(Note 2)  
Power factor improving  
DC reactor (FR-BEL-(H))  
W V U  
P1  
P
P
C
Regenerative option  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1 and P.  
3. Refer to section 1.3 for the power supply specification.  
1 - 28  
2. INSTALLATION  
2. INSTALLATION  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment on incombustible material. Installing them directly or close to  
combustibles will lead to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range. (For the  
environmental conditions, refer to section 1.3.)  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the servo  
amplifier.  
CAUTION  
Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may  
occur.  
Do not subject the servo amplifier to drop impact or shock loads as they are  
precision equipment.  
Do not install or operate a faulty servo amplifier.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between the servo amplifier and control box inside  
walls or other equipment.  
(1) 7kW or less  
(a) Installation of one servo amplifier  
Control box  
Control box  
40mm  
or more  
Servo amplifier  
Wiring allowance  
80mm  
Top  
10mm  
10mm  
or more  
or more  
Bottom  
40mm  
or more  
2 - 1  
2. INSTALLATION  
(b) Installation of two or more servo amplifiers  
POINT  
Close mounting is available for the servo amplifier of under 3.5kW for 200V  
class and 400W for 100V class.  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
When installing the servo amplifiers closely, leave a clearance of 1mm between the adjacent servo  
amplifiers in consideration of mounting tolerances.  
In this case, bring the ambient temperature within 0 to 45 (32 to 113 ), or use it at 75% or smaller  
effective load ratio.  
Control box  
Control box  
100mm  
or more  
100mm  
or more  
10mm  
or more  
1mm  
1mm  
Top  
30mm  
or more  
30mm  
or more  
30mm  
or more  
30mm  
or more  
Bottom  
40mm  
or more  
40mm or more  
Mounting closely  
Leaving clearance  
(2) 11k to 22kW  
(a) Installation of one servo amplifier  
Control box  
Control box  
40mm or more  
Servo amplifier  
Wiring allowance  
80mm  
Top  
10mm  
or more  
10mm  
or more  
Bottom  
120mm  
or more  
2 - 2  
2. INSTALLATION  
(b) Installation of two or more servo amplifiers  
Leave a large clearance between the top of the servo amplifier and the internal surface of the control  
box, and install a cooling fan to prevent the internal temperature of the control box from exceeding the  
environmental conditions.  
Control box  
100mm  
or more  
10mm or more  
Top  
30m  
30mm  
or more  
or more  
Bottom  
120mm or more  
(3) Others  
When using heat generating equipment such as the regenerative option, install them with full consideration  
of heat generation so that the servo amplifier is not affected.  
Install the servo amplifier on a perpendicular wall in the correct vertical direction.  
2.2 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the servo  
amplifier.  
(2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control box or  
a cooling fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an air  
purge (force clean air into the control box from outside to make the internal pressure higher than the  
external pressure) to prevent such materials from entering the control box.  
2.3 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight stress  
are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake) with  
having some slack from the connector connection part of the servo motor to avoid putting stress on the  
connector connection part. Use the optional encoder cable within the flexing life range. Use the power  
supply and brake wiring cables within the flexing life of the cables.  
2 - 3  
2. INSTALLATION  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or  
stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as large  
as possible. Refer to section 10.4 for the flexing life.  
2.4 SSCNET cable laying  
SSCNET cable is made from optical fiber. If optical fiber is added a power such as a major shock, lateral  
pressure, haul, sudden bending or twist, its inside distorts or breaks, and optical transmission will not be  
available. Especially, as optical fiber for MR-J3BUS  
M
MR-J3BUS M-A is made of synthetic resin, it  
melts down if being left near the fire or high temperature. Therefore, do not make it touched the part, which  
becomes high temperature, such as radiator or regenerative option of servo amplifier.  
Read described item of this section carefully and handle it with caution.  
(1) Minimum bend radius  
Make sure to lay the cable with greater radius than the minimum bend radius. Do not press the cable to  
edges of equipment or others. For SSCNET cable, the appropriate length should be selected with due  
consideration for the dimensions and arrangement of servo amplifier. When closing the door of control box,  
pay careful attention for avoiding the case that SSCNET cable is hold down by the door and the cable  
bend becomes smaller than the minimum bend radius.  
For the minimum bend radius, refer to section 11.1.5.  
(2) Prohibition of vinyl tape use  
Migrating plasticizer is used for vinyl tape. Keep the MR-J3BUS M, and MR-J3BUS M-A cables away  
from vinyl tape because the optical characteristic may be affected.  
SSCNET cable  
MR-J3BUS  
Code  
Cable  
M
MR-J3BUS M-A  
MR-J3BUS M-B  
: Phthalate ester plasticizer such as DBP and DOP  
may affect optical characteristic of cable.  
: Cable is not affected by plasticizer.  
Optical code  
Cable  
(3) Precautions for migrating plasticizer added materials  
Generally, soft polyvinyl chloride (PVC), polyethylene resin (PE) and Teflon (fluorine resin) contain non-  
migrating plasticizer and they do not affect the optical characteristic of SSCNET cable.  
However, some wire sheaths and cable ties, which contain migrating plasticizer (phthalate ester), may  
affect MR-J3BUS M and MR-J3BUS M-A cables.  
In addition, MR-J3BUS M-B cable is not affected by plasticizer.  
2 - 4  
2. INSTALLATION  
(4) Bundle fixing  
Fix the cable at the closest part to the connector with bundle material in order to prevent SSCNET cable  
from putting its own weight on CN1A CN1B connector of servo amplifier. Optical cord should be given  
loose slack to avoid from becoming smaller than the minimum bend radius, and it should not be twisted.  
When bundling the cable, fix and hold it in position by using cushioning such as sponge or rubber which  
does not contain migratable plasticizers.  
If using adhesive tape for bundling the cable, fire resistant acetate cloth adhesive tape 570F (Teraoka  
Seisakusho Co., Ltd) is recommended.  
Connector  
Optical cord  
Loose slack  
Cable  
Bundle material  
Recommended product:  
NK clamp SP type  
( NIX, INC.)  
(5) Tension  
If tension is added on optical cable, the increase of transmission loss occurs because of external force  
which concentrates on the fixing part of optical fiber or the connecting part of optical connector. At worst,  
the breakage of optical fiber or damage of optical connector may occur. For cable laying, handle without  
putting forced tension. For the tension strength, refer to section 11.1.5.  
(6) Lateral pressure  
If lateral pressure is added on optical cable, the optical cable itself distorts, internal optical fiber gets  
stressed, and then transmission loss will increase. At worst, the breakage of optical cable may occur. As  
the same condition also occurs at cable laying, do not tighten up optical cable with a thing such as nylon  
band (TY-RAP).  
Do not trample it down or tuck it down with the door of control box or others.  
(7) Twisting  
If optical fiber is twisted, it will become the same stress added condition as when local lateral pressure or  
bend is added. Consequently, transmission loss increases, and the breakage of optical fiber may occur at  
worst.  
(8) Disposal  
When incinerating optical cable (cord) used for SSCNET , hydrogen fluoride gas or hydrogen chloride gas  
which is corrosive and harmful may be generated. For disposal of optical fiber, request for specialized  
industrial waste disposal services who has incineration facility for disposing hydrogen fluoride gas or  
hydrogen chloride gas.  
2 - 5  
2. INSTALLATION  
2.5 Inspection items  
Before starting maintenance and/or inspection, turn off the power and wait for 15  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between P( ) and N( ) is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the servo amplifier with a megger (measure insulation resistance),  
or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
It is recommended to make the following checks periodically.  
(1) Check for loose terminal block screws. Retighten any loose screws.  
(2) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating  
conditions.  
2.6 Parts having service lives  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be changed  
immediately even when it has not yet reached the end of its life, which depends on the operating method and  
environmental conditions. For parts replacement, please contact your sales representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of emergency  
stop times : 100,000 times  
Relay  
Servo amplifier  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to section 12.2  
Absolute position battery  
(1) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly depends  
on ambient temperature and operating conditions. The capacitor will reach the end of its life in 10 years of  
continuous operation in normal air-conditioned environment.  
(2) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of their life  
when the cumulative number of power-on and emergency stop times is 100,000, which depends on the  
power supply capacity.  
(3) Servo amplifier cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore, the  
cooling fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
2 - 6  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before wiring, turn off the power and wait for 15 minutes or more until the charge  
lamp turns off. Then, confirm that the voltage between P( ) and N( ) is safe with  
a voltage tester and others. Otherwise, an electric shock may occur. In addition,  
always confirm from the front of the servo amplifier whether the charge lamp is off  
or not.  
WARNING  
Ground the servo amplifier and the servo motor securely.  
Do not attempt to wire the servo amplifier and servo motor until they have been  
installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
operate unexpectedly, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop (EM1) and other protective circuits.  
Servo amplifier  
Servo amplifier  
24VDC  
24VDC  
DOCOM  
DICOM  
DOCOM  
DICOM  
Control output  
signal  
Control output  
signal  
CAUTION  
RA  
RA  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the servo amplifier.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF (-H)  
option) with the power line of the servo motor.  
When using the regenerative resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
Do not modify the equipment.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Input power supply circuit  
Always connect a magnetic contactor (MC) between the main circuit power supply  
and L1, L2, and L3 of the servo amplifier, and configure the wiring to be able to shut  
down the power supply on the side of the servo amplifier’s power supply. If a  
magnetic contactor (MC) is not connected, continuous flow of a large current may  
cause a fire when the servo amplifier malfunctions.  
CAUTION  
Use the trouble signal to switch main circuit power supply off. Otherwise, a  
regenerative transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
POINT  
Even if alarm has occurred, do not switch off the control circuit power supply.  
When the control circuit power supply has been switched off, optical module  
does not operate, and optical transmission of SSCNET communication is  
interrupted. Therefore, the servo amplifier on the rear axis displays "AA" at  
the indicator and turns into base circuit shut-off. The servo amplifier stops  
with starting dynamic brake.  
Wire the power supply/main circuit as shown below so that power is shut off and the servo-on command turned  
off as soon as an alarm occurs, a servo forced stop is made valid, or a controller forced stop is made valid. A  
no-fuse breaker (NFB) must be used with the input cables of the main circuit power supply.  
(1) For 3-phase 200V to 230VAC power supply to MR-J3-10B to MR-J3-350B  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
MC  
SK  
Servo amplifier  
CNP1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
N(  
P1  
P2  
3-phase  
200 to  
230VAC  
CNP3  
(Note 6)  
U
V
2
3
4
1
U
Motor  
M
V
)
W
W
(Note 1)  
(Note 2)  
PE  
CNP2  
P(  
)
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
3 - 2  
3. SIGNALS AND WIRING  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. Always connect P( ) and D. (Factory-wired.) When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
(2) For 1-phase 200V to 230VAC power supply to MR-J3-10B to MR-J3-70B  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
MC  
SK  
Servo amplifier  
CNP1  
Servo motor  
NFB  
MC  
1-phase  
200 to  
230VAC  
L1  
L2  
L3  
N
CNP3  
(Note 6)  
U
V
2
3
4
1
U
Motor  
M
V
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
CNP2  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
3 - 3  
3. SIGNALS AND WIRING  
(3) For MR-J3-10B1 to MR-J3-40B1  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
MC  
SK  
Servo amplifier  
CNP1  
Servo motor  
NFB  
MC  
1-phase  
100 to  
120VAC  
L1  
CNP3  
(Note 6)  
Blank  
U
V
2
3
4
1
U
Motor  
M
L2  
V
N
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
CNP2  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P2. (Factory-wired.) The power factor improving DC reactor cannot be used.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
3 - 4  
3. SIGNALS AND WIRING  
(4) MR-J3-60B4 to MR-J3-200B4  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
MC  
SK  
(Note 7)  
Stepdown  
transformer  
Servo amplifier  
CNP1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
N
3-phase  
200 to  
230VAC  
CNP3  
(Note 6)  
U
V
2
3
4
1
U
Motor  
M
V
W
W
P1  
P2  
(Note 1)  
(Note 2)  
PE  
CNP2  
P
C
D
(Note 3)  
Encoder cable  
CN2  
Encoder  
L11  
L21  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. Always connect P and D. (Factory-wired.) When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
7. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
3 - 5  
3. SIGNALS AND WIRING  
(5) MR-J3-500B MR-J3-700B  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
(Note 7)  
Power supply  
of Cooling fan  
MC  
SK  
Servo amplifier  
TE1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
N
3-phase  
200 to  
230VAC  
(Note 6)  
Built-in  
regenerative  
resistor  
U
V
2
3
4
1
U
V
Motor  
M
W
W
(Note 2)  
P1  
TE2  
PE  
L11  
NFB  
L21  
TE3  
N
(Note 3)  
Encoder cable  
CN2  
Encoder  
P1  
(Note 1)  
P2  
BU  
BV  
Cooling fan  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
7. A cooling fan is attached to the HA-LP601 and the HA-LP701M servo motors. For power supply specification of the cooling fan,  
refer to section 3.10.2 (3) (b).  
3 - 6  
3. SIGNALS AND WIRING  
(6) MR-J3-350B4 to MR-J3-700B4  
(Note 4) Controller  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
(Note 8)  
Power supply  
of Cooling fan  
MC  
SK  
(Note 7)  
Stepdown  
transformer  
Servo amplifier  
TE1  
Servo motor  
NFB  
MC  
L1  
L2  
L3  
P
3-phase  
380 to  
480VAC  
(Note 6)  
Built-in  
regenerative  
resistor  
U
V
2
3
4
1
U
V
Motor  
M
W
W
(Note 2)  
C
TE2  
PE  
L11  
NFB  
L21  
TE3  
N
(Note 3)  
Encoder cable  
CN2  
Encoder  
P1  
(Note 1)  
P2  
BU  
BV  
Cooling fan  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P2. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
7. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
8. A cooling fan is attached to the HA-LP6014 and the HA-LP701M4 servo motors. For power supply specification of the cooling  
fan, refer to section 3.10.2 (3) (b).  
3 - 7  
3. SIGNALS AND WIRING  
(7) MR-J3-11KB to MR-J3-22KB  
(Note 4) Controller  
Servo motor  
thermal relay  
RA3  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
MC  
SK  
Servo amplifier  
TE1  
Servo motor  
Dynamic  
break  
NFB  
MC  
(Option)  
L1  
L2  
L3  
C
3-phase  
200 to  
230VAC  
U
V
U
V
M
W
W
(Note 6)  
(Note 2)  
(Note 1)  
P
Regenerative  
resistor  
P1  
PE  
NFB  
L11  
L21  
(Note 3)  
Encoder cable  
CN2  
Encoder  
BU  
BV  
BW  
(Note 7)  
Cooling fan  
OHS1  
RA3  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
7. Cooling fan power supply of the HA-LP11K2 servo motor is 1-phase. Power supply specification of the cooling fan is different  
from that of the servo amplifier. Therefore, separate power supply is required.  
3 - 8  
3. SIGNALS AND WIRING  
(8) MR-J3-11KB4 to MR-J3-22KB4  
(Note 4) Controller  
Servo motor  
thermal relay  
RA3  
Forced  
stop  
Alarm  
RA1  
forced stop  
RA2  
ON  
MC  
OFF  
(Note 8)  
Cooling fan  
power supply  
MC  
SK  
(Note 9)  
Stepdown  
transformer  
Servo amplifier  
TE1  
Servo motor  
Dynamic  
break  
(Option)  
NFB  
MC  
L1  
L2  
L3  
C
3-phase  
380 to  
480VAC  
U
V
U
V
M
W
W
(Note 6)  
(Note 2)  
(Note 1)  
P
Regenerative  
resistor  
P1  
PE  
NFB  
L11  
L21  
(Note 3)  
Encoder cable  
CN2  
Encoder  
BU  
BV  
BW  
(Note 7)  
Cooling fan  
OHS1  
RA3  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
CN3  
EM1  
DOCOM  
CN3  
24VDC  
RA1  
DOCOM  
Forced stop  
(Note 5)  
DICOM  
(Note 5)  
ALM  
Trouble  
(Note 4)  
Note 1. Always connect P1 and P. (Factory-wired.) When using the power factor improving DC reactor, refer to section 11.13.  
2. When using the regenerative option, refer to section 11.2.  
3. For the encoder cable, use of the option cable is recommended. Refer to section 11.1 for selection of the cable.  
4. If deactivating output of trouble (ALM) with parameter change, configure up the power supply circuit which switches off the  
magnetic contactor after detection of alarm occurrence on the controller side.  
5. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
6. Refer to section 3.10.  
7. Servo amplifiers does not have BW when the cooling fan power supply is 1-phase.  
8. For the cooling fan power supply, refer to section 3.10.2 (3) (b).  
9. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
3 - 9  
3. SIGNALS AND WIRING  
3.2 I/O signal connection example  
Servo amplifier  
(Note 10)  
24VDC  
(Note 12) (Note 12)  
CN3  
5
3
CN3  
13 MBR  
Power  
(Note 2)  
Magnetic brake interlock  
supply  
DICOM  
(Note 14)  
RA1  
RA2  
RA3  
DOCOM  
9
INP  
In-position  
(Note 3,4)Forced stop  
Upper stroke limit (FLS)  
Lower stroke limit (RLS)  
Proximity dog (DOG)  
EM1 20  
DI1  
(Note 13,14)  
2
15  
Trouble (Note 11)  
ALM  
DICOM  
LA  
(Note 15)  
(Note 5)  
DI2 12  
DI3 19  
10  
6
Personal  
computer  
USB cable  
MR-J3USBCBL3M  
(option)  
Encoder A-phase pulse  
(differential line driver)  
16 LAR  
LB  
17 LBR  
LZ  
18 LZR  
MR Configurator  
7
Encoder B-phase pulse  
(differential line driver)  
CN5  
8
Encoder Z-phase pulse  
(differential line driver)  
Control common  
Analog monitor 1  
11  
4
LG  
MO1  
LG  
A
A
Max. 1mA meter  
10k  
1
Servo system  
controller  
both directions  
14 MO2  
Plate SD  
Analog monitor 2  
Max. 1mA meter  
both directions  
(Note 6)  
10k  
SSCNET cable  
(option)  
2m Max  
CN1A  
CN1B  
SW1  
(Note 8)  
SW2  
1 2  
(Note 1)  
(Note 7)  
Between electrodes  
MR-J3-B  
(2 axis)  
SW1  
CN1A  
(Note 8)  
SW2  
1 2  
CN1B  
MR-J3-B  
(3 axis)  
(Note 7)  
(Note 8)  
(Note 6 )  
SSCNET cable  
(option)  
SW1  
CN1A  
SW2  
1 2  
CN1B  
MR-J3-B  
(n axis)  
(Note 7)  
(Note 8)  
SW1  
CN1A  
(Note 9)  
Cap  
SW2  
1 2  
CN1B  
3 - 10  
3. SIGNALS AND WIRING  
Note 1 To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked ) of the servo amplifier to the  
protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output  
signals, disabling the forced stop (EM1) and other protective circuits.  
3. If the controller does not have an forced stop (EM1) function, always install a forced stop switch (Normally closed).  
4. When starting operation, always turn on the forced stop (EM1). (Normally closed contacts) By setting " 1  
parameter No.PA04 of the drive unit, the forced stop (EM1) can be made invalid.  
5. Use MRZJW3-SETUP 221E.  
" in DRU  
6. For the distance between electrodes of SSCNET cable, refer to the following table.  
Distance between  
electrodes  
Cable  
Cable model name  
MR-J3BUS  
Cable length  
Standard code inside panel  
Standard cable outside panel  
Long-distance cable  
M
0.15m to 3m  
5m to 20m  
30m to 50m  
20m  
50m  
MR-J3BUS M-A  
MR-J3BUS M-B  
7. The wiring of the second and subsequent axes is omitted.  
8. Up to eight axes (n 1 to 8) may be connected. Refer to section 3.13 for setting of axis selection.  
9. Make sure to put a cap on the unused CN1A CN1B.  
10. Supply 24VDC 10% 150mA current for interfaces from the outside. 150mA is the value applicable when all I/O signals are  
used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.7.2 (1) that gives the  
current value necessary for the interface.  
11. Trouble (ALM) turns on in normal alarm-free condition. When this signal is switched off (at occurrence of an alarm), the output  
of the programmable controller should be stopped by the sequence program.  
12. The pins with the same signal name are connected in the servo amplifier.  
13. The signal can be changed by parameter No.PD07, PD08, PD09.  
14. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
15. Devices can be assigned for DI1 DI2 DI3 with controller setting. For devices that can be assigned, refer to the controller  
instruction manual. The assigned devices are for the Q173DCPU Q172DCPU Q173HCPU Q172HCPU and QD75MH  
.
3 - 11  
3. SIGNALS AND WIRING  
3.3 Explanation of power supply system  
3.3.1 Signal explanations  
POINT  
For the layout of connector and terminal block, refer to outline drawings in  
chapter 9.  
Connection target  
(Application)  
Abbreviation  
Description  
Supply the following power to L1, L2, L3. For the 1-phase 200V to 230VAC power supply, connect  
the power supply to L1, L2, and keep L3 open.  
Servo amplifier  
MR-J3-  
100B to  
22KB  
MR-J3-  
10B1 to  
40B1  
MR-J3-  
10B to 70B  
Power supply  
3-phase 200V to 230VAC, 50/60Hz  
1-phase 200V to 230VAC, 50/60Hz  
1-phase 100V to 120VAC, 50/60Hz  
L1 L2 L3  
L1 L2  
L1  
L2  
L3  
Main circuit power  
supply  
L1 L2  
Servo amplifier  
MR-J3-60B4 to 22KB4  
L1 L2 L3  
Power supply  
3-phase 380V to 480VAC, 50/60Hz  
1) MR-J3-700B or less  
When not using the power factor improving DC reactor, connect P1 and P2. (Factory-wired.)  
When using the power factor improving DC reactor, disconnect P1 and P2, and connect the  
power factor improving DC reactor to P1 and P2.  
2) MR-J3-11KB(4) to 22KB(4)  
MR-J3-11KB(4) to 22KB(4) do not have P2.  
Power factor  
improving DC  
reactor  
P1  
P2  
When not using the power factor improving reactor, connect P1 and P. (Factory-wired)  
When using the power factor improving reactor, connect it to P and P1.  
Refer to section 11.13.  
1) MR-J3-350B or less MR-J3-200B4 or less  
When using servo amplifier built-in regenerative resistor, connect P( ) and D. (Factory-  
wired)  
When using regenerative option, disconnect P( ) and D, and connect regenerative option to  
P and C.  
2) MR-J3-350B4 500B(4) 700B(4)  
P
C
D
MR-J3-350B4 500B(4) 700B(4) do not have D.  
When using servo amplifier built-in regenerative resistor, connect P and C. (Factory-wired)  
When using regenerative option, disconnect P and C, and connect regenerative option to P  
and C.  
Regenerative  
option  
3) MR-J3-11KB(4) to 22KB(4)  
MR-J3-11KB(4) to 22KB(4) do not have D.  
When not using the power regenerative converter and the brake unit, make sure to connect  
the regenerative option to P and C.  
Refer to section 11.2 to 11.5.  
Supply the following power to L11 L21.  
Servo amplifier MR-J3-10B to MR-J3-10B1 to MR-J3-60B4 to  
Power supply  
22KB  
40B1  
22KB4  
L11  
L21  
Control circuit  
power supply  
1-phase 200V to 230VAC, 50/60Hz  
1-phase 100V to 120VAC, 50/60Hz  
1-phase 380V to 480VAC, 50/60Hz  
L11 L21  
L11 L21  
L11 L21  
U
V
W
Connect to the servo motor power supply terminals (U, V, W). During power-on, do not open or  
close the motor power line. Otherwise, a malfunction or faulty may occur.  
Servo motor power  
When using the power regenerative converter/brake unit, connect it to P and N.  
Do not connect to servo amplifier MR-J3-350B(4) or less.  
For details, refer to section 11.3 to 11.5.  
Return converter  
Brake unit  
N
Protective earth  
(PE)  
Connect to the earth terminal of the servo motor and to the protective earth (PE) of the control  
box to perform grounding.  
3 - 12  
3. SIGNALS AND WIRING  
3.3.2 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above section 3.1 using the magnetic contactor with the main  
circuit power supply (three-phase: L , L , L , single-phase: L , L ). Configure up an external sequence  
1
2
3
1
2
to switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L , L simultaneously with the main circuit power supply or  
11 21  
before switching on the main circuit power supply. If the main circuit power supply is not on, the display  
shows the corresponding warning. However, by switching on the main circuit power supply, the warning  
disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on command within 3s the main circuit power supply is  
switched on. (Refer to paragraph (2) of this section.)  
(2) Timing chart  
SON accepted  
(3s)  
Main circuit  
Control circuit  
ON  
OFF  
ON  
power  
Base circuit  
OFF  
ON  
95ms  
10ms  
95ms  
Servo-on command  
(from controller)  
OFF  
(3) Forced stop  
Install an forced stop circuit externally to ensure that operation can be stopped and  
power shut off immediately.  
CAUTION  
If the controller does not have an forced stop function, make up a circuit that switches off main circuit power  
as soon as EM1 is turned off at a forced stop. When EM1 is turned off, the dynamic brake is operated to  
stop the servo motor. At this time, the display shows the servo forced stop warning (E6).  
During ordinary operation, do not use forced stop (EM1) to alternate stop and run. The service life of the  
servo amplifier may be shortened.  
Servo amplifier  
24VDC  
DICOM  
(Note)  
DOCOM  
Forced stop  
EM1  
Note. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
3 - 13  
3. SIGNALS AND WIRING  
3.3.3 CNP1, CNP2, CNP3 wiring method  
POINT  
Refer to table 11.1 in section 11.11 for the wire sizes used for wiring.  
MR-J3-500B or more MR-J3-350B4 or more does not have these connectors.  
Use the supplied servo amplifier power supply connectors for wiring of CNP1, CNP2 and CNP3.  
(1) MR-J3-10B to MR-J3-100B  
(a) Servo amplifier power supply connectors  
(Note)Servo amplifier power supply connectors  
Connector for CNP1  
54928-0670 (Molex)  
Servo amplifier  
CNP1  
Connector for CNP2  
<Applicable cable example>  
54928-0520 (Molex)  
Cable finish OD: to 3.8mm  
CNP2  
CNP3  
Connector for CNP3  
54928-0370 (Molex)  
Note. These connectors are of insert type. As the crimping type, the following connectors (Molex) are recommended.  
For CNP1: 51241-0600 (connector), 56125-0128 (terminal)  
For CNP2: 51240-0500 (connector), 56125-0128 (terminal)  
For CNP3: 51241-0300 (connector), 56125-0128 (terminal)  
Crimping tool: CNP57349-5300  
<Connector applicable cable example>  
Cable finish OD: to 3.8mm  
(b) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
8 to 9mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder  
the core as it may cause a contact fault. Alternatively, a bar terminal may be used to put  
the wires together.  
Cable size  
Bar terminal type  
For 1 cable (Note 1) For 2 cable  
AI-TWIN2 1.5-10BK  
Crimping tool (Note 2)  
Variocrimp 4 206-204  
[mm2]  
1.25/1.5  
2/2.5  
AWG  
16  
AI1.5-10BK  
AI2.5-10BU  
14  
Note 1. Manufacturer: Phoenix Contact  
2. Manufacturer: WAGO  
3 - 14  
3. SIGNALS AND WIRING  
(c) The twin type connector for CNP2 (L11 L21): 721-2105/026-000 (WAGO)  
Using this connector enables passing a wire of control circuit power supply.  
Refer to appendix 3 for details of connector.  
Twin type connector for CNP2  
CNP2  
L11  
L11  
Power supply  
or Front axis  
Rear axis  
L21  
L21  
(2) MR-J3-200B MR-J3-60B4 to MR-J3-200B4  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
721-207/026-000(Plug)  
(WAGO)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: 4.1mm or less  
CNP1  
Connector for CNP2  
721-205/026-000(Plug)  
(WAGO)  
CNP2  
CNP3  
Connector for CNP3  
721-203/026-000(Plug)  
(WAGO)  
(b) Termination of the cables  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
8 to 9mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not solder  
the core as it may cause a contact fault. Alternatively, a bar terminal may be used to put  
the wires together.  
Cable size  
Bar terminal type  
For 1 cable (Note 1) For 2 cable  
AI-TWIN2 1.5-10BK  
Crimping tool (Note 2)  
Variocrimp 4 206-204  
[mm2]  
1.25/1.5  
2/2.5  
AWG  
16  
AI1.5-10BK  
AI2.5-10BU  
14  
Note 1. Manufacturer: Phoenix Contact  
2. Manufacturer: WAGO  
3 - 15  
3. SIGNALS AND WIRING  
(c) The twin type connector for CNP2 (L11 L21): 721-2205/026-000 (WAGO)  
Using this connector enables passing a wire of control circuit power supply.  
Refer to appendix 3 for details of connector.  
Twin type connector for CNP2  
CNP2  
L11  
L11  
Power supply  
or Front axis  
Rear axis  
L21  
L21  
(3) MR-J3-350B  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
PC4/6-STF-7.62-CRWH  
(Phoenix Contact)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: 5mm or less  
CNP1  
Connector for CNP3  
PC4/3-STF-7.62-CRWH  
(Phoenix Contact)  
CNP3  
CNP2  
Connector for CNP2(Note)  
54928-0520 (Molex)  
<Applicable cable example>  
Cable finish OD: 3.8mm or less  
Note. As twin type connector for CNP2 (L11, L21) is the same as MR-J3-100B or smaller. Refer to (1) (c) of this section.  
(b) Termination of the cables  
1) CNP1 CNP3  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
7mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not  
solder the core as it may cause a contact fault. Alternatively, a bar terminal may be  
used to put the wires together.  
Cable size  
[mm2] AWG  
Bar terminal type  
For 1 cable For 2 cables  
AI1.5-8BK AI-TWIN2 1.5-8BK  
AI-TWIN2 2.5-10BU CRIMPFOX-ZA3  
Crimping tool  
Manufacturer  
1.25/1.5  
2.0/2.5  
3.5  
16  
14  
12  
AI2.5-8BU  
AI4-10GY  
Phoenix Contact  
3 - 16  
3. SIGNALS AND WIRING  
2) CNP2  
CNP2 is the same as MR-J3-100B or smaller capacities. Refer to (1) (b) of this section.  
(4) Insertion of cable into Molex and WAGO connectors  
Insertion of cable into 54928-0610, 54928-0520, 54928 (Molex) connectors and 721-207/026-000, 721-205/  
026-000 and 721-203/026-000 (WAGO) connectors are as follows.  
The following explains for Molex, however use the same procedures for inserting WAGO connectors as  
well.  
POINT  
It may be difficult for a cable to be inserted to the connector depending on  
wire size or bar terminal configuration. In this case, change the wire type or  
correct it in order to prevent the end of bar terminal from widening, and then  
insert it.  
How to connect a cable to the servo amplifier power supply connector is shown below.  
3 - 17  
3. SIGNALS AND WIRING  
(a) When using the supplied cable connection lever  
1) The servo amplifier is packed with the cable connection lever.  
a) 54932-0000 (Molex)  
[Unit: mm]  
20.6  
10  
Approx. 4.9  
M X J  
5 4 9 3 2  
Approx.3.4  
b) 231-131 (WAGO)  
[Unit: mm]  
20.3  
10  
16  
1.3  
1.5  
17.5  
3 - 18  
3. SIGNALS AND WIRING  
2) Cable connection procedure  
Cable connection lever  
1) Attach the cable connection lever to the housing.  
(Detachable)  
2) Push the cable connection lever in the direction  
of arrow.  
3) Hold down the cable connection lever and insert  
the cable in the direction of arrow.  
4) Release the cable connection lever.  
3 - 19  
3. SIGNALS AND WIRING  
(b) Inserting the cable into the connector  
1) Applicable flat-blade screwdriver dimensions  
Always use the screwdriver shown here to do the work.  
[Unit: mm]  
Approx. R0.3  
Approx. 22  
3
Approx. R0.3  
2) When using the flat-blade screwdriver - part 1  
1) Insert the screwdriver into the square hole.  
Insert it along the top of the square hole to insert it smoothly.  
2) If inserted properly, the screwdriver is held.  
3) With the screwdriver held, insert the cable in the direction  
of arrow. (Insert the cable as far as it will go.)  
4) Releasing the screwdriver connects the cable.  
3 - 20  
3. SIGNALS AND WIRING  
3) When using the flat-blade screwdriver - part 2  
1) Insert the screwdriver into the  
square window at top of the  
connector.  
2) Push the screwdriver in the  
direction of arrow.  
3) With the screwdriver pushed, insert the cable in the  
direction of arrow. (Insert the cable as far as it will go.)  
4) Releasing the screwdriver connects the cable.  
3 - 21  
3. SIGNALS AND WIRING  
(4) How to insert the cable into Phoenix Contact connector  
POINT  
Do not use a precision driver because the cable cannot be tightened with  
enough torque.  
Insertion of cables into Phoenix Contact connector PC4/6-STF-7.62-CRWH or PC4/3-STF-7.62-CRWH is  
shown as follows.  
Before inserting the cable into the opening, make sure that the screw of the terminal is fully loose. Insert the  
core of the cable into the opening and tighten the screw with a flat-blade screwdriver. When the cable is not  
tightened enough to the connector, the cable or connector may generate heat because of the poor contact.  
(When using a cable of 1.5mm2 or less, two cables may be inserted into one opening.)  
Secure the connector to the servo amplifier by tightening the connector screw.  
For securing the cable and the connector, use a flat-blade driver with 0.6mm blade edge thickness and  
3.5mm diameter (Recommended flat-blade screwdriver: Phoenix Contact SZS 0.6 3.5). Apply 0.5 to 0.6  
N m torque to screw.  
[Unit: mm]  
Flat-blade  
screwdriver  
180  
100  
To loosen To tighten  
Wire  
Opening  
Recommended flat-blade screwdriver dimensions  
To loosen  
To tighten  
Connector screw  
Flat-blade  
screwdriver  
Servo amplifier power  
supply connector  
3 - 22  
3. SIGNALS AND WIRING  
3.4 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
(1) Signal arrangement  
The servo amplifier front view shown is that of the MR-J3-20B or less. Refer to chapter 9 Outline Drawings  
for the appearances and connector layouts of the other servo amplifiers.  
CN5 (USB connector)  
Refer to section 11.8.  
CN3  
OPEN  
1
11  
LG  
L
L
1
2
2
DI1  
4
12  
DI2  
14  
LG  
3
13  
L
3
N
DOCOM  
MBR  
15  
P
1
MO1  
6
MO2  
16  
5
P
2
DICOM  
ALM  
17  
P
C
LA  
8
LAR  
18  
7
LB  
9
D
Connector for  
the front axis of  
CN1A SSCNET  
cable.  
L11  
L12  
LBR  
19  
LZ  
LZR  
20  
U
Connector for the  
rear axis of CN1B  
SSCNET cable.  
10  
V
INP  
DI1  
W
DICOM  
EM1  
CHARGE  
CN2  
2
6
5
10  
LG  
4
8
MRR  
MDR  
1
P5  
9
BAT  
3
MR  
7
MD  
The frames of the CN2 and CN3  
connectors are connected to the  
PE (earth) terminal ( ) in the  
amplifier.  
The 3M make connector is shown.  
When using any other connector,  
refer to section 11.1.2.  
3 - 23  
3. SIGNALS AND WIRING  
3.5 Signal (device) explanations  
For the I/O interfaces (symbols in I/O division column in the table), refer to section 3.7.2.  
In the control mode field of the table  
The pin No.s in the connector pin No. column are those in the initial status.  
(1) Connector applications  
Connector  
CN1A  
Name  
Function/Application  
Connector for bus cable  
from preceding axis.  
Connector for bus cable to  
next axis  
Used for connection with the controller or preceding-axis servo amplifier.  
CN1B  
Used for connection with the next-axis servo amplifier or for connection of the cap.  
CN2  
CN4  
Encoder connector  
Battery connection  
connector  
Used for connection with the servo motor encoder.  
When using as absolute position detection system, connect to battery (MR-J3BAT).  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more (20 minutes or for drive unit 30kW or  
more) until the charge lamp turns off. Then, confirm that the voltage between P(  
)
and N( ) (L and L for drive unit 30kW or more) is safe with a voltage tester and  
others. Otherwise, an electric shock may occur. In addition, always confirm from the  
front of the servo amplifier whether the charge lamp is off or not. Replace the  
battery with main circuit power OFF and with control circuit power ON. Replacing  
the battery with the control circuit power OFF results in loosing absolute position  
data.  
CN5  
Communication connector The personal computer is connected.  
(2) I/O device  
(a) Input device  
Connector  
pin No.  
I/O  
division  
Device  
Symbol  
EM1  
Function/Application  
Forced stop  
CN3-20  
Turn EM1 off (open between commons) to bring the motor to an forced  
DI-1  
stop state, in which the base circuit is shut off and the dynamic brake is  
operated.  
Turn EM1 on (short between commons) in the forced stop state to reset  
that state.  
When parameter No.PA.04 is set to "  
(always ON) can be set inside.  
1
", automatically ON  
DI1  
DI2  
DI3  
CN3-2  
CN3-12  
CN3-19  
Devices can be assigned for DI1 DI2 DI3 with controller setting.  
For devices that can be assigned, refer to the controller instruction  
manual. The following devices can be assigned for Q172HCPU  
Q173HCPU QD75MH.  
DI-1  
DI-1  
DI-1  
DI1: upper stroke limit (FLS)  
DI2: lower stroke limit (RLS)  
DI3: proximity dog (DOG)  
3 - 24  
3. SIGNALS AND WIRING  
(b) Output device  
Connector  
pin No.  
I/O  
division  
Device  
Trouble  
Symbol  
ALM  
Function/Application  
CN3-15  
CN3-13  
CN3-9  
ALM turns off when power is switched off or the protective circuit is  
activated to shut off the base circuit.  
Without alarm occurring, ALM turns on within about 1s after power-on.  
When using this signal, set operation delay time of the electromagnetic  
brake in parameter No.PC02.  
DO-1  
DO-1  
DO-1  
Electromagnetic  
brake interlock  
MBR  
INP  
In the servo-off or alarm status, MBR turns off.  
In-position  
(Positioning  
completed)  
INP turns on when the number of droop pulses is in the preset in-position  
range. The in-position range can be changed using parameter No.PA10.  
When the in-position range is increased, INP may be on conductive  
status during low-speed rotation.  
INP turns on when servo on turns on.  
This signal cannot be used in the speed loop mode.  
When using the signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
RD turns on when the servo is switched on and the servo amplifier is  
ready to operate.  
When using the signal, make it usable by the setting of parameter  
No.PD07 to PD09. DB turns off simultaneously when the dynamic brake  
is operated. When using the external dynamic brake on the servo  
amplifier of 11 kW or more, this device is required. (Refer to section  
11.6.) For the servo amplifier of 7kW or less, it is not necessary to use  
this device.  
Ready  
RD  
DB  
DO-1  
DO-1  
Dynamic brake  
interlock  
Speed reached  
SA  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
DO-1  
When the servo is off, SA will be turned OFF. When servo motor rotation  
speed becomes approximately setting speed, SA will be turned ON.  
When the preset speed is 20r/min or less, SA always turns on. This  
signal cannot be used in position loop mode.  
Limiting torque  
Zero speed  
TLC  
ZSP  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
When torque is produced level of torque set with controller, TLC will be  
turned ON. When the servo is off, TLC will be turned OFF.  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
DO-1  
DO-1  
When the servo is off, SA will be turned OFF.  
ZSP turns on when the servo motor speed is zero speed (50r/min) or  
less. Zero speed can be changed using parameter No.PC07.  
Example  
Zero speed is 50r/min  
1)  
OFF level  
70r/min  
ON level  
50r/min  
Forward  
rotation  
direction  
20r/min  
(Hysteresis width)  
3)  
2)  
Parameter  
No.PC07  
Servo motor  
speed  
0r/min  
Parameter  
No.PC07  
ON level  
50r/min  
OFF level  
70r/min  
Reverse  
rotation  
direction  
20r/min  
(Hysteresis width)  
4)  
zero speed  
(ZSP)  
ON  
OFF  
ZPS turns on  
when the servo motor is decelerated to 50r/min, and  
1)  
ZPS turns off when the servo motor is accelerated to 70r/min again.  
2)  
ZPS turns on  
when the servo motor is decelerated again to 50r/min,  
3)  
and turns off when the servo motor speed has reached -70r/min.  
4)  
The range from the point when the servo motor speed has reached ON  
level, and ZPS turns on, to the point when it is accelerated again and has  
reached OFF level is called hysteresis width.  
Hysteresis width is 20r/min for the MR-J3-B servo amplifier.  
3 - 25  
3. SIGNALS AND WIRING  
Connector  
pin No.  
I/O  
division  
Device  
Warning  
Symbol  
WNG  
Function/Application  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
DO-1  
When warning has occurred, WNG turns on. When there is no warning,  
WNG turns off within about 1.5s after power-on.  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
Battery warning  
BWNG  
DO-1  
BWNG turns on when battery cable disconnection warning (92) or battery  
warning (9F) has occurred. When there is no battery warning, BWNG  
turns off within about 1.5s after power-on.  
Variable gain  
selection  
CDPS  
ABSV  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
CDPS is on during variable gain.  
When using this signal, make it usable by the setting of parameter  
No.PD07 to PD09.  
DO-1  
DO-1  
Absolute position  
erasing  
ABSV turns on when the absolute position erased.  
This signal cannot be used in position loop mode.  
(c) Output signals  
Connector  
pin No.  
Signal name  
Symbol  
Function/Application  
Encoder A-phase  
pulse  
(Differential line  
driver)  
Encoder B-phase  
pulse  
(Differential line  
driver)  
LA  
LAR  
CN3-6  
CN3-16  
Outputs pulses per servo motor revolution set in parameter No.PA15 in the differential  
line driver system. In CCW rotation of the servo motor, the encoder B-phase pulse  
lags the encoder A-phase pulse by a phase angle of /2.  
The relationships between rotation direction and phase difference of the A- and B-  
phase pulses can be changed using parameter No.PC03.  
LB  
LBR  
CN3-7  
CN3-17  
Output pulse specification and dividing ratio setting can be set. (Refer to section  
5.1.9.)  
Encoder Z-phase  
pulse  
(Differential line  
driver)  
LZ  
LZR  
CN3-8  
CN3-18  
Outputs the zero-point signal in the differential line driver system of the encoder. One  
pulse is output per servo motor revolution. turns on when the zero-point position is  
reached.  
The minimum pulse width is about 400 s. For home position return using this pulse,  
set the creep speed to 100r/min. or less.  
Analog monitor 1  
Analog monitor 2  
MO1  
MO2  
CN3-4  
Used to output the data set in parameter No.PC09 to across MO1-LG in terms of  
voltage. Resolution 10 bits  
Used to output the data set in parameter No.PC10 to across MO2-LG in terms of  
voltage. Resolution 10 bits  
CN3-14  
(d) Power supply  
Connector  
pin No.  
Signal name  
Symbol  
DICOM  
Function/Application  
Digital I/F power  
supply input  
CN3-5  
CN3-10  
Used to input 24VDC (24VDC 10% 150mA) for I/O interface of the servo amplifier.  
The power supply capacity changes depending on the number of I/O interface points  
to be used. Connect the positive terminal of the 24VDC external power supply for the  
sink interface.  
Digital I/F common DOCOM  
CN3-3  
Common terminal for input device such as EM1 of the servo amplifier. Pins are  
connected internally. Separated from LG. Connect the positive terminal of the 24VDC  
external power supply for the source interface.  
Monitor common  
Shield  
LG  
SD  
CN3-1  
CN3-11  
Plate  
Common terminal of M01 M02  
Pins are connected internally.  
Connect the external conductor of the shield cable.  
3 - 26  
3. SIGNALS AND WIRING  
3.6 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
When an alarm occurs in the servo amplifier, the base circuit is shut off and the servo motor is coated to a stop.  
Switch off the main circuit power supply in the external sequence. To deactivate the alarm, power the control  
circuit off, then on or give the error reset or CPU reset command from the servo system controller. However,  
the alarm cannot be deactivated unless its cause is removed.  
(Note)  
Main circuit  
Control circuit  
ON  
OFF  
Power off  
power  
Power on  
ON  
OFF  
Base circuit  
Valid  
Invalid  
Brake operation  
Brake operation  
Dynamic brake  
ON  
Servo-on command  
(from controller)  
OFF  
NO  
YES  
NO  
YES  
NO  
Alarm  
1s  
Reset command  
(from controller)  
ON  
OFF  
50ms or more  
60ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Switch off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (32), overload  
1 (50) or overload 2 (51) alarm after its occurrence, without removing its cause, the servo amplifier and  
servo motor may become faulty due to temperature rise. Securely remove the cause of the alarm and also  
allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (30) alarm  
after its occurrence, the external regenerative resistor will generate heat, resulting in an accident.  
(3) Instantaneous power failure  
Undervoltage (10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 60ms or longer and the control circuit is  
not completely off.  
The bus voltage dropped to 200VDC or less for the MR-J3- B, to 158VDC or less for the MR-J3- B1, or  
to 380VDC or less for the MR-J3- B4.  
3 - 27  
3. SIGNALS AND WIRING  
3.7 Interfaces  
3.7.1 Internal connection diagram  
Servo amplifier  
Approx  
5.6k  
CN3  
EM1 20  
CN3  
10  
Forced stop  
DICOM  
DI1  
2
13 MBR  
RA  
RA  
(Note 3)  
(Note 2)  
INP  
(Note 1)  
DI2 12  
DI3 19  
9
Approx  
5.6k  
(Note 3)  
15 ALM  
24VDC  
DICOM  
5
DOCOM  
3
<Isolated>  
CN3  
6
LA  
16 LAR  
LB  
17 LBR  
LZ  
Differential line  
driver output  
(35mA or less)  
7
8
18 LZR  
CN3  
Analog monitor  
4
1
MO1  
LG  
CN5  
10VDC  
VBUS  
1
D
2
3
5
USB  
14 MO2  
11 LG  
D
10VDC  
GND  
Servo motor  
Encoder  
CN2  
7
8
3
4
2
MD  
MDR  
MR  
MRR  
LG  
E
M
Note 1. Signal can be assigned for these pins with host controller setting.  
For contents of signals, refer to the instruction manual of host controller.  
2. This signal cannot be used with speed loop mode.  
3. For the sink I/O interface. For the source I/O interface, refer to section 3.7.3.  
3 - 28  
3. SIGNALS AND WIRING  
3.7.2 Detailed description of interfaces  
This section provides the details of the I/O signal interfaces (refer to the I/O division in the table) given in  
section 3.5. Refer to this section and make connection with the external equipment.  
(1) Digital input interface DI-1  
Give a signal with a relay or open collector transistor. Refer to section 3.7.3 for the source input.  
Servo amplifier  
For transistor  
EM1,  
etc.  
5.6k  
Approx. 5mA  
Switch  
TR  
DICOM  
VCES 1.0V  
ICEO 100  
24VDC 10%  
150mA  
A
(2) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Install a diode (D) for an inductive load, or install an inrush  
current suppressing resistor (R) for a lamp load. (Rated current: 40mA or less, maximum current: 50mA or  
less, inrush current: 100mA or less) A maximum of 2.6V voltage drop occurs in the servo amplifier.  
Refer to section 3.7.3 for the source output.  
If polarity of diode is  
reversed, servo  
Servo amplifier  
amplifier will fail.  
ALM,  
etc.  
Load  
DOCOM  
(Note)  
24VDC 10%  
150mA  
Note. If the voltage drop (maximum of 2.6V) interferes with the relay operation, apply high voltage (up to  
26.4V) from external source.  
3 - 29  
3. SIGNALS AND WIRING  
(3) Encoder output pulse DO-2 (Differential line driver system)  
(a) Interface  
Max. output current: 35mA  
Servo amplifier  
Servo amplifier  
LA  
(LB, LZ)  
LA  
(LB, LZ)  
Am26LS32 or equivalent  
150  
High-speed photocoupler  
100  
LAR  
LAR  
(LBR, LZR)  
(LBR, LZR)  
LG  
SD  
SD  
(b) Output pulse  
Servo motor CCW rotation  
LA  
Time cycle (T) is determined by the settings  
of parameter No.PA15 and PC03.  
LAR  
LB  
T
LBR  
/2  
LZ  
LZR  
400 s or more  
(4) Analog output  
Servo amplifier  
MO1  
(MO2)  
Output voltage 10V  
Max. 1mA  
Max. Output current Resolution: 10 bit  
LG  
3 - 30  
3. SIGNALS AND WIRING  
3.7.3 Source I/O interfaces  
In this servo amplifier, source type I/O interfaces can be used. In this case, all DI-1 input signals and DO-1  
output signals are of source type. Perform wiring according to the following interfaces.  
(1) Digital input interface DI-1  
Servo amplifier  
EM1,  
Approx. 5.6k  
etc.  
Switch  
DICOM  
24VDC 10%  
150mA  
Approx. 5mA  
VCES 1.0V  
ICEO 100 A  
(2) Digital output interface DO-1  
A maximum of 2.6V voltage drop occurs in the servo amplifier.  
If polarity of diode is  
reversed, servo  
amplifier will fail.  
Servo amplifier  
ALM,  
etc.  
Load  
DOCOM  
(Note)  
24VDC 10%  
150mA  
Note. If the voltage drop (maximum of 2.6V) interferes with the relay operation, apply high voltage (up to  
26.4V) from external source.  
3 - 31  
3. SIGNALS AND WIRING  
3.8 Treatment of cable shield external conductor  
In the case of the CN2 and CN3 connectors, securely connect the shielded external conductor of the cable to  
the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
(1) For CN3 connector (3M connector)  
Screw  
Cable  
Screw  
Ground plate  
(2) For CN2 connector (3M or Molex connector)  
Cable  
Ground plate  
Screw  
3 - 32  
3. SIGNALS AND WIRING  
3.9 SSCNET cable connection  
POINT  
Do not see directly the light generated from CN1A CN1B connector of servo  
amplifier or the end of SSCNET cable.  
When the light gets into eye, may feel something is wrong for eye.  
(The light source of SSCNET complies with class1 defined in JIS C6802 or  
IEC60825-1.)  
(1) SSCNET cable connection  
For CN1A connector, connect SSCNET cable connected to controller in host side or servo amplifier.  
For CN1B connector, connect SSCNET cable connected to servo amplifier in lower side.  
For CN1B connector of the final axis, put a cap came with servo amplifier.  
Axis No.1 servo amplifier  
Axis No.2 servo amplifier  
Final axis servo amplifier  
SSCNET cable  
SSCNET cable  
SSCNET cable  
Controller  
CN1A  
CN1A  
CN1A  
Cap  
CN1B  
CN1B  
CN1B  
(2) How to connect/disconnect cable.  
POINT  
CN1A CN1B connector is put a cap to protect light device inside connector  
from dust.  
For this reason, do not remove a cap until just before mounting SSCNET  
cable.  
Then, when removing SSCNET cable, make sure to put a cap.  
Keep the cap for CN1A CN1B connector and the tube for protecting light  
code end of SSCNET cable in a plastic bag with a zipper of SSCNET  
cable to prevent them from becoming dirty.  
When asking repair of servo amplifier for some troubles, make sure to put a  
cap on CN1A CN1B connector.  
When the connector is not put a cap, the light device may be damaged at the  
transit.  
In this case, exchange and repair of light device is required.  
(a) Mounting  
1) For SSCNET cable in the shipping status, the tube for protect light code end is put on the end of  
connector. Remove this tube.  
2) Remove the CN1A CN1B connector cap of servo amplifier.  
3 - 33  
3. SIGNALS AND WIRING  
3) With holding a tab of SSCNET cable connector, make sure to insert it into CN1A CN1B connector  
of servo amplifier until you hear the click.  
If the end face of optical code tip is dirty, optical transmission is interrupted and it may cause  
malfunctions.  
If it becomes dirty, wipe with a bonded textile, etc.  
Do not use solvent such as alcohol.  
Click  
Tab  
(b) Removal  
With holding a tab of SSCNET cable connector, pull out the connector.  
When pulling out the SSCNET cable from servo amplifier, be sure to put the cap on the connector  
parts of servo amplifier to prevent it from becoming dirty.  
For SSCNET cable, attach the tube for protection optical code's end face on the end of connector.  
3 - 34  
3. SIGNALS AND WIRING  
3.10 Connection of servo amplifier and servo motor  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
CAUTION  
3.10.1 Connection instructions  
Insulate the connections of the power supply terminals to prevent an electric  
WARNING  
shock.  
Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier  
and servo motor. Not doing so may cause unexpected operation.  
CAUTION  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Refer to section 11.1 for the selection of the encoder cable.  
This section indicates the connection of the servo motor power (U, V, W). Use of the optional cable and  
connector set is recommended for connection between the servo amplifier and servo motor. When the  
options are not available, use the recommended products. Refer to section 11.1 for details of the options.  
(1) For grounding, connect the earth cable of the servo motor to the protective earth (PE) terminal ( ) of the  
servo amplifier and connect the ground cable of the servo amplifier to the earth via the protective earth of  
the control box. Do not connect them directly to the protective earth of the control panel.  
Control box  
Servo  
amplifier  
Servo motor  
PE terminal  
(2) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always  
use the power supply designed exclusively for the electromagnetic brake.  
3 - 35  
3. SIGNALS AND WIRING  
3.10.2 Power supply cable wiring diagrams  
(1) HF-MP service HF-KP series HF-KP series servo motor  
(a) When cable length is 10m or less  
10m or less  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
Servo amplifier  
Servo motor  
U
CNP3  
AWG 19(red)  
U
V
AWG 19(white)  
AWG 19(black)  
AWG 19(green/yellow)  
V
M
W
W
(b) When cable length exceeds 10m  
When the cable length exceeds 10m, fabricate an extension cable as shown below. In this case, the  
motor power supply cable should be within 2m long.  
Refer to section 11.11 for the wire used for the extension cable.  
2m or less  
MR-PWS1CBL2M-A1-L  
MR-PWS1CBL2M-A2-L  
MR-PWS1CBL2M-A1-H  
MR-PWS1CBL2M-A2-H  
MR-PWS2CBL03M-A1-L  
MR-PWS2CBL03M-A2-L  
50m or less  
Servo amplifier  
Servo motor  
U
Extension cable  
CNP3  
AWG 19(red)  
U
V
AWG 19(white)  
AWG 19(black)  
AWG 19(green/yellow)  
V
M
W
W
(Note)  
(Note)  
a) Relay connector for  
extension cable  
b)  
Relay connector for motor  
power supply cable  
Note. Use of the following connectors is recommended when ingress protection (IP65) is necessary.  
Protective  
structure  
IP65  
Relay connector  
Description  
Connector: RM15WTPZ-4P(71)  
a) Relay connector for  
extension cable  
Cord clamp: RM15WTP-CP(5)(71)  
(Hirose Electric)  
Numeral changes depending on the cable OD.  
Connector: RM15WTJA-4S(71)  
Cord clamp: RM15WTP-CP(8)(71)  
(Hirose Electric)  
Numeral changes depending on the cable OD.  
b) Relay connector for  
motor power supply  
cable  
IP65  
3 - 36  
3. SIGNALS AND WIRING  
(2) HF-SP series HC-RP series HC-UP series HC-LP series servo motor  
POINT  
Insert a contact in the direction shown in the figure. If inserted in the wrong  
direction, the contact is damaged and falls off.  
Soldered part or  
crimping part  
facing down  
Soldered part  
or crimping part  
facing up  
Pin No.1  
Pin No.1  
For CM10-SP10S-  
For CM10-SP2S-  
(a) Wiring diagrams  
Refer to section 11.11 for the cables used for wiring.  
1) When the power supply connector and the electromagnetic brake connector are separately supplied.  
50m or less  
Servo amplifier  
Servo motor  
U
V
U
V
M
W
W
CN3  
24VDC  
DOCOM  
DICOM  
RA1  
RA2  
ALM  
MBR  
Electromagnetic  
Forced  
stop  
(EM1)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note)  
Note. There is no polarity in electromagnetic brake terminals B1 and B2.  
3 - 37  
3. SIGNALS AND WIRING  
2) When the power supply connector and the electromagnetic brake connector are shared.  
50m or less  
Servo amplifier  
Servo motor  
U
V
U
V
M
W
W
CN3  
24VDC  
DOCOM  
DICOM  
RA1  
RA2  
ALM  
MBR  
Electromagnetic  
Forced  
stop  
(EM1)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note)  
Note. There is no polarity in electromagnetic brake terminals B1 and B2.  
(b) Connector and signal allotment  
The connector fitting the servo motor is prepared as optional equipment. Refer to section 11.1. For types  
other than those prepared as optional equipment, refer to chapter 3 in Servo Motor Instruction Manual,  
Vol. 2 to select.  
Servo motor side connectors  
Servo motor  
Electromagnetic  
brake  
Encoder  
Power supply  
MS3102A18-10P  
MS3102A22-22P  
HF-SP52(4) to 152(4)  
HF-SP51 81  
CM10-R2P  
(DDK)  
HF-SP202 352 502(4)  
HF-SP121 to 301  
HF-SP421 702(4)  
HC-RP103 to 203  
HC-RP353 503  
a
CE05-2A32-17PD-B  
CE05-2A22-23PD-B  
CE05-2A24-10PD-B  
CE05-2A22-23PD-B  
CE05-2A24-10PD-B  
c
CM10-R10P  
(DDK)  
The connector for  
power is shared  
b
HC-UP72 152  
HC-UP202 to 502  
MS3102A10SL-4P  
The connector for  
power is shared  
HC-LP52 to 152  
HC-LP202 302  
CE05-2A22-23PD-B  
CE05-2A24-10PD-B  
MS3102A10SL-4P  
3 - 38  
3. SIGNALS AND WIRING  
Power supply connector signal allotment  
MS3102A18-10P  
Encoder connector signal allotment  
CM10-R10P  
Power supply connector signal allotment  
CE05-2A22-23PD-B  
MS3102A22-22P  
CE05-2A32-17PD-B  
Terminal  
Terminal  
Signal  
No.  
Terminal  
Signal  
No.  
Signal  
7
6
5
4
No.  
1
10  
9
3
2
1
G
H
A
C
B
D
A
MR  
A
B
C
U
V
A
B
C
U
V
F
E
B
2
MRR  
8
3
W
W
C
D
4
BAT  
LG  
D
D
5
(earth)  
(earth)  
View a  
View b  
View b  
6
E
F
7
8
P5  
B1  
G
H
9
(Note)  
B2  
10  
SHD  
(Note)  
Note. For the motor  
with an  
electromagnetic  
brake, supply  
electromagnetic  
brake power  
(24VDC). There  
is no polarity.  
Power supply connector signal allotment  
CE05-2A24-10PD-B  
Brake connector signal allotment  
CM10-R2P  
Brake connector signal allotment  
MS3102A10SL-4P  
Terminal  
Signal  
No.  
Terminal  
Terminal  
Signal  
Signal  
No.  
No.  
A
C
F
A
B
C
U
V
B1  
(Note)  
B2  
B1  
(Note)  
B2  
1
A
2
1
E
G
B
A
B
W
D
2
B
(Note)  
(Note)  
D
E
(earth)  
B1  
Note. For the motor  
with an  
Note. For the motor  
with an  
View c  
View b  
View c  
electromagnetic  
brake, supply  
electromagnetic  
brake power  
electromagnetic  
brake, supply  
electromagnetic  
brake power  
(Note)  
B2  
F
(Note)  
G
(24VDC). There  
is no polarity.  
(24VDC). There  
is no polarity.  
Note. For the motor  
with an  
electromagnetic  
brake, supply  
electromagnetic  
brake power  
(24VDC). There  
is no polarity.  
3 - 39  
3. SIGNALS AND WIRING  
(3) HA-LP series servo motor  
(a) Wiring diagrams  
Refer to section 11.11 for the cables used for wiring.  
1) 200V class  
NFB  
50m or less  
Servo amplifier  
Servo motor  
M
MC  
TE  
L1  
L2  
L3  
U
U
V
V
W
W
BU  
BV  
CN3  
DOCOM  
DICOM  
24VDC  
BW  
Cooling fan  
(Note 2)  
RA1  
RA2  
ALM  
MBR  
Electromagnetic  
Forced  
stop  
(EM1)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note 1)  
OHS1  
OHS2 Servo motor  
thermal relay  
24VDC  
power supply  
(Note 3)  
RA3  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. Cooling fan power supply of the HA-LP601, the HA-LP701M and the HA-LP11K2 servo motor is 1-phase. Power supply  
specification of the cooling fan is different from that of the servo amplifier. Therefore, separate power supply is required.  
3. Configure the power supply circuit which turns off the magnetic contactor after detection of servo motor thermal.  
3 - 40  
3. SIGNALS AND WIRING  
2) 400V class  
(Note4)  
Cooling fan power supply  
50m or less  
Servo amplifier  
Servo motor  
MC  
TE  
U
L1  
L2  
L3  
U
V
V
NFB  
M
W
W
BU  
BV  
CN3  
DOCOM  
24VDC  
BW  
Cooling fan  
(Note 2)  
DICOM  
RA1  
RA2  
ALM  
MBR  
Electromagnetic  
Forced  
stop  
(EM1)  
brake interlock Trouble  
(MBR) (ALM)  
RA2  
RA1  
24VDC power  
supply for  
electromagnetic  
brake  
B1  
B2  
(Note 1)  
OHS1  
OHS2 Servo motor  
thermal relay  
24VDC  
power supply  
(Note 3)  
RA3  
Note 1. There is no polarity in electromagnetic brake terminals B1 and B2.  
2. There is no BW when the power supply of the cooling fan is a 1-phase.  
3. Configure the power supply circuit which turns off the magnetic contactor after detection of servo motor thermal.  
4. For the cooling fan power supply, refer to (3) (b) of this section.  
3 - 41  
3. SIGNALS AND WIRING  
(b) Servo motor terminals  
Encoder connector  
CM10-R10P  
Brake connector  
MS3102A10SL-4P  
Terminal box  
Encoder connector signal  
allotment  
Terminal  
No.  
Brake connector signal  
Terminal  
No.  
Signal  
Signal  
allotment  
CM10-R10P  
MS3102A10SL-4P  
1
2
MR  
B1  
(Note)  
B2  
1
2
MRR  
7
3
10  
9
3
2
1
1
2
6
5
4
4
BAT  
LG  
(Note)  
5
Note. For the motor  
with an  
8
6
electromagnetic  
brake, supply  
electromagnetic  
brake power  
7
8
P5  
9
10  
SHD  
(24VDC). There  
is no polarity.  
Terminal box inside (HA-LP601(4) 701M(4) 11K2(4) )  
Thermal sensor terminal  
block  
(OHS1 OHS2) M4 screw  
Motor power supply  
terminal block  
Cooling fan terminal  
block  
(U  
V
W) M6 screw  
(BU BV) M4 screw  
Terminal block signal  
arrangement  
OHS1OHS2  
Earth terminal(  
M6 screw  
)
Encoder connector  
CM10-R10P  
BU BV  
U
V
W
3 - 42  
3. SIGNALS AND WIRING  
Terminal box inside (HA-LP801(4) 12K1(4) 11K1M(4) 15K1M(4) 15K2(4) 22K2(4))  
Cooling fan terminal  
block  
Thermal sensor  
terminal block  
(BU BV BW)  
M4 screw  
(OHS1 OHS2)  
M4 screw  
Terminal block signal  
arrangement  
Motor power supply  
terminal block  
Encoder connector  
CM10-R10P  
(U  
V
W) M8 screw  
BU BV BW OHS1OHS2  
Earth terminal(  
M6 screw  
)
U
V
W
Terminal box inside (HA-LP15K1(4) 20K1(4) 22K1M(4))  
Motor power supply  
terminal block  
(U V W) M8  
Encoder connector  
CM10-R10P  
U
W
V
Thermal sensor  
terminal block  
(OHS1 OHS2) M4 screw  
Cooling fan  
terminal block  
(BU BV BW) M4 screw  
Terminal block signal arrangement  
Earth terminal M6 screw  
BU BV BW OHS1OHS2  
U
V
W
3 - 43  
3. SIGNALS AND WIRING  
Terminal box inside (HA-LP25K1)  
Motor power supply  
terminal block  
Encoder connector  
CM10-R10P  
(U  
V
W) M10 screw  
BU BV BW OHS1OHS2  
U
V
W
Thermal sensor terminal  
block  
(OHS1 OHS2) M4 screw  
Cooling fan terminal block  
(BU BV BW) M4 screw  
Terminal block signal arrangement  
Earth terminal(  
M6 screw  
)
BU BV BW OHS1OHS2  
U
V
W
3 - 44  
3. SIGNALS AND WIRING  
Signal name  
Power supply  
Abbreviation  
Description  
Connect to the motor output terminals (U, V, W) of the servo amplifier. During power-on, do  
not open or close the motor power line. Otherwise, a malfunction or faulty may occur.  
Supply power which satisfies the following specifications.  
U
V
W
Power  
consumption  
[W]  
Rated  
current  
[A]  
Voltage  
division  
Voltage/  
Servo motor  
frequency  
HA-LP601, 701M,  
11K2  
200V 3-phase 200 to 220VAC  
class  
42(50Hz)  
0.21(50Hz)  
0.25(60Hz)  
50Hz 54(60Hz)  
3-phase 200 to 230VAC  
60Hz  
3-phase 200 to 230VAC  
50Hz/60Hz  
HA-LP801, 12K1,  
11K1M, 15K1M,  
15K2, 22K2  
62(50Hz)  
76(60Hz)  
0.18(50Hz)  
0.17(60Hz)  
HA-LP15K1, 20K1,  
22K1M  
65(50Hz)  
85(60Hz)  
0.20(50Hz)  
0.22(60Hz)  
(Note)  
HA-LP25K1  
120(50Hz) 0.65(50Hz)  
175(60Hz) 0.80(60Hz)  
Cooling fan  
BU BV BW  
HA-LP6014, 701M4, 400V 1-phase 200 to 220VAC  
42(50Hz)  
50Hz 54(60hz)  
3-phase 200 to 230VAC  
60Hz  
3-phase 380 to 440VAC  
50Hz 76(60Hz)  
3-phase 380 to 480VAC  
60Hz  
3-phase 380 to 460VAC  
50Hz 85(60Hz)  
3-phase 380 to 480VAC  
60Hz 150(60Hz) 0.22(60Hz)  
0.21(50Hz)  
11K24  
class  
0.25(60Hz)  
HA-LP8014, 12K14,  
11K1M4, 15K1M4,  
15K24, 22K24  
62(50Hz)  
0.14(50Hz)  
0.11(60Hz)  
HA-LP15K14,  
20K14, 22K1M4  
HA-LP25K14  
65(50Hz)  
0.12(50Hz)  
0.14(60Hz)  
110(50Hz) 0.20(50Hz)  
OHS1 OHS2 are opened when heat is generated to an abnormal temperature.  
Motor thermal relay  
Earth terminal  
OHS1 OHS2 Maximum rating: 125V AC/DC, 3A or 250V AC/DC, 2A  
Minimum rating: 6V AC/DC, 0.15A  
For grounding, connect to the earth of the control box via the earth terminal of the servo  
amplifier.  
Note. There is no BW when the power supply of the cooling fan is a 1-phase.  
3 - 45  
3. SIGNALS AND WIRING  
3.11 Servo motor with an electromagnetic brake  
3.11.1 Safety precautions  
Configure the electromagnetic brake circuit so that it is activated not only by the  
interface unit signals but also by a forced stop (EM1).  
Contacts must be open when  
servo-off, when an alarm occurrence  
and when an electromagnetic brake  
interlock (MBR).  
Circuit must be  
opened during  
forced stop (EM1).  
Servo motor  
RA EM1  
24VDC  
CAUTION  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
Refer to the Servo Motor Instruction Manual (Vol.2) for specifications such as  
the power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor with an electromagnetic brake is used.  
1) Do not share the 24VDC interface power supply between the interface and electromagnetic brake.  
Always use the power supply designed exclusively for the electromagnetic brake.  
2) The brake will operate when the power (24VDC) switches off.  
3) Switch off the servo-on command after the servo motor has stopped.  
(1) Connection diagram  
Servo amplifier  
Servo motor  
Electromagnetic Trouble Forced  
brake stop  
(ALM)  
B1  
B2  
24VDC  
DOCOM  
DICOM  
24VDC  
MBR  
RA1  
(2) Setting  
In parameter No.PC02 (electromagnetic brake sequence output), set the time delay (Tb) from  
electromagnetic brake operation to base circuit shut-off at a servo off time as in the timing chart in section  
3.11.2.  
3 - 46  
3. SIGNALS AND WIRING  
3.11.2 Timing charts  
(1) Servo-on command (from controller) ON/OFF  
Tb [ms] after the servo-on is switched off, the servo lock is released and the servo motor coasts. If the  
electromagnetic brake is made valid in the servo lock status, the brake life may be shorter. Therefore, when  
using the electromagnetic brake in a vertical lift application or the like, set delay time (Tb) to about the same  
as the electromagnetic brake operation delay time to prevent a drop.  
Coasting  
Servo motor speed  
0 r/min  
(95ms)  
(95ms)  
Tb  
ON  
Base circuit  
OFF  
Electromagnetic  
brake operation  
delay time  
Electromagnetic  
brake interlock  
(MBR)  
(Note 1) ON  
OFF  
ON  
Servo-on command  
(from controller)  
OFF  
(Note 3)  
Operation command  
(from controller)  
0 r/min  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
2. Electromagnetic brake is released after delaying for the release delay time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual (Vol.2).  
3. Give the operation command from the controller after the electromagnetic brake is released.  
(2) Forced stop command (from controller) or forced stop (EM1) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake release  
(10ms)  
(210ms)  
ON  
Base circuit  
OFF  
(210ms)  
Electromagnetic brake  
operation delay time  
(Note) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
Invalid (ON)  
Valid (OFF)  
Forced stop command  
(from controller)  
or  
Forced stop (EM1)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 47  
3. SIGNALS AND WIRING  
(3) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake  
(10ms)  
ON  
Base circuit  
OFF  
(Note) ON  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR)  
OFF  
No (ON)  
Alarm  
Yes (OFF)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
(4) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(Note 1)  
15 to 100ms  
ON  
OFF  
10ms  
(Note 2) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
Electromagnetic brake  
operation delay time  
(Note2)  
No (ON)  
Alarm  
Yes (OFF)  
Main circuit  
power  
ON  
OFF  
Control circuit  
Note 1. Changes with the operating status.  
2. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 48  
3. SIGNALS AND WIRING  
(5) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Electromagnetic brake  
(Note 1)  
15ms or more  
ON  
Base circuit  
OFF  
(Note 3) ON  
Electromagnetic  
brake interlock  
(MBR)  
OFF  
Electromagnetic brake  
operation delay time  
(Note 2)  
No (ON)  
Alarm  
Yes (OFF)  
ON  
Main circuit power  
supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status, the main circuit off warning (E9) occurs  
and the alarm (ALM) does not turn off.  
3. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated.  
3 - 49  
3. SIGNALS AND WIRING  
3.11.3 Wiring diagrams (HF-MP series HF-KP series servo motor)  
POINT  
For HF-SP series HC-RP series HC-UP series HC-LP series servo motors,  
refer to section 3.10.2 (2).  
(1) When cable length is 10m or less  
10m or less  
24VDC power  
supply for  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A1-H  
MR-BKS1CBL M-A2-H  
electromagnetic  
brake  
Servo motor  
(Note2)  
Forced stop  
(EM1)  
Electromagnetic  
brake (MBR)  
Trouble  
(ALM)  
AWG20  
AWG20  
B1  
B2  
(Note 1)  
Note 1. Connect a surge absorber as close to the servo motor as possible.  
2. There is no polarity in electromagnetic brake terminals (B1 and B2).  
When fabricating the motor brake cable MR-BKS1CBL- M-H, refer to section 11.1.4.  
(2) When cable length exceeds 10m  
When the cable length exceeds 10m, fabricate an extension cable as shown below on the customer side. In  
this case, the motor brake cable should be within 2m long.  
Refer to section 11.8 for the wire used for the extension cable.  
2m or less  
MR-BKS1CBL2M-A1-L  
MR-BKS1CBL2M-A2-L  
MR-BKS1CBL2M-A1-H  
MR-BKS1CBL2M-A2-H  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
24VDC power  
supply for  
electromagnetic  
brake  
50m or less  
Extension cable (To be fabricated)  
Servo motor  
(Note 3)  
B1  
Forced stop  
(EM1)  
Electromagnetic  
brake (MBR)  
Trouble  
(ALM)  
AWG20  
AWG20  
(Note 1)  
B2  
(Note 2)  
(Note 2)  
a) Relay connector for b) Relay connector for motor  
extension cable brake cable  
Note 1. Connect a surge absorber as close to the servo motor as possible.  
2. Use of the following connectors is recommended when ingress protection (IP65) is necessary.  
Protective  
structure  
IP65  
Relay connector  
Description  
CM10-CR2P-  
(DDK)  
a) Relay connector for  
extension cable  
Wire size: S, M, L  
Wire size: S, M, L  
CM10-SP2S-  
(DDK)  
IP65  
b) Relay connector for  
motor brake cable  
3. There is no polarity in electromagnetic brake terminals (B1 and B2).  
3 - 50  
3. SIGNALS AND WIRING  
3.12 Grounding  
Ground the servo amplifier and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the servo amplifier with the protective earth (PE) of the  
control box.  
WARNING  
The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the  
wiring and ground cable routing, the servo amplifier may be affected by the switching noise (due to di/dt and  
dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Servo motor  
MC  
Servo amplifier  
NFB  
CN2  
L1  
Encoder  
(Note)  
Power supply  
L2  
L3  
L11  
L21  
U
V
U
V
M
W
W
CN1A  
Ensure to connect it to PE  
terminal of the servo amplifier.  
Do not connect it directly  
to the protective earth of  
the control panel.  
Outer  
box  
Protective earth(PE)  
Note. For 1-phase 200V to 230VAC, connect the power supply to L1  
L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
3 - 51  
3. SIGNALS AND WIRING  
3.13 Control axis selection  
POINT  
The control axis number set to rotary axis setting switch (SW1) should be the  
same as the one set to the servo system controller.  
Use the rotary axis setting switch (SW1) to set the control axis number for the servo. If the same numbers are  
set to different control axes in a single communication system, the system will not operate properly. The control  
axes may be set independently of the SSCNET cable connection sequence.  
Rotary axis setting switch (SW1)  
Spare (Be sure to set to the "Down" position.)  
(Note) SW2  
Up  
8
Down  
Test operation select switch (SW2-1)  
Set the test operation select switch to the "Up" position, when  
performing the test operation mode by using MR Configurator.  
0
Note. This table indicates the status when the switch is set to "Down".  
(Default)  
Spare  
Rotary axis setting switch (SW1)  
Description  
Axis No.1  
Axis No.2  
Axis No.3  
Axis No.4  
Axis No.5  
Axis No.6  
Axis No.7  
Axis No.8  
Axis No.9  
Axis No.10  
Axis No.11  
Axis No.12  
Axis No.13  
Axis No.14  
Axis No.15  
Axis No.16  
Display  
01  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
02  
03  
04  
05  
06  
07  
Down  
08  
(Be sure to set to the  
"Down" position.)  
09  
10  
11  
12  
13  
14  
15  
16  
3 - 52  
4. STARTUP  
4. STARTUP  
Do not operate the switches with wet hands. You may get an electric shock.  
WARNING  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative resistor,  
servo motor, etc. since they may be hot while power is on or for some time after  
power-off. Their temperatures may be high and you may get burnt or a parts may  
damaged.  
CAUTION  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
4.1 Switching power on for the first time  
When switching power on for the first time, follow this section to make a startup.  
4.1.1 Startup procedure  
Check whether the servo amplifier and servo motor are wired correctly using  
Wiring check  
visual inspection, DO forced output function (section 4.5.1), etc. (Refer to  
section 4.1.2.)  
Check the surrounding environment of the servo amplifier and servo motor.  
(Refer to section 4.1.3.)  
Surrounding environment check  
Axis No. settings  
Confirm that the axis No. settings for rotary axis setting switch (SW1) and  
servo system controller are consistent. (Refer to section 3.12)  
Set the parameters as necessary, such as the used control mode and  
regenerative option selection. (Refer to chapter 5)  
Parameter setting  
For the test operation, with the servo motor disconnected from the machine  
and operated at the speed as low as possible, check whether the servo motor  
rotates correctly. (Refer to sections 4.5)  
Test operation of servo motor  
alone in test operation mode  
For the test operation with the servo motor disconnected from the machine  
and operated at the speed as low as possible, give commands to the servo  
amplifier and check whether the servo motor rotates correctly.  
Test operation of servo motor  
alone by commands  
Connect the servo motor with the machine, give operation commands from the  
host command device, and check machine motions.  
Test operation with servo motor  
and machine connected  
Make gain adjustment to optimize the machine motions. (Refer to chapter 6.)  
Gain adjustment  
Actual operation  
Stop  
Stop giving commands and stop operation.  
4 - 1  
4. STARTUP  
4.1.2 Wiring check  
(1) Power supply system wiring  
Before switching on the main circuit and control circuit power supplies, check the following items.  
(a) Power supply system wiring  
The power supplied to the power input terminals (L1, L2, L3, L11, L21) of the servo amplifier should satisfy  
the defined specifications. (Refer to section 1.3.)  
(b) Connection of servo amplifier and servo motor  
1) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the  
power input terminals (U, V, W) of the servo motor.  
Servo amplifier  
U
Servo motor  
U
V
V
M
W
W
2) The power supplied to the servo amplifier should not be connected to the servo motor power supply  
terminals (U, V, W). To do so will fail the connected servo amplifier and servo motor.  
Servo amplifier  
Servo motor  
M
U
V
W
U
V
W
3) The earth terminal of the servo motor is connected to the PE terminal of the servo amplifier.  
Servo amplifier  
Servo motor  
M
4) P1-P2 (For 11kW or more, P1-P) should be connected.  
Servo amplifier  
P1  
P2  
(c) When option and auxiliary equipment are used  
1) When regenerative option is used under 3.5kW for 200V class and 2kW for 400V class  
The lead between P terminal and D terminal of CNP2 connector should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used. (Refer to section 11.2)  
4 - 2  
4. STARTUP  
2) When regenerative option is used over 5kW for 200V class and 3.5kW for 400V class  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal block  
should not be connected.  
The generative brake option should be connected to P terminal and C terminal.  
A twisted cable should be used when wiring is over 5m and under 10m. (Refer to section 11.2)  
3) When brake unit and power regenerative converter are used over 5kW  
The lead of built-in regenerative resistor connected to P terminal and C terminal of TE1 terminal block  
should not be connected.  
Brake unit, power regenerative converter or power regeneration converter should be connected to P  
terminal and N terminal. (Refer to section 11.3 to 11.5)  
4) The power factor improving DC reactor should be connected P1 and P2 (For 11k to 22kW, P1 and P).  
(Refer to section 11.13.)  
Power factor  
improving DC  
Servo amplifier  
reactor  
P1  
(Note)  
P2  
Note. Always disconnect P1 and P2. (For 11k to 22kW P1 and P)  
(2) I/O signal wiring  
(a) The I/O signals should be connected correctly.  
Use DO forced output to forcibly turn on/off the pins of the CN3 connector. This function can be used to  
perform a wiring check. In this case, switch on the control circuit power supply only.  
(b) 24VDC or higher voltage is not applied to the pins of connectors CN3.  
(c) SD and DOCOM of connector CN3 is not shorted.  
Servo amplifier  
CN3  
DOCOM  
SD  
4.1.3 Surrounding environment  
(1) Cable routing  
(a) The wiring cables are free from excessive force.  
(b) The encoder cable should not be used in excess of its flex life. (Refer to section 10.4.)  
(c) The connector part of the servo motor should not be strained.  
(2) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
4 - 3  
4. STARTUP  
4.2 Start up  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
(1) Power on  
When the main and control circuit power supplies are switched on, "b01" (for the first axis) appears on the  
servo amplifier display.  
In the absolute position detection system, first power-on results in the absolute position lost (25) alarm and  
the servo system cannot be switched on.  
The alarm can be deactivated by then switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of 500r/min  
or higher, position mismatch may occur due to external force or the like. Power must therefore be switched  
on when the servo motor is at a stop.  
(2) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to chapter 5 for the  
parameter definitions.  
Parameter No.  
PA14  
Name  
Setting  
0
Description  
Increase in positioning address rotates the motor in  
the CCW direction.  
Rotation direction setting  
PA08  
PA09  
Auto tuning mode  
1
Used.  
Auto tuning response  
12  
Slow response (initial value) is selected.  
After setting the above parameters, switch power off once. Then switch power on again to make the set  
parameter values valid.  
(3) Servo-on  
Switch the servo-on in the following procedure.  
1) Switch on main circuit/control circuit power supply.  
2) The controller transmits the servo-on command.  
When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.  
(4) Home position return  
Always perform home position return before starting positioning operation.  
(5) Stop  
If any of the following situations occurs, the servo amplifier suspends the running of the servo motor and  
brings it to a stop.  
When the servo motor is with an electromagnetic brake, refer to section 3.11.  
Operation/command  
Servo off command  
Stopping condition  
The base circuit is shut off and the servo motor coasts.  
The base circuit is shut off and the dynamic brake operates to bring  
the servo motor to stop. The controller forced stop warning (E7)  
occurs.  
Servo system controller  
Servo amplifier  
Forced stop command  
The base circuit is shut off and the dynamic brake operates to bring  
the servo motor to stop.  
Alarm occurrence  
Forced stop  
(EM1) OFF  
The base circuit is shut off and the dynamic brake operates to bring  
the servo motor to stop. The servo forced stop warning (E6) occurs.  
4 - 4  
4. STARTUP  
4.3 Servo amplifier display  
On the servo amplifier display (three-digit, seven-segment display), check the status of communication with the  
servo system controller at power-on, check the axis number, and diagnose a fault at occurrence of an alarm.  
(1) Display sequence  
Servo amplifier power ON  
Waiting for servo system controller  
power to switch ON  
(SSCNET communication)  
Servo system controller power ON (SSCNET communication beginning)  
Initial data communication  
with servo system controller  
(Initialization communication)  
(Note 1)  
When alarm warning  
No. is displayed  
(Note 3)  
Ready OFF/servo OFF  
Ready ON/servo OFF  
At occurrence of overload  
Flicker  
display  
Ready ON  
Servo ON  
At occurrence of overload  
warning (Note 2)  
(Note 3)  
(Note 3)  
Flicker  
display  
When alarm occurs,  
alarm code appears.  
During controller  
forced stop  
Flicker  
display  
Ready ON/servo ON  
During forced stop  
Flicker  
display  
Ordinary operation  
Alarm reset or  
warning  
Servo system controller power OFF  
Servo system controller power ON  
Note 1.  
2.  
Only alarm and warning No. are displayed, but no axis No. is displayed  
If warning other than E6 or E7 occurs during the servo on, flickering the  
second place of decimal point indicates that it is during the servo on.  
3. The right-hand segments of b01, c02 and d16 indicate the axis number.  
(Below example indicates Axis1)  
1 axis 2 axis  
16 axis  
4 - 5  
4. STARTUP  
(2) Indication list  
Indication  
Status  
Description  
Power of the servo amplifier was switched on at the condition that the power of  
servo system controller is OFF.  
The axis No. set to the servo system controller does not match the axis No. set  
with the rotary axis setting switch (SW1) of the servo amplifier.  
A servo amplifier fault occurred or an error took place in communication with the  
servo system controller. In this case, the indication changes.  
A b  
Initializing  
"Ab "  
"AC "  
"Ad "  
"Ab "  
The servo system controller is faulty.  
A b  
A C  
A d  
.
Initializing  
Initializing  
Initializing  
Initializing  
Initializing  
During initial setting for communication specifications  
Initial setting for communication specifications completed, and then it synchronized  
with servo system controller.  
During initial parameter setting communication with servo system controller  
During motor encoder information and telecommunication with servo system  
controller  
A E  
A F  
During initial signal data communication with servo system controller  
During the completion process for initial data communication with servo system  
A H  
A A  
Initializing completion  
Initializing standby  
controller  
The power supply of servo system controller is turned off during the power supply  
of servo amplifier is on.  
b # #  
d # #  
C # #  
Ready OFF  
Servo ON  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The ready off signal from the servo system controller was received.  
The alarm No./warning No. that occurred is displayed. (Refer to section 9.1.)  
CPU watchdog error has occurred.  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 2)  
Servo OFF  
Alarm Warning  
CPU Error  
8 8 8  
b 0 0.  
JOG operation, positioning operation, programmed operation, DO forced output.  
(Note 3)  
(Note 1)  
b # #.  
(Note 3)  
Test operation mode  
Motor-less operation  
d # #.  
C # #.  
Note 1. ## denotes any of numerals 00 to 16 and what it means is listed below.  
#
0
Description  
Set to the test operation mode.  
First axis  
1
2
Second axis  
Third axis  
3
4
Fourth axis  
5
Fifth axis  
6
Sixth axis  
7
Seventh axis  
Eighth axis  
8
9
Ninth axis  
10  
11  
12  
13  
14  
15  
16  
Tenth axis  
Eleventh axis  
Twelfth axis  
Thirteenth axis  
Fourteenth axis  
Fifteenth axis  
Sixteenth axis  
2. ** indicates the warning/alarm No.  
3. Requires the MR Configurator.  
4 - 6  
4. STARTUP  
4.4 Test operation  
Before starting actual operation, perform test operation to make sure that the machine operates normally.  
Refer to section 4.2 for the power on and off methods of the servo amplifier.  
POINT  
If necessary, verify controller program by using motorless operation.  
Refer to section 4.5.2 for the motorless operation.  
Test operation of servo motor  
In this step, confirm that the servo amplifier and servo motor operate normally.  
alone in JOG operation of test  
operation mode  
With the servo motor disconnected from the machine, use the test operation  
mode and check whether the servo motor rotates correctly. Refer to section  
4.5 for the test operation mode.  
Test operation of servo motor  
In this step, confirm that the servo motor rotates correctly under the  
alone by commands  
commands from the controller.  
Make sure that the servo motor rotates in the following procedure.  
Give a low speed command at first and check the rotation direction, etc. of the  
servo motor.  
If the servo motor does not operate in the intended direction, check the input  
signal.  
Test operation with servo motor  
In this step, connect the servo motor with the machine and confirm that the  
and machine connected  
machine operates normally under the commands from the command device.  
Make sure that the servo motor rotates in the following procedure.  
Give a low speed command at first and check the operation direction, etc. of  
the machine. If the machine does not operate in the intended direction, check  
the input signal. In the status display, check for any problems of the servo  
motor speed, command pulse frequency, load ratio, etc.  
Then, check automatic operation with the program of the command device.  
4 - 7  
4. STARTUP  
4.5 Test operation mode  
The test operation mode is designed for servo operation confirmation and not for  
machine operation confirmation. Do not use this mode with the machine. Always  
use the servo motor alone.  
CAUTION  
If an operation fault occurred, use the forced stop (EM1) to make a stop.  
POINT  
The content described in this section indicates the environment that servo  
amplifier and personal computer are directly connected.  
By using a personal computer and the MR Configurator, you can execute jog operation, positioning operation,  
DO forced output program operation without connecting the servo system controller.  
4.5.1 Test operation mode in MR Configurator  
(1) Test operation mode  
(a) Jog operation  
Jog operation can be performed without using the servo system controller. Use this operation with the  
forced stop reset. This operation may be used independently of whether the servo is on or off and  
whether the servo system controller is connected or not.  
Exercise control on the jog operation screen of the MR Configurator.  
1) Operation pattern  
Item  
Initial value  
200  
Setting range  
0 to max. speed  
0 to 50000  
Speed [r/min]  
Acceleration/deceleration time constant [ms]  
1000  
2) Operation method  
Operation  
Screen control  
Forward rotation start  
Reverse rotation start  
Stop  
Click the "Forward" button.  
Click the "Reverse" button.  
Click the "Stop" button.  
(b) Positioning operation  
Positioning operation can be performed without using the servo system controller. Use this operation  
with the forced stop reset. This operation may be used independently of whether the servo is on or off  
and whether the servo system controller is connected or not.  
Exercise control on the positioning operation screen of the MR Configurator.  
1) Operation pattern  
Item  
Initial value  
4000  
Setting range  
0 to 99999999  
0 to max. speed  
0 to 50000  
Travel [pulse]  
Speed [r/min]  
200  
Acceleration/deceleration time constant [ms]  
1000  
4 - 8  
4. STARTUP  
2) Operation method  
Operation  
Forward rotation start  
Reverse rotation start  
Pause  
Screen control  
Click the "Forward" button.  
Click the "Reverse" button.  
Click the "Pause" button.  
(c) Program operation  
Positioning operation can be performed in two or more operation patterns combined, without using the  
servo system controller. Use this operation with the forced stop reset. This operation may be used  
independently of whether the servo is on or off and whether the servo system controller is connected or  
not.  
Exercise control on the programmed operation screen of the MR Configurator. For full information, refer  
to the MR Configurator Installation Guide.  
Operation  
Screen control  
Start  
Stop  
Click the "Start" button.  
Click the "Reset" button.  
(d) Output signal (DO) forced output  
Output signals can be switched on/off forcibly independently of the servo status. Use this function for  
output signal wiring check, etc.  
Exercise control on the DO forced output screen of the MR Configurator.  
(2) Operation procedure  
(a) Jog operation, positioning operation, program operation, DO forced output.  
1) Switch power off.  
2) Set SW2-1 to "UP".  
SW2  
Set SW2-1 to "UP"  
UP  
DOWN  
1
2
When SW1 and SW2-1 is set to the axis number and operation is performed by the servo system  
controller, the test operation mode screen is displayed on the personal computer, but no function is  
performed.  
3) Switch servo amplifier power on.  
When initialization is over, the display shows the following screen.  
Decimal point flickers.  
4) Perform operation with the personal computer.  
4 - 9  
4. STARTUP  
4.5.2 Motorless operation in controller  
POINT  
Use motor-less operation which is available by making the servo system  
controller parameter setting.  
Motorless operation is done while connected with the servo system controller.  
(1) Motorless operation  
Without connecting the servo motor, output signals or status displays can be provided in response to the  
servo system controller commands as if the servo motor is actually running. This operation may be used to  
check the servo system controller sequence. Use this operation with the forced stop reset. Use this  
operation with the servo amplifier connected to the servo system controller.  
For stopping the motorless operation, set the selection of motorless operation to [Invalid] in servo parameter  
setting of servo system controller. Motorless operation will be invalid condition after switching on power  
supply next time.  
(a) Load conditions  
Load item  
Condition  
Load torque  
Load inertia moment ratio  
0
Same as servo motor inertia moment  
(b) Alarms  
The following alarms and warning do not occur. However, the other alarms and warnings occur as  
when the servo motor is connected.  
Encoder error 1 (16)  
Converter error (1B) (Note 1)  
Encoder error 2 (20)  
Converter warning (9C) (Note 1)  
Main circuit off warning (E9) (Note 2)  
Absolute position erasure (25)  
Battery cable disconnection warning (92)  
Battery warning (9F)  
Note 1. Alarm and warning for the drive units of 30kW or more. For details, refer to section 13.6.2.  
2. Main circuit off warning (E9) does not occur only when the forced stop of the converter unit is enabled as the cause  
of occurrence with the drive unit of 30kW or more. Main circuit of warning, otherwise, occurs when the cause of  
occurrence with the drive unit of 30kW or more is other than above, or with the servo amplifier of 22 kW or less.  
(2) Operating procedure  
1) Switch off servo amplifier  
2) Set parameter No.PC05 to "1", change test operation mode switch (SW2-1) to normal condition side  
"Down", and then turn on the power supply.  
SW2  
UP  
DOWN  
Set SW2-1 to "DOWN"  
1
2
3) Perform motor-less operation with the personal computer.  
The display shows the following screen.  
Decimal point flickers.  
4 - 10  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
POINT  
When the servo amplifier is connected with the servo system controller, the  
parameters are set to the values of the servo system controller. Switching  
power off, then on makes the values set on the MR Configurator (servo  
configuration software) invalid and the servo system controller values valid.  
Setting may not be made to some parameters and ranges depending on the  
model or version of the servo system controller. For details, refer to the servo  
system controller user's manual.  
In this servo amplifier, the parameters are classified into the following groups on a function basis.  
Parameter group  
Main description  
Basic setting parameters  
Make basic setting with these parameters. Generally, the operation is possible only with these  
parameter settings.  
(No.PA  
Gain/filter parameters  
(No.PB  
Extension setting parameters  
(No.PC  
I/O setting parameters  
(No.PD  
)
Use these parameters when making gain adjustment manually.  
)
When changing settings such as analog monitor output signal or encoder electromagnetic brake  
sequence output, use these parameters.  
)
Use these parameters when changing the I/O signals of the servo amplifier.  
)
Mainly setting the basic setting parameters (No.PA  
of introduction.  
) allows the setting of the basic parameters at the time  
5.1 Basic setting parameters (No.PA  
POINT  
)
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
**: Set the parameter value, switch power off once, and then switch it on  
again.  
Never change parameters for manufacturer setting.  
5 - 1  
5. PARAMETERS  
5.1.1 Parameter list  
No. Symbol  
Name  
Initial value  
0000h  
0000h  
0000h  
0000h  
0
Unit  
PA01  
For manufacturer setting  
PA02 **REG Regenerative option  
PA03 *ABS Absolute position detection system  
PA04 *AOP1 Function selection A-1  
PA05  
PA06  
PA07  
For manufacturer setting  
1
1
PA08 ATU Auto tuning mode  
0001h  
12  
PA09 RSP Auto tuning response  
PA10  
PA11  
PA12  
PA13  
INP  
In-position range  
100  
pulse  
%
For manufacturer setting  
1000.0  
1000.0  
0000h  
0
%
PA14 *POL Rotation direction selection  
PA15 *ENR Encoder output pulses  
4000  
0
pulse/rev  
PA16  
PA17  
PA18  
For manufacturer setting  
0000h  
0000h  
000Bh  
PA19 *BLK Parameter write inhibit  
5 - 2  
5. PARAMETERS  
5.1.2 Parameter write inhibit  
Parameter  
Initial value  
000Bh  
Unit  
Setting range  
No. Symbol  
Name  
PA19 *BLK Parameter write inhibit  
Refer to the text.  
POINT  
When setting the parameter values from the servo system controller, the  
parameter No.PA19 setting need not be changed.  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
In the factory setting, this servo amplifier allows changes to the basic setting parameter, gain/filter parameter  
and extension setting parameter settings. With the setting of parameter No.PA19, write can be disabled to  
prevent accidental changes.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
parameter No.PA19. Operation can be performed for the parameters marked  
.
Basic setting  
parameters  
No.PA  
Gain/filter  
parameters  
No.PB  
Extension setting  
parameters  
No.PC  
I/O setting  
parameters  
No.PD  
Parameter No.PA19  
setting  
Setting operation  
Reference  
Write  
0000h  
000Bh  
Reference  
Write  
(initial value)  
Reference  
Write  
000Ch  
Reference  
100Bh  
Parameter  
Write  
Reference  
Write  
No.PA19 only  
100Ch  
Parameter  
No.PA19 only  
5 - 3  
5. PARAMETERS  
5.1.3 Selection of regenerative option  
Parameter  
Initial value  
0000h  
Unit  
Setting range  
No. Symbol  
Name  
PA02 **REG Regenerative option  
Refer to the text.  
POINT  
This parameter value and switch power off once, then switch it on again to  
make that parameter setting valid.  
Wrong setting may cause the regenerative option to burn.  
If the regenerative option selected is not for use with the servo amplifier,  
parameter error (37) occurs.  
For a drive unit of 30kW or more, always set the parameter to "  
selecting regenerative option is carried out by the converter unit.  
00" since  
Set this parameter when using the regenerative option, brake unit, power regeneration converter, or power  
regeneration common converter.  
Parameter No.PA02  
0 0  
Selection of regenerative option  
00: Regenerative option is not used  
For servo amplifier of 100W, regenerative resistor is not used.  
For servo amplifier of 200 to 7kW, built-in regenerative resistor is used.  
Supplied regenerative resistors or regenerative option is used with  
the servo amplifier of 11k to 22kW.  
For a drive unit of 30kW or more, select regenerative option by the  
converter unit.  
01: FR-BU2-(H) FR-RC-(H) FR-CV-(H)  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50(Cooling fan is required)  
08: MR-RB31  
09: MR-RB51(Cooling fan is required)  
80: MR-RB1H-4  
81: MR-RB3M-4(Cooling fan is required)  
82: MR-RB3G-4(Cooling fan is required)  
83: MR-RB5G-4(Cooling fanis required)  
84: MR-RB34-4(Cooling fanis required)  
85: MR-RB54-4(Cooling fanis required)  
FA: When the supplied regenerative resistor is cooled by the cooling fan to  
increase the ability with the servo amplifier of 11k to 22kW.  
5 - 4  
5. PARAMETERS  
5.1.4 Using absolute position detection system  
Parameter  
Initial value  
0000h  
Unit  
Setting range  
No. Symbol  
Name  
PA03 *ABS Absolute position detection system  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
This parameter cannot be used in the speed control mode.  
Set this parameter when using the absolute position detection system in the position control mode.  
Parameter No.PA03  
0 0 0  
Selection of absolute position detection system (refer to chapter 12)  
0: Used in incremental system  
1: Used in absolute position detection system  
5.1.5 Forced stop input selection  
Parameter  
Initial value  
0000h  
Unit  
Setting range  
No. Symbol  
Name  
PA04 *AOP1 Function selection A-1  
Refer to the text.  
POINT  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
The servo forced stop function is avoidable.  
Parameter No.PA04  
0
0 0  
Selection of servo forced stop  
0: Valid (Forced stop (EM1) is used.)  
1: Invalid (Forced stop (EM1) is not used.)  
When not using the forced stop (EM1) of servo amplifier, set the selection of servo forced stop to Invalid ( 1  
). At this time, the forced stop (EM1) automatically turns on inside the servo amplifier.  
5 - 5  
5. PARAMETERS  
5.1.6 Auto tuning  
Parameter  
Initial value  
Unit  
Setting range  
No. Symbol  
Name  
PA08 ATU Auto tuning mode  
PA09 RSP Auto tuning response  
0001h  
12  
Refer to the text.  
1 to 32  
Make gain adjustment using auto tuning. Refer to section 6.2 for details.  
(1) Auto tuning mode (parameter No.PA08)  
Select the gain adjustment mode.  
Parameter No.PA08  
0 0 0  
Gain adjustment mode setting  
Setting Gain adjustment mode Automatically set parameter No. (Note)  
0
1
2
3
Interpolation mode  
Auto tuning mode 1  
Auto tuning mode 2  
Manual mode  
PB06 PB08 PB09 PB10  
PB06 PB07 PB08 PB09 PB10  
PB07 PB08 PB09 PB10  
Note. The parameters have the following names.  
Parameter No.  
Name  
PB06  
PB07  
PB08  
PB09  
PB10  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
Position loop gain  
Speed loop gain  
Speed integral compensation  
5 - 6  
5. PARAMETERS  
(2) Auto tuning response (parameter No.PA09)  
If the machine hunts or generates large gear sound, decrease the set value. To improve performance, e.g.  
shorten the settling time, increase the set value.  
Guideline for machine  
Guideline for machine  
Setting  
Response  
Setting  
Response  
resonance frequency [Hz]  
resonance frequency [Hz]  
1
2
Low response  
10.0  
11.3  
12.7  
14.3  
16.1  
18.1  
20.4  
23.0  
25.9  
29.2  
32.9  
37.0  
41.7  
47.0  
52.9  
59.6  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Low response  
67.1  
75.6  
3
85.2  
4
95.9  
5
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Middle response  
Middle response  
5.1.7 In-position range  
Parameter  
Name  
Initial value  
100  
Unit  
Setting range  
0 to 65535  
No. Symbol  
PA10  
INP  
In-position range  
pulse  
POINT  
This parameter cannot be used in the speed control mode.  
Set the range, where in position (INP) is output, in the command pulse unit.  
Servo motor droop pulse  
Command pulse  
Droop pulse  
Command pulse  
In-position range [pulse]  
ON  
In position (INP)  
OFF  
5 - 7  
5. PARAMETERS  
5.1.8 Selection of servo motor rotation direction  
Parameter  
Initial value  
0
Unit  
Setting range  
No. Symbol  
Name  
PA14 *POL Rotation direction selection  
0
1
POINT  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
Select servo motor rotation direction relative.  
Servo motor rotation direction  
Parameter No.PA14  
setting  
When positioning address  
When positioning address  
decreases  
increases  
CCW  
0
1
CW  
CW  
CCW  
Forward rotation (CCW)  
Reverse rotation (CW)  
5.1.9 Encoder output pulse  
Parameter  
Initial value  
4000  
Unit  
Setting range  
1 to 65535  
No. Symbol  
Name  
PA15 *ENR Encoder output pulse  
pulse/rev  
POINT  
This parameter is made valid when power is switched off, then on after  
setting, or when the controller reset has been performed.  
Used to set the encoder pulses (A-phase, B-phase) output by the servo amplifier.  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use parameter No.PC03 to choose the output pulse setting or output division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater than the preset number of pulses.  
The maximum output frequency is 4.6Mpps (after multiplication by 4). Use this parameter within this range.  
5 - 8  
5. PARAMETERS  
(1) For output pulse designation  
Set "  
0
" (initial value) in parameter No.PC03.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
For instance, set "5600" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated  
below.  
5600  
4
A B-phase output pulses  
1400[pulse]  
(2) For output division ratio setting  
Set " " in parameter No.PC03.  
1
The number of pulses per servo motor revolution is divided by the set value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
For instance, set "8" to Parameter No.PA15, the actually output A/B-phase pulses are as indicated below.  
262144 1  
A B-phase output pulses  
8192[pulse]  
8
4
5 - 9  
5. PARAMETERS  
5.2 Gain/filter parameters (No.PB  
POINT  
)
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
5.2.1 Parameter list  
No. Symbol  
Name  
Initial value  
0000h  
Unit  
PB01 FILT Adaptive tuning mode (Adaptive filter  
)
Vibration suppression control tuning mode  
(advanced vibration suppression control)  
For manufacturer setting  
PB02 VRFT  
0000h  
PB03  
0
0
PB04  
PB05  
FFC Feed forward gain  
%
For manufacturer setting  
500  
Multiplier  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
7.0  
(
1)  
PB07 PG1 Model loop gain  
PB08 PG2 Position loop gain  
PB09 VG2 Speed loop gain  
24  
37  
rad/s  
rad/s  
rad/s  
ms  
823  
PB10  
PB11 VDC Speed differential compensation  
PB12 For manufacturer setting  
VIC  
Speed integral compensation  
33.7  
980  
0
PB13 NH1 Machine resonance suppression filter 1  
PB14 NHQ1 Notch shape selection 1  
4500  
0000h  
4500  
0000h  
Hz  
Hz  
PB15 NH2 Machine resonance suppression filter 2  
PB16 NHQ2 Notch shape selection 2  
PB17  
PB18  
Automatic setting parameter  
LPF Low-pass filter setting  
3141  
100.0  
100.0  
0.00  
rad/s  
Hz  
PB19 VRF1 Vibration suppression control vibration frequency setting  
PB20 VRF2 Vibration suppression control resonance frequency setting  
Hz  
PB21  
PB22  
For manufacturer setting  
0.00  
PB23 VFBF Low-pass filter selection  
0000h  
0000h  
0000h  
0000h  
10  
PB24 *MVS Slight vibration suppression control selection  
PB25  
For manufacturer setting  
PB26 *CDP Gain changing selection  
PB27 CDL Gain changing condition  
PB28 CDT Gain changing time constant  
1
ms  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
Multiplier  
7.0  
(
1)  
PB30 PG2B Gain changing position loop gain  
37  
823  
rad/s  
rad/s  
ms  
PB31 VG2B Gain changing speed loop gain  
PB32 VICB Gain changing speed integral compensation  
33.7  
100.0  
100.0  
0.00  
0.00  
100  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
Hz  
Hz  
PB35  
PB36  
PB37  
PB38  
PB39  
For manufacturer setting  
0.0  
0.0  
5 - 10  
5. PARAMETERS  
No. Symbol  
Name  
Initial value  
0.0  
Unit  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
For manufacturer setting  
1125  
1125  
0004h  
0.0  
0000h  
5.2.2 Detail list  
Initial  
Setting  
range  
No. Symbol  
Name and function  
Unit  
value  
PB01 FILT Adaptive tuning mode (adaptive filter  
)
0000h  
Select the setting method for filter tuning. Setting this parameter to "  
1" (filter  
tuning mode 1) automatically changes the machine resonance suppression filter 1  
(parameter No.PB13) and notch shape selection (parameter No.PB14).  
Machine resonance point  
Frequency  
Frequency  
Notch frequency  
0 0 0  
Filter tuning mode selection  
Setting Filter adjustment mode Automatically set parameter  
0
1
2
Filter OFF  
(Note)  
Parameter No.PB13  
Parameter No.PB14  
Filter tuning mode  
Manual mode  
Note. Parameter No.PB13 and PB14 are fixed to the initial values.  
When this parameter is set to "  
1", the tuning is completed after positioning is  
done the predetermined number or times for the predetermined period of time, and the  
setting changes to "  
changes to "  
2". When the filter tuning is not necessary, the setting  
0". When this parameter is set to " 0", the initial values are set  
to the machine resonance suppression filter 1 and notch shape selection. However, this  
does not occur when the servo off.  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PB02 VRFT Vibration suppression control tuning mode (advanced vibration suppression control)  
This parameter cannot be used in the speed control mode.  
0000h  
The vibration suppression is valid when the parameter No.PA08 (auto tuning) setting is  
"
2" or "  
3". When PA08 is "  
1", vibration suppression is always  
invalid.  
Select the setting method for vibration suppression control tuning. Setting this parameter  
to " 1" (vibration suppression control tuning mode) automatically changes the  
vibration suppression control vibration frequency (parameter No.PB19) and vibration  
suppression control resonance frequency (parameter No.PB20) after positioning is done  
the predetermined number of times.  
Droop pulse  
Command  
Droop pulse  
Command  
Automatic  
adjustment  
Machine end  
position  
Machine end  
position  
0 0 0  
Vibration suppression control tuning mode  
Vibration suppression  
control tuning mode  
Automatically set  
parameter  
Setting  
0
Vibration suppression  
control OFF  
(Note)  
Vibration suppression  
control tuning mode  
(Advanced vibration  
suppression control)  
Manual mode  
Parameter No.PB19  
Parameter No.PB20  
1
2
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
When this parameter is set to "  
1", the tuning is completed after positioning is  
done the predetermined number or times for the predetermined period of time, and the  
setting changes to "  
necessary, the setting changes to "  
the initial values are set to the vibration suppression control vibration frequency and  
2". When the vibration suppression control tuning is not  
0". When this parameter is set to "  
0",  
vibration suppression control resonance frequency. However, this does not occur when  
the servo off.  
PB03  
For manufacturer setting  
Do not change this value by any means.  
0
0
PB04 FFC Feed forward gain  
This parameter cannot be used in the speed control mode.  
%
0
to  
Set the feed forward gain. When the setting is 100%, the droop pulses during operation  
at constant speed are nearly zero. However, sudden acceleration/deceleration will  
increase the overshoot. As a guideline, when the feed forward gain setting is 100%, set  
1s or more as the acceleration/deceleration time constant up to the rated speed.  
For manufacturer setting  
100  
PB05  
500  
Do not change this value by any means.  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PB06 GD2 Ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of the load inertia moment to the servo motor shaft inertia moment.  
When auto tuning mode 1 and interpolation mode is selected, the result of auto tuning is  
automatically used.  
7.0  
Multiplier  
0
to  
(
1)  
300.0  
(Refer to section 6.1.1)  
In this case, it varies between 0 and 100.0.  
When parameter No.PA08 is set to "  
manually.  
2" or "  
3", this parameter can be set  
PB07 PG1 Model loop gain  
Set the response gain up to the target position.  
24  
37  
rad/s  
rad/s  
1
to  
Increase the gain to improve track ability in response to the command.  
2000  
When auto turning mode 1,2 is selected, the result of auto turning is automatically used.  
When parameter No.PA08 is set to "  
manually.  
1" or "  
3", this parameter can be set  
PB08 PG2 Position loop gain  
1
to  
This parameter cannot be used in the speed control mode.  
Used to set the gain of the position loop.  
1000  
Set this parameter to increase the position response to level load disturbance. Higher  
setting increases the response level but is liable to generate vibration and/or noise.  
When auto tuning mode 1,2 and interpolation mode is selected, the result of auto tuning  
is automatically used.  
When parameter No.PA08 is set to "  
PB09 VG2 Speed loop gain  
3", this parameter can be set manually.  
823  
33.7  
980  
rad/s  
20  
to  
Set this parameter when vibration occurs on machines of low rigidity or large backlash.  
Higher setting increases the response level but is liable to generate vibration and/or  
noise.  
50000  
When auto tuning mode 1 2, manual mode and interpolation mode is selected, the  
result of auto tuning is automatically used.  
When parameter No.PA08 is set to "  
Speed integral compensation  
3", this parameter can be set manually.  
PB10 VIC  
ms  
0.1  
to  
Used to set the integral time constant of the speed loop.  
Lower setting increases the response level but is liable to generate vibration and/or  
noise.  
1000.0  
When auto tuning mode 1 2 and interpolation mode is selected, the result of auto  
tuning is automatically used.  
When parameter No.PA08 is set to "  
3", this parameter can be set manually.  
PB11 VDC Speed differential compensation  
Used to set the differential compensation.  
0
to  
When parameter No.PB24 is set to "  
3
", this parameter is made valid. When  
1000  
parameter No.PA08 is set to "  
controller.  
0
", this parameter is made valid by instructions of  
PB12  
For manufacturer setting  
0
Do not change this value by any means.  
PB13 NH1 Machine resonance suppression filter 1  
Set the notch frequency of the machine resonance suppression filter 1.  
4500  
Hz  
100  
to  
Setting parameter No.PB01 (filter tuning mode 1) to "  
1" automatically changes  
4500  
this parameter.  
When the parameter No.PB01 setting is "  
ignored.  
0", the setting of this parameter is  
5 - 13  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PB14 NHQ1 Notch shape selection 1  
0000h  
Refer to  
Name  
Used to selection the machine resonance suppression filter 1.  
and  
0
0
function  
column.  
Notch depth selection  
Setting value Depth  
Gain  
40dB  
14dB  
8dB  
0
1
2
3
Deep  
to  
Shallow  
4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
Setting parameter No.PB01 (filter tuning mode 1) to "  
this parameter.  
1" automatically changes  
When the parameter No.PB01 setting is "  
ignored.  
0", the setting of this parameter is  
100  
to  
PB15 NH2 Machine resonance suppression filter 2  
4500  
Hz  
Set the notch frequency of the machine resonance suppression filter 2.  
4500  
Set parameter No.PB16 (notch shape selection 2) to "  
valid.  
1" to make this parameter  
PB16 NHQ2 Notch shape selection 2  
0000h  
Refer to  
Name  
Select the shape of the machine resonance suppression filter 2.  
and  
0
function  
column.  
Machine resonance suppression filter 2 selection  
0: Invalid  
1: Valid  
Notch depth selection  
Setting value Depth  
Gain  
40dB  
14dB  
8dB  
0
1
2
3
Deep  
to  
Shallow  
4dB  
Notch width  
Setting value Width  
0
1
2
3
Standard  
2
3
4
5
to  
Wide  
PB17  
Automatic setting parameter  
The value of this parameter is set according to a set value of parameter No.PB06 (Ratio  
of load inertia moment to servo motor inertia moment).  
5 - 14  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PB18 LPF Low-pass filter setting  
Set the low-pass filter.  
3141  
rad/s  
100  
to  
Setting parameter No.PB23 (low-pass filter selection) to "  
changes this parameter.  
0
" automatically  
18000  
When parameter No.PB23 is set to "  
1
", this parameter can be set manually.  
PB19 VRF1 Vibration suppression control vibration frequency setting  
This parameter cannot be used in the speed control mode.  
100.0  
Hz  
0.1  
to  
Set the vibration frequency for vibration suppression control to suppress low-frequency  
machine vibration, such as enclosure vibration. (Refer to section 7.4.(4))  
100.0  
Setting parameter No.PB02 (vibration suppression control tuning mode) to "  
automatically changes this parameter. When parameter No.PB02 is set to "  
this parameter can be set manually.  
1"  
2",  
PB20 VRF2 Vibration suppression control resonance frequency setting  
This parameter cannot be used in the speed control mode.  
100.0  
Hz  
0.1  
to  
Set the resonance frequency for vibration suppression control to suppress low-  
100.0  
frequency machine vibration, such as enclosure vibration. (Refer to section 7.4.(4))  
Setting parameter No.PB02 (vibration suppression control tuning mode) to "  
1"  
2",  
automatically changes this parameter. When parameter No.PB02 is set to "  
this parameter can be set manually.  
PB21  
PB22  
For manufacturer setting  
0.00  
0.00  
Do not change this value by any means.  
PB23 VFBF Low-pass filter selection  
Select the low-pass filter.  
0000h  
Refer to  
Name  
and  
0 0  
0
function  
column.  
Low-pass filter selection  
0: Automatic setting  
1: Manual setting (parameter No.PB18 setting)  
When automatic setting has been selected, select the filter that has the band width  
VG2 10  
close to the one calculated with  
[rad/s]  
1 + GD2  
PB24 *MVS Slight vibration suppression control selection  
Select the slight vibration suppression control and PI-PID change.  
When parameter No.PA08 (auto tuning mode) is set to " 3", this parameter is  
0000h  
Refer to  
Name  
and  
made valid. (Slight vibration suppression control cannot be used in the speed control  
mode.)  
function  
column.  
0 0  
Slight vibration suppression control selection  
0: Invalid  
1: Valid  
PI-PID control switch over selection  
0: PI control is valid. (Switching to PID  
control is possible with instructions of  
controller.)  
3: PID control is always valid.  
PB25  
For manufacturer setting  
0000h  
Do not change this value by any means.  
5 - 15  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PB26 *CDP Gain changing selection  
0000h  
Refer to  
Name  
Select the gain changing condition. (Refer to section 7.6.)  
and  
0 0  
function  
column.  
Gain changing selection  
Under any of the following conditions, the gains  
change on the basis of the parameter No.PB29 to  
PB32 settings.  
0: Invalid  
1: Control instructions from a controller.  
2: Command frequency (Parameter No.PB27  
setting)  
3: Droop pulse value (Parameter No.PB27 setting)  
4: Servo motor speed (Parameter No.PB27 setting)  
Gain changing condition  
0: Valid at more than condition (For control  
instructions from a controller, valid with ON)  
1: Valid at less than condition (For control  
instructions from a controller, valid with OFF)  
PB27 CDL Gain changing condition  
10  
kpps  
pulse  
r/min  
0
to  
Used to set the value of gain changing condition (command frequency, droop pulses,  
servo motor speed) selected in parameter No.PB26.The set value unit changes with the  
changing condition item. (Refer to section 7.6.)  
9999  
PB28 CDT Gain changing time constant  
1
ms  
0
to  
Used to set the time constant at which the gains will change in response to the  
conditions set in parameters No.PB26 and PB27. (Refer to section 7.6.)  
PB29 GD2B Gain changing ratio of load inertia moment to servo motor inertia moment  
Used to set the ratio of load inertia moment to servo motor inertia moment when gain  
changing is valid.  
100  
0
7.0  
Multiplier  
(
1)  
to  
300.0  
This parameter is made valid when the auto tuning is invalid (parameter No.PA08:  
3).  
PB30 PG2B Gain changing position loop gain  
37  
rad/s  
1
to  
This parameter cannot be used in the speed control mode.  
Set the position loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.PA08:  
3).  
2000  
PB31 VG2B Gain changing speed loop gain  
823  
33.7  
rad/s  
ms  
20  
to  
Set the speed loop gain when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.PA08:  
3).  
20000  
PB32 VICB Gain changing speed integral compensation  
Set the speed integral compensation when the gain changing is valid.  
This parameter is made valid when the auto tuning is invalid (parameter No.PA08:  
3).  
0.1  
to  
5000.0  
PB33 VRF1B Gain changing vibration suppression control vibration frequency setting  
This parameter cannot be used in the speed control mode.  
Set the vibration frequency for vibration suppression control when the gain changing is  
100.0  
Hz  
0.1  
to  
100.0  
valid. This parameter is made valid when the parameter No.PB02 setting is "  
and the parameter No.PB26 setting is " 1".  
2"  
When using the vibration suppression control gain changing, always execute the  
changing after the servo motor has stopped.  
5 - 16  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
Hz  
PB34 VRF2B Gain changing vibration suppression control resonance frequency setting  
This parameter cannot be used in the speed control mode.  
100.0  
0.1  
to  
Set the resonance frequency for vibration suppression control when the gain changing is  
100.0  
valid. This parameter is made valid when the parameter No.PB02 setting is "  
and the parameter No.PB26 setting is " 1".  
2"  
When using the vibration suppression control gain changing, always execute the  
changing after the servo motor has stopped.  
For manufacturer setting  
PB35  
PB36  
PB37  
PB38  
PB39  
PB40  
PB41  
PB42  
PB43  
PB44  
PB45  
0.00  
0.00  
100  
Do not change this value by any means.  
0.0  
0.0  
0.0  
1125  
1125  
0004h  
0.0  
0000h  
5 - 17  
5. PARAMETERS  
5.3 Extension setting parameters (No.PC  
POINT  
)
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
**: Set the parameter value, switch power off once, and then switch it on  
again.  
5.3.1 Parameter list  
No. Symbol  
Name  
Initial value  
Unit  
rev  
ms  
PC01 ERZ Error excessive alarm level  
PC02 MBR Electromagnetic brake sequence output  
PC03 *ENRS Encoder output pulses selection  
PC04 **COP1 Function selection C-1  
PC05 **COP2 Function selection C-2  
PC06 *COP3 Function selection C-3  
PC07 ZSP Zero speed  
3
0
0000h  
0000h  
0000h  
0000h  
50  
r/min  
PC08  
For manufacturer setting  
0
PC09 MOD1 Analog monitor 1 output  
PC10 MOD2 Analog monitor 2 output  
PC11 MO1 Analog monitor 1 offset  
PC12 MO2 Analog monitor 2 offset  
0000h  
0001h  
0
mV  
mV  
0
PC13 MOSDL Analog monitor feedback position output standard data Low  
PC14 MOSDH Analog monitor feedback position output standard data High  
0
pulse  
10000  
pulse  
0
PC15  
PC16  
For manufacturer setting  
0
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
PC17 **COP4 Function selection C-4  
PC18  
PC19  
PC20  
For manufacturer setting  
PC21 *BPS Alarm history clear  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
PC32  
For manufacturer setting  
5 - 18  
5. PARAMETERS  
5.3.2 List of details  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PC01 ERZ Error excessive alarm level  
3
rev  
1
to  
(Note 2) This parameter cannot be used in the speed control mode.  
Set error excessive alarm level with rotation amount of servo motor.  
Note 1. Setting can be changed in parameter No.PC06.  
(Note 1)  
200  
2. For a servo amplifier with software version of B2 or later, reactivating the power  
supply to enable the setting value is not necessary. For a servo amplifier with  
software version of earlier than B2, reactivating the power supply is required to  
enable the setting value.  
PC02 MBR Electromagnetic brake sequence output  
0
ms  
0
Used to set the delay time (Tb) between electronic brake interlock (MBR) and the base  
drive circuit is shut-off.  
to  
1000  
PC03 *ENRS Encoder output pulse selection  
0000h  
Refer to  
Name  
and  
Use to select the, encoder output pulse direction and encoder output pulse setting.  
0 0  
function  
column.  
Encoder output pulse phase changing  
Changes the phases of A, B-phase encoder pulses output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A-phase  
B-phase  
A-phase  
B-phase  
0
1
A-phase  
B-phase  
A-phase  
B-phase  
Encoder output pulse setting selection (refer to parameter No.PA15)  
0: Output pulse designation  
1: Division ratio setting  
PC04 **COP1 Function selection C-1  
Select the encoder cable communication system selection.  
0000h  
Refer to  
Name  
and  
0 0 0  
function  
column.  
Encoder cable communication system selection  
0: Two-wire type  
1: Four-wire type  
The following encoder cables are of 4-wire type.  
MR-EKCBL30M-L  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
The other encoder cables are all of 2-wire type.  
Incorrect setting will result in an encoder alarm 1 (16) or encoder  
alarm 2 (20).  
PC05 **COP2 Function selection C-2  
0000h  
Refer to  
Name  
Motor-less operation select.  
and  
0 0 0  
function  
column.  
Motor-less operation select.  
0: Valid  
1: Invalid  
5 - 19  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PC06 *COP3  
0000h  
Refer to  
Name  
and  
Function selection C-3  
Select the error excessive alarm level setting for parameter No.PC01.  
function  
column.  
0 0 0  
Error excessive alarm level setting selection  
0: 1  
[rev]unit  
1: 0.1 [rev]unit  
2: 0.01 [rev]unit  
3: 0.001[rev]unit  
This parameter is available to software version B1 or later.  
PC07 ZSP Zero speed  
Used to set the output range of the zero speed (ZSP).  
50  
r/min  
0
to  
Zero speed signal detection has hysteresis width of 20r/min (Refer to section 3.5 (2) (b))  
For manufacturer setting  
10000  
PC08  
0
Do not change this value by any means.  
Analog monitor 1 output  
Used to selection the signal provided to the analog monitor 1 (MO1) output. (Refer to  
section 5.3.3)  
PC09 MOD1  
0000h  
Refer to  
Name  
and  
function  
column.  
0 0 0  
Analog monitor 1 (MO1) output selection  
Setting  
Item  
Servo motor speed ( 8V/max. speed)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
Torque ( 8V/max. torque) (Note 2)  
Servo motor speed (+8V/max. speed)  
Torque (+8V/max. torque) (Note 2)  
Current command ( 8V/max. current command)  
Speed command ( 8V/max. current command)  
Droop pulses ( 10V/100 pulses) (Note 1)  
Droop pulses ( 10V/1000 pulses) (Note 1)  
Droop pulses ( 10V/10000 pulses) (Note 1)  
Droop pulses ( 10V/100000 pulses) (Note 1)  
Feedback position ( 10V/1 Mpulses) (Note 1, 3)  
Feedback position ( 10V/10 Mpulses) (Note 1, 3)  
Feedback position ( 10V/100 Mpulses) (Note 1, 3)  
Bus voltage ( 8V/400V)(Note 4)  
Note 1. Encoder pulse unit.  
2. 8V is outputted at the maximum torque.  
3. It can be used by the absolute position detection system.  
4. For 400V class servo amplifier, the bus voltage becomes 8V/800V.  
Analog monitor 2 output  
Used to selection the signal provided to the analog monitor 2 (MO2) output. (Refer to  
section 5.3.3)  
PC10 MOD2  
0001h  
Refer to  
Name  
and  
function  
column.  
0 0 0  
Select the analog monitor 2 (MO2) output  
The settings are the same as those of parameter No.PC09.  
PC11 MO1 Analog monitor 1 offset  
Used to set the offset voltage of the analog monitor 1 (MO1) output.  
0
mV  
-999  
to  
999  
5 - 20  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
mV  
PC12 MO2  
Analog monitor 2 offset  
0
-999  
to  
Used to set the offset voltage of the analog monitor 2 (MO2) output.  
999  
-9999  
to  
PC13 MOSDL Analog monitor feedback position output standard data Low  
0
pulse  
Used to set the standard position of feedback output with analog monitor 1 (M01) or 2  
(M02).  
9999  
For this parameter, the lower-order four digits of standard position in decimal numbers  
are set.  
PC14 MOSDH Analog monitor feedback position output standard data High  
0
10000  
pulse  
-9999  
to  
Used to set the standard position of feedback output with analog monitor 1 (M01) or 2  
(M02).  
9999  
For this parameter, the higher-order four digits of standard position in decimal numbers  
are set.  
PC15  
PC16  
For manufacturer setting  
0
Do not change this value by any means.  
0000h  
0000h  
PC17 **COP4 Function Selection C-4  
Home position setting condition in the absolute position detection system can be  
Refer to  
Name  
selected.  
and  
function  
column.  
0 0 0  
Selection of home position setting condition  
0: Need to pass motor Z-phase after the power  
supply is switched on.  
1: Not need to pass motor Z-phase after the power  
supply is switched on.  
PC18  
PC19  
PC20  
For manufacturer setting  
0000h  
0000h  
0000h  
0000h  
Do not change this value by any means.  
PC21 *BPS Alarm history clear  
Used to clear the alarm history.  
Refer to  
Name  
and  
0 0 0  
function  
column.  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid, the alarm  
history is cleared at next power-on.  
After the alarm history is cleared, the setting is  
automatically made invalid (reset to 0).  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
PC32  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
For manufacturer setting  
Do not change this value by any means.  
5 - 21  
5. PARAMETERS  
5.3.3 Analog monitor  
The servo status can be output to two channels in terms of voltage. The servo status can be monitored using  
an ammeter.  
(1) Setting  
Change the following digits of parameter No.PC09, PC10.  
Parameter No.PC09  
0 0 0  
Analog monitor (MO1) output selection  
(Signal output to across MO1-LG)  
Parameter No.PC10  
0 0 0  
Analog monitor (MO2) output selection  
(Signal output to across MO2-LG)  
Parameters No.PC11 and PC12 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
Parameter No.  
PC11  
Description  
Setting range [mV]  
999 to 999  
Used to set the offset voltage for the analog monitor 1 (MO1).  
Used to set the offset voltage for the analog monitor 2 (MO2).  
PC12  
(2) Set content  
The servo amplifier is factory-set to output the servo motor speed to analog monitor 1 (MO1) and the torque  
to analog monitor (MO2). The setting can be changed as listed below by changing the parameter No.PC14  
and PC12 value.  
Refer to (3) for the measurement point.  
Setting  
0
Output item  
Description  
Setting  
1
Output item  
Description  
Driving in CCW  
direction  
Servo motor speed  
Torque (Note 3)  
CCW direction  
8[V]  
8[V]  
Max. speed  
Max. torque  
0
0
Max. speed  
Max. torque  
-8[V]  
-8[V]  
Driving in CW  
direction  
CW direction  
2
4
Servo motor speed  
Current command  
3
5
Torque (Note 3)  
Driving in CW  
direction  
Driving in CCW  
direction  
8[V]  
8[V]  
CW direction  
CCW direction  
Max. speed  
0
Max. speed  
Max. torque  
Max. speed  
0
Max. torque  
Speed command  
CCW direction  
8[V]  
CCW direction  
8[V]  
Max. current command  
(Max. torque command)  
0
0
Max. speed  
Max. current command  
(Max. torque command)  
-8[V]  
CW direction  
-8[V]  
CW direction  
5 - 22  
5. PARAMETERS  
Setting  
6
Output item  
Description  
CCW direction  
Setting  
7
Output item  
Description  
CCW direction  
Droop pulses (Note 1)  
( 10V/100 pulses)  
Droop pulses (Note 1)  
( 10V/1000 pulses)  
10[V]  
10[V]  
100[pulse]  
1000[pulse]  
0
0
100[pulse]  
1000[pulse]  
-10[V]  
-10[V]  
CW direction  
10[V]  
CW direction  
10[V]  
8
A
C
Droop pulses  
(Note 1)  
CCW direction  
9
B
D
Droop pulses  
(Note 1)  
CCW direction  
( 10V/10000 pulses)  
( 10V/100000 pulses)  
10000[pulse]  
100000[pulse]  
0
0
10000[pulse]  
100000[pulse]  
-10[V]  
-10[V]  
CW direction  
10[V]  
CW direction  
10[V]  
Feedback position  
(Note 1,2)  
CCW direction  
Feedback position  
(Note 1,2)  
CCW direction  
( 10V/1 Mpulses)  
( 10V/10 Mpulses)  
1M[pulse]  
10M[pulse]  
0
0
1M[pulse]  
10M[pulse]  
-10[V]  
-10[V]  
CW direction  
10[V]  
CW direction  
8[V]  
Feedback position  
(Note 1,2)  
CCW direction  
Bus voltage (Note 4)  
( 10V/100 Mpulses)  
100M[pulse]  
0
100M[pulse]  
0
400[V]  
-10[V]  
CW direction  
Note 1. Encoder pulse unit.  
2. Available in position control mode  
3. Outputs 8V at the maximum torque.  
4. For 400V class servo amplifier, the bus voltage becomes 8V/800V.  
5 - 23  
5. PARAMETERS  
(3) Analog monitor block diagram  
Speed  
command  
Current  
command  
Droop pulse  
Bus voltage  
Speed  
command  
Position  
command  
received  
from a  
Differ-  
ential  
Current encoder  
M
Position  
control  
Current  
control  
Speed  
control  
Servo Motor  
Encoder  
PWM  
controller  
Current feedback  
Differ-  
ential  
Position feedback  
data returned to  
a controller  
Position feedback  
Feedback position  
standard position (Note)  
Servo Motor  
speed  
Torque  
Feedback  
position  
Note. The feedback position is output based on the position data passed between servo system controller and servo amplifier. The  
parameter number No.PC13/PC14 can set up the standard position of feedback position that is output to analog monitor in order  
to adjust the output range of feedback position. The setting range is between 99999999 and 99999999 pulses.  
Standard position of feedback position = Parameter No.PC14 setting value 10000 + Parameter No.PC13 setting value  
Parameter No.  
PC13  
Description  
Setting range  
Sets the lower-order four digits of the standard position  
of feedback position  
9999 to 9999 [pulse]  
Sets the higher-order four digits of the standard position  
of feedback position  
9999 to 9999 [10000pulses]  
PC14  
5.3.4 Alarm history clear  
The servo amplifier stores one current alarm and five past alarms from when its power is switched on first. To  
control alarms which will occur during operation, clear the alarm history using parameter No.PC21 before  
starting operation.  
Clearing the alarm history automatically returns to "  
0 ".  
After setting, this parameter is made valid by switch power from OFF to ON.  
Parameter No.PC21  
0
0 0  
Alarm history clear  
0: Invalid (not cleared)  
1: Valid (cleared)  
5 - 24  
5. PARAMETERS  
5.4 I/O setting parameters (No.PD  
POINT  
)
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
5.4.1 Parameter list  
No. Symbol  
Name  
Initial value  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0005h  
0004h  
0003h  
0000h  
0004h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Unit  
PD01  
For manufacturer setting  
PD02  
PD03  
PD04  
PD05  
PD06  
PD07 *DO1 Output signal device selection 1 (CN3-13)  
PD08 *DO2 Output signal device selection 2 (CN3-9)  
PD09 *DO3 Output signal device selection 3 (CN3-15)  
PD10  
PD11  
PD12  
PD13  
For manufacturer setting  
PD14 *DOP3 Function selection D-3  
For manufacturer setting  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
PD31  
PD32  
5 - 25  
5. PARAMETERS  
5.4.2 List of details  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD01  
PD02  
PD03  
PD04  
PD05  
PD06  
For manufacturer setting  
Do not change this value by any means.  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
PD07 *DO1 Output signal device selection 1 (CN3-13)  
Any input signal can be assigned to the CN3-13 pin.  
0005h  
Refer to  
Name  
and  
0 0  
function  
column.  
Select the output device of the CN3-13 pin.  
The devices that can be assigned in each control mode are those that have the symbols  
indicated in the following table.  
Setting  
00  
Device  
Setting  
0A  
Device  
Always OFF  
For manufacturer  
setting (Note 3)  
RD  
Always OFF (Note 2)  
For manufacturer  
setting (Note 3)  
ZSP  
For manufacturer  
setting (Note 3)  
For manufacturer  
setting (Note 3)  
CDPS  
For manufacturer  
setting (Note 3)  
ABSV (Note 1)  
For manufacturer  
setting (Note 3)  
For manufacturer  
setting (Note 3)  
01  
02  
03  
0B  
0C  
0D  
ALM  
04  
05  
06  
07  
08  
INP (Note 1)  
MBR  
0E  
0F  
DB  
10  
TLC  
11  
WNG  
12 to 1F  
09  
BWNG  
20 to 3F  
Note 1. It becomes always OFF in speed control mode.  
2. It becomes SA in speed control mode.  
3. For manufacturer setting  
Never change this setting.  
Output signal device selection 2 (CN3-9)  
PD08 *DO2  
0004h  
Refer to  
Name  
Any input signal can be assigned to the CN3-9 pin.  
The devices that can be assigned and the setting method are the same as in parameter  
No.PD07.  
and  
function  
column.  
0 0 0  
Select the output device of the CN3-9 pin.  
PD09 *DO3 Output signal device selection 3 (CN3-15)  
Any input signal can be assigned to the CN3-15 pin.  
The devices that can be assigned and the setting method are the same as in parameter  
No.PD07.  
0003h  
Refer to  
Name  
and  
function  
column.  
0 0 0  
Select the output device of the CN3-15 pin.  
5 - 26  
5. PARAMETERS  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PD10  
PD11  
PD12  
PD13  
For manufacturer setting  
Do not change this value by any means.  
0000h  
0004h  
0000h  
0000h  
0000h  
PD14 *DOP3 Function selection D-3  
Set the ALM output signal at warning occurrence.  
Refer to  
Name  
and  
0 0  
0
function  
column.  
Selection of output device at warning occurrence  
Select the warning (WNG) and trouble (ALM) output status  
at warning occurrence.  
Output of Servo amplifier  
Setting  
0
(Note) Device status  
Warning occurrence  
Warning occurrence  
1
0
1
0
WNG  
ALM  
1
0
1
0
WNG  
ALM  
1
Note. 0: off  
1: on  
PD15  
PD16  
PD17  
PD18  
PD19  
PD20  
PD21  
PD22  
PD23  
PD24  
PD25  
PD26  
PD27  
PD28  
PD29  
PD30  
PD31  
PD32  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
For manufacturer setting  
Do not change this value by any means.  
5 - 27  
5. PARAMETERS  
MEMO  
5 - 28  
6. GENERAL GAIN ADJUSTMENT  
6. GENERAL GAIN ADJUSTMENT  
6.1 Different adjustment methods  
6.1.1 Adjustment on a single servo amplifier  
The gain adjustment in this section can be made on a single servo amplifier. For gain adjustment, first execute  
auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2 and manual mode in  
this order.  
(1) Gain adjustment mode explanation  
Parameter  
Estimation of load inertia  
moment ratio  
Automatically set  
parameters  
Gain adjustment mode  
Manually set parameters  
No.PA08 setting  
Auto tuning mode 1  
(initial value)  
0001  
Always estimated  
GD2 (parameter No.PB06)  
PG2 (parameter No.PB08)  
PG1 (parameter No.PB07)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
PG2 (parameter No.PB08)  
PG1 (parameter No.PB07)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
Response level setting of  
parameter No.2  
Auto tuning mode 2  
Manual mode  
0002  
0003  
0000  
Fixed to parameter No.  
PB06 value  
GD2 (parameter No.PB06)  
Response level setting of  
parameter No.PA09  
PG1 (parameter No.PB07)  
GD2 (parameter No.PB06)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
PG1 (parameter No.PB07)  
Interpolation mode  
Always estimated  
GD2 (parameter No.PB06)  
PG2 (parameter No.PB08)  
VG2 (parameter No.PB09)  
VIC (parameter No.PB10)  
6 - 1  
6. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Interpolation  
made for 2 or more  
axes?  
Used when you want to  
match the position gain (PG1)  
between 2 or more axes.  
Normally not used for other  
purposes.  
Interpolation mode  
Operation  
No  
Allows adjustment by merely  
changing the response level  
setting.  
Auto tuning mode 1  
Operation  
First use this mode to make  
adjustment.  
Yes  
No  
OK?  
OK?  
Yes  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
Manual mode  
END  
6.1.2 Adjustment using MR Configurator  
This section gives the functions and adjustment that may be performed by using the servo amplifier with the  
MR Configurator which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor coupled,  
the characteristic of the mechanical system  
can be measured by giving a random  
vibration command from the personal  
computer to the servo and measuring the  
machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine resonance  
suppression filter.  
You can automatically set the optimum gains in response to  
the machine characteristic. This simple adjustment is  
suitable for a machine which has large machine resonance  
and does not require much settling time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
You can automatically set gains which make positioning  
settling time shortest.  
changing gains, and automatically searches  
for gains which make settling time shortest.  
Response at positioning settling of a  
machine can be simulated from machine  
analyzer results on personal computer.  
Machine simulation  
You can optimize gain adjustment and command pattern on  
personal computer.  
6 - 2  
6. GENERAL GAIN ADJUSTMENT  
6.2 Auto tuning  
6.2.1 Auto tuning mode  
The servo amplifier has a real-time auto tuning function which estimates the machine characteristic (load inertia  
moment ratio) in real time and automatically sets the optimum gains according to that value. This function  
permits ease of gain adjustment of the servo amplifier.  
(1) Auto tuning mode 1  
The servo amplifier is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following parameters are automatically adjusted in the auto tuning mode 1.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor inertia moment is 100 times or  
less.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1. Since  
the load inertia moment ratio is not estimated in this mode, set the value of a correct load inertia moment  
ratio (parameter No.PB06).  
The following parameters are automatically adjusted in the auto tuning mode 2.  
Parameter No.  
PB07  
Abbreviation  
PG1  
Name  
Model loop gain  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
6 - 3  
6. GENERAL GAIN ADJUSTMENT  
6.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Loop gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
Parameter No.PB06  
Load inertia moment  
Parameter No.PA08 Parameter No.PA09  
0 0 0  
ratio estimation value  
Response  
setting  
Gain adjustment mode  
selection  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of estimation  
are written to parameter No.PB06 (the ratio of load inertia moment to servo motor). These results can be  
confirmed on the status display screen of the MR Configurator.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly, chose  
the "auto tuning mode 2" (parameter No.PA08: 0002) to stop the estimation of the load inertia moment ratio  
(Switch in above diagram turned off), and set the load inertia moment ratio (parameter No.34) manually.  
From the preset load inertia moment ratio (parameter No.PB06) value and response level (parameter  
No.PA09), the optimum loop gains are automatically set on the basis of the internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-on. At  
power-on, auto tuning is performed with the value of each loop gain saved in the EEP-ROM being used as an  
initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation of  
the inertia moment ratio may malfunction temporarily. In such a case, choose  
the "auto tuning mode 2" (parameter No.PA08: 0002) and set the correct load  
inertia moment ratio in parameter No.PB06.  
When any of the auto tuning mode 1 and auto tuning mode settings is  
changed to the manual mode 2 setting, the current loop gains and load inertia  
moment ratio estimation value are saved in the EEP-ROM.  
6 - 4  
6. GENERAL GAIN ADJUSTMENT  
6.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor automatically  
sets the optimum gains that match the machine. Merely changing the response level setting value as required  
completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(parameter No.PA08 : 0002) and  
set the load inertia moment ratio  
(parameter No.PB06) manually.  
Adjust response level setting  
so that desired response is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
6 - 5  
6. GENERAL GAIN ADJUSTMENT  
6.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of parameter No.PA09) of the whole servo system. As the response level  
setting is increased, the track ability and settling time for a command decreases, but a too high response level  
will generate vibration. Hence, make setting until desired response is obtained within the vibration-free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, filter tuning mode (parameter No.PB01) or machine resonance suppression filter (parameter  
No.PB13 to PB16) may be used to suppress machine resonance. Suppressing machine resonance may allow  
the response level setting to increase. Refer to section 7.3 for filter tuning mode and machine resonance  
suppression filter.  
Setting of parameter No.PA09  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Low  
Guideline of corresponding machine  
1
10.0  
11.3  
2
3
12.7  
4
14.3  
5
16.1  
6
18.1  
7
20.4  
8
23.0  
9
25.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
29.2  
32.9  
Large conveyor  
37.0  
41.7  
Arm robot  
47.0  
52.9  
General machine  
tool conveyor  
Middle  
59.6  
67.1  
Precision  
working  
machine  
75.6  
85.2  
95.9  
Inserter  
Mounter  
Bonder  
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
High  
6 - 6  
6. GENERAL GAIN ADJUSTMENT  
6.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with three  
parameters.  
POINT  
If machine resonance occurs, filter tuning mode (parameter No.PB01) or  
machine resonance suppression filter (parameter No.PB13 to PB16) may be  
used to suppress machine resonance. (Refer to section 7.3.)  
(1) For speed control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
1
2
Brief-adjust with auto tuning. Refer to section 6.2.3.  
Change the setting of auto tuning to the manual mode (Parameter  
No.PA08: 0003).  
3
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment. (If the estimate value with auto tuning is correct, setting  
change is not required.)  
4
5
6
7
8
Set a slightly smaller value to the model loop gain  
Set a slightly larger value to the speed integral compensation.  
Increase the speed loop gain within the vibration- and unusual noise-free Increase the speed loop gain.  
range, and return slightly if vibration takes place.  
Decrease the speed integral compensation within the vibration-free range, Decrease the time constant of the speed  
and return slightly if vibration takes place.  
integral compensation.  
Increase the model loop gain, and return slightly if overshooting takes Increase the model loop gain.  
place.  
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 7.2, 7.3.  
increased by suppressing resonance with filter tuning mode or machine  
resonance suppression filter and then executing steps 2 and 3.  
9
While checking the settling characteristic and rotational status, fine-adjust Fine adjustment  
each gain.  
6 - 7  
6. GENERAL GAIN ADJUSTMENT  
(c)Adjustment description  
1) Speed loop gain (parameter No.PB09)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The actual  
response frequency of the speed loop is as indicated in the following expression.  
Speed loop gain setting  
Speed loop response  
frequency(Hz)  
(1 ratio of load inertia moment to servo motor inertia moment)  
2
2) Speed integral compensation (VIC: parameter No.PB10)  
To eliminate stationary deviation against a command, the speed control loop is under proportional  
integral control. For the speed integral compensation, set the time constant of this integral control.  
Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or  
the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless  
the setting is increased to some degree. The guideline is as indicated in the following expression.  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed loop gain setting/ (1 ratio of load inertia moment to  
servo motor inertia moment setting)  
3) Model loop gain (PG1: Parameter No.PB07)  
This parameter determines the response level to a position command. Increasing the model loop gain  
improves track ability to a position command, but a too high value will make overshooting liable to  
occur at the time of setting.  
Speed loop gain setting  
Model loop gain  
guideline  
1
4
1
8
to  
(1 ratio of load inertia moment to servo motor inertia moment)  
6 - 8  
6. GENERAL GAIN ADJUSTMENT  
(2) For position control  
(a) Parameters  
The following parameters are used for gain adjustment.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Model loop gain  
PB07  
PG1  
PB08  
PG2  
Position loop gain  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Adjustment procedure  
Step  
Operation  
Description  
1
2
Brief-adjust with auto tuning. Refer to section 6.2.3.  
Change the setting of auto tuning to the manual mode (Parameter  
No.PA08: 0003).  
3
4
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment. (If the estimate value with auto tuning is correct, setting  
change is not required.)  
Set a slightly smaller value to the model loop gain and the position loop  
gain.  
Set a slightly larger value to the speed integral compensation.  
Increase the speed loop gain within the vibration- and unusual noise-free Increase the speed loop gain.  
range, and return slightly if vibration takes place.  
5
6
Decrease the speed integral compensation within the vibration-free range, Decrease the time constant of the speed  
and return slightly if vibration takes place.  
integral compensation.  
7
8
Increase the position loop gain, and return slightly if vibration takes place.  
Increase the position loop gain.  
Increase the model loop gain, and return slightly if overshooting takes Increase the position loop gain.  
place.  
9
If the gains cannot be increased due to mechanical system resonance or Suppression of machine resonance.  
the like and the desired response cannot be achieved, response may be Refer to section 7.2 7.3.  
increased by suppressing resonance with filter tuning mode or machine  
resonance suppression filter and then executing steps 3 to 5.  
10  
While checking the settling characteristic and rotational status, fine-adjust Fine adjustment  
each gain.  
6 - 9  
6. GENERAL GAIN ADJUSTMENT  
(c) Adjustment description  
1) Speed loop gain (VG2: parameter No.PB09)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The actual  
response frequency of the speed loop is as indicated in the following expression.  
Speed loop gain 2 setting  
Speed loop response  
frequency(Hz)  
(1 ratio of load inertia moment to servo motor inertia moment) 2  
2) Speed integral compensation (VIC: parameter No.PB10)  
To eliminate stationary deviation against a command, the speed control loop is under proportional  
integral control. For the speed integral compensation, set the time constant of this integral control.  
Increasing the setting lowers the response level. However, if the load inertia moment ratio is large or  
the mechanical system has any vibratory element, the mechanical system is liable to vibrate unless  
the setting is increased to some degree. The guideline is as indicated in the following expression.  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed loop gain 2 setting/ (1 ratio of load inertia moment to  
servo motor inertia moment 2 setting)  
3) Model loop gain (PG1: Parameter No.PB07)  
This parameter determines the response level to a position command. Increasing the model loop gain  
improves track ability to a position command, but a too high value will make overshooting liable to  
occur at the time of setting.  
Speed loop gain setting  
Model loop gain  
guideline  
1
4
1
8
to  
(1 ratio of load inertia moment to servo motor inertia moment)  
4) Model loop gain (PG1: parameter No.PB07)  
This parameter determines the response level to a position command. Increasing position loop gain 1  
improves track ability to a position command but a too high value will make overshooting liable to  
occur at the time of settling.  
Speed loop gain 2 setting  
Model loop gain  
guideline  
1
4
1
8
to  
(1 ratio of load inertia moment to servo motor inertia moment)  
6 - 10  
6. GENERAL GAIN ADJUSTMENT  
6.4 Interpolation mode  
The interpolation mode is used to match the position loop gains of the axes when performing the interpolation  
operation of servo motors of two or more axes for an X-Y table or the like. In this mode, manually set the model  
loop gain that determines command track ability. Other parameters for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
Parameter No.  
PB06  
Abbreviation  
GD2  
Name  
Ratio of load inertia moment to servo motor inertia moment  
Position loop gain  
PB08  
PG2  
PB09  
VG2  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
Parameter No.  
PB07  
Abbreviation  
PG1  
Name  
Model loop gain  
(2) Adjustment procedure  
Step  
Operation  
Description  
1
Set to the auto tuning mode.  
Select the auto tuning mode 1.  
During operation, increase the response level setting (parameter  
No.PA09), and return the setting if vibration occurs.  
2
Adjustment in auto tuning mode 1.  
3
4
Check the values of model loop gain.  
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (parameter No.PA08: 0000).  
Set the model loop gain of all the axes to be interpolated to the same  
5
6
value. At that time, adjust to the setting value of the axis, which has the Set position loop gain.  
smallest model loop gain.  
Looking at the interpolation characteristic and rotation status, fine-adjust  
Fine adjustment.  
the gains and response level setting.  
(3) Adjustment description  
(a) Model loop gain (parameter No.PB07)  
This parameter determines the response level of the position control loop. Increasing model loop gain  
improves track ability to a position command but a too high value will make overshooting liable to occur  
at the time of settling. The droop pulse value is determined by the following expression.  
Rotation speed (r/min)  
262144(pulse)  
60  
Droop pulse value (pulse)  
Model loop gain setting  
6 - 11  
6. GENERAL GAIN ADJUSTMENT  
6.5 Differences between MELSERVO-J2-Super and MELSERVO-J3 in auto tuning  
To meet higher response demands, the MELSERVO-J3 series has been changed in response level setting  
range from the MELSERVO-J2S-Super series. The following table lists comparison of the response level  
setting.  
MELSERVO-J2-Super  
MELSERVO-J3  
Guideline for machine resonance  
Guideline for machine resonance  
Parameter No.9 setting  
Parameter No.PA09 setting  
frequency [Hz]  
frequency [Hz]  
10.0  
1
2
11.3  
3
12.7  
1
2
15  
20  
4
14.3  
5
16.1  
6
18.1  
7
20.4  
8
23.0  
3
4
25  
30  
9
25.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
29.2  
32.9  
5
35  
37.0  
41.7  
6
7
45  
55  
47.0  
52.9  
59.6  
8
9
70  
85  
67.1  
75.6  
85.2  
95.9  
A
105  
108.0  
121.7  
137.1  
154.4  
173.9  
195.9  
220.6  
248.5  
279.9  
315.3  
355.1  
400.0  
B
C
130  
160  
D
E
F
200  
240  
300  
Note that because of a slight difference in gain adjustment pattern, response may not be the same if the  
resonance frequency is set to the same value.  
6 - 12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them if  
you are not satisfied with the machine status after making adjustment in the  
methods in chapter 7.  
If a mechanical system has a natural resonance point, increasing the servo system response level may cause  
the mechanical system to produce resonance (vibration or unusual noise) at that resonance frequency.  
Using the machine resonance suppression filter and adaptive tuning can suppress the resonance of the  
mechanical system.  
7.1 Function block diagram  
Speed  
control  
Current  
command  
Parameter  
No.PB23  
Parameter  
No.PB16  
Parameter  
No.PB01  
Low-pass  
filter  
Servo  
motor  
Machine resonance  
suppression filter  
Encoder  
Machine resonance  
suppression filter 2  
Adaptive tuning  
Manual setting  
1
7.2 Adaptive filter  
(1) Function  
Adaptive filter (adaptive tuning) is a function in which the servo amplifier detects machine vibration for a  
predetermined period of time and sets the filter characteristics automatically to suppress mechanical system  
vibration. Since the filter characteristics (frequency, depth) are set automatically, you need not be conscious  
of the resonance frequency of a mechanical system.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive tuning mode can respond  
to is about 100 to 2.25kHz. Adaptive vibration suppression control has no  
effect on the resonance frequency outside this range.  
Adaptive vibration suppression control may provide no effect on a mechanical  
system which has complex resonance characteristics.  
7 - 1  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive tuning mode (parameter No.PB01).  
Parameter No.PB01  
0 0 0  
Filter tuning mode selection  
Setting Filter adjustment mode Automatically set parameter  
0
1
2
Filter OFF  
(Note)  
Parameter No.PB13  
Parameter No.PB14  
Filter tuning mode  
Manual mode  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
7 - 2  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(3) Adaptive tuning mode procedure  
Adaptive tuning adjustment  
Operation  
Yes  
Is the target response  
reached?  
No  
Increase the response setting.  
No  
Has vibration or unusual noise  
occurred?  
Yes  
Execute or re-execute adaptive  
tuning. (Set parameter No.PB01 to  
"0001".)  
Tuning ends automatically after the  
predetermined period of time.  
(Parameter No.PB01 turns to "0002"  
or "0000".)  
If assumption fails after tuning is executed at  
a large vibration or oscillation, decrease the  
response setting temporarily down to the  
vibration level and execute again.  
Yes  
Has vibration or unusual noise  
been resolved?  
No  
Factor  
The response has increased to the  
machine limit.  
Decrease the response until vibration Using the machine analyzer, set the  
or unusual noise is resolved. filter manually.  
The machine is too complicated to  
provide the optimum filter.  
End  
7 - 3  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
"Filter OFF" enables a return to the factory-set initial value.  
When adaptive tuning is executed, vibration sound increases as an excitation  
signal is forcibly applied for several seconds.  
When adaptive tuning is executed, machine resonance is detected for a  
maximum of 10 seconds and a filter is generated. After filter generation, the  
adaptive tuning mode automatically shifts to the manual mode.  
Adaptive tuning generates the optimum filter with the currently set control  
gains. If vibration occurs when the response setting is increased, execute  
adaptive tuning again.  
During adaptive tuning, a filter having the best notch depth at the set control  
gain is generated. To allow a filter margin against machine resonance,  
increase the notch depth in the manual mode.  
7.3 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of the  
specific frequency to suppress the resonance of the mechanical system. You can set the gain decreasing  
frequency (notch frequency), gain decreasing depth and width.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch width  
Notch  
depth  
Notch depth  
Frequency  
Notch frequency  
You can use the machine resonance suppression filter 1 (parameter No.PB13, PB14) and machine  
resonance suppression filter 2 (parameter No.PB15, PB16) to suppress the vibration of two resonance  
frequencies. Execution of adaptive tuning in the filter tuning mode automatically adjusts the machine  
resonance suppression filter. When adaptive tuning is ON, the adaptive tuning mode shifts to the manual  
mode after the predetermined period of time. The manual mode enables manual setting using the machine  
resonance suppression filter 1.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Parameter No.PB01, Parameter No.PB15,  
PB13, PB14  
PB16  
7 - 4  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
(a) Machine resonance suppression filter 1 (parameter No.PB13, PB14)  
Set the notch frequency, notch depth and notch width of the machine resonance suppression filter 1  
(parameter No.PB13, PB14)  
When you have made adaptive filter tuning mode (parameter No.PB01) "manual mode", set up the  
machine resonance suppression filter 1 becomes effective.  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch frequency is  
set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator. This allows the required notch frequency  
and depth to be determined.  
7 - 5  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.4 Advanced vibration suppression control  
(1) Operation  
Vibration suppression control is used to further suppress machine end vibration, such as workpiece end  
vibration and base shake. The motor side operation is adjusted for positioning so that the machine does not  
shake.  
Motor end  
Motor end  
Machine end  
Machine end  
t
t
Vibration suppression control OFF  
(Normal control)  
Vibration suppression control ON  
When the advanced vibration suppression control (vibration suppression control tuning mode parameter  
No.PB02) is executed, the vibration frequency at machine end can automatically be estimated to suppress  
machine end vibration.  
In the vibration suppression control tuning mode, this mode shifts to the manual mode after operation is  
performed the predetermined number of times. The manual mode enables manual setting using the  
vibration suppression control vibration frequency setting (parameter No.PB19) and vibration suppression  
control resonance frequency setting (parameter No.PB20).  
(2) Parameter  
Select the operation of the vibration suppression control tuning mode (parameter No.PB02).  
Parameter No.PB02  
0 0 0  
Vibration suppression control  
tuning mode  
Setting Vibration suppression control tuning mode  
Automatically set parameter  
0
1
2
Vibration suppression control OFF  
Vibration suppression control tuning mode  
(Advanced vibration suppression control)  
Manual mode  
(Note)  
Parameter No.PB19  
Parameter No.PB20  
Note. Parameter No.PB19 and PB20 are fixed to the initial values.  
POINT  
The function is made valid when the auto tuning mode (parameter No.PA08)  
is the auto tuning mode 2 ("0002") or manual mode ("0003").  
The machine resonance frequency supported in the vibration suppression  
control tuning mode is 1.0Hz to 100.0Hz. The function is not effective for  
vibration outside this range.  
Stop the motor before changing the vibration suppression control-related  
parameters (parameter No.PB02, PB19, PB20, PB33, PB34). A failure to do  
so will cause a shock.  
For positioning operation during execution of vibration suppression control  
tuning, provide a stop time to ensure a stop after full vibration damping.  
Vibration suppression control tuning may not make normal estimation if the  
residual vibration at the motor end is small.  
Vibration suppression control tuning sets the optimum parameter with the  
currently set control gains. When the response setting is increased, set  
vibration suppression control tuning again.  
7 - 6  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(3) Vibration suppression control tuning mode procedure  
Vibration suppression control  
tuning adjustment  
Operation  
Yes  
Is the target response  
reached?  
No  
Increase the response setting.  
No  
Has vibration of workpiece  
end/device increased?  
Yes  
Stop operation.  
Execute or re-execute vibration  
suppression control tuning. (Set  
parameter No.PB02 to "0001".)  
Resume operation.  
Tuning ends automatically after  
operation is performed the  
predetermined number of times.  
(Parameter No.PB02 turns to "0002"  
or "0000".)  
Yes  
Has vibration of workpiece  
end/device been resolved?  
No  
Factor  
Estimation cannot be made as  
Using the machine analyzer or from  
machine end vibration waveform, set  
the vibration suppression control  
manually.  
Decrease the response until vibration  
of workpiece end/device is resolved.  
machine end vibration has not been  
transmitted to the motor end.  
The response of the model loop gain  
has increased to the machine end  
vibration frequency (vibration  
suppression control limit).  
End  
7 - 7  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(4) Vibration suppression control manual mode  
Measure work end vibration and device shake with the machine analyzer or external measuring instrument,  
and set the vibration suppression control vibration frequency (parameter No.PB19) and vibration  
suppression control resonance frequency (parameter No.PB20) to set vibration suppression control  
manually.  
(a) When a vibration peak can be confirmed using MR Configurator, machine analyzer or external FFT  
equipment  
Gain characteristic  
1Hz  
100Hz  
Resonance of more  
Vibration suppression than 100Hz is not the  
Vibration suppression control  
vibration frequency  
(Anti-resonance frequency)  
Parameter No.PB19  
control resonance  
frequency  
target of control.  
Parameter No.PB20  
Phase  
-90deg.  
(b) When vibration can be confirmed using monitor signal or external sensor  
Motor end vibration  
(Droop pulses)  
External acceleration pick signal, etc.  
Position command frequency  
t
t
Vibration suppression control  
vibration frequency  
Vibration cycle [Hz]  
Vibration cycle [Hz]  
Vibration suppression control  
resonance frequency  
Set the same value.  
7 - 8  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
When machine end vibration does not show up in motor end vibration, the  
setting of the motor end vibration frequency does not produce an effect.  
When the anti-resonance frequency and resonance frequency can be  
confirmed using the machine analyzer or external FFT device, do not set the  
same value but set different values to improve the vibration suppression  
performance.  
A vibration suppression control effect is not produced if the relationship  
between the model loop gain (parameter No.PB07) value and vibration  
frequency is as indicated below. Make setting after decreasing PG1, e.g.  
reduce the response setting.  
1
(1.5 PG1) vibration frequency  
2
7 - 9  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5 Low-pass filter  
(1) Function  
When a ball screw or the like is used, resonance of high frequency may occur as the response level of the  
servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the following  
expression.  
VG2  
1 + GD2  
Filter frequency(rad/s)  
10  
When parameter No.PB23 is set to "  
(2) Parameter  
1
", manual setting can be made with parameter No.PB18.  
Set the operation of the low-pass filter selection (parameter No.PB23.)  
Parameter No.PB23  
Low-pass filter selection  
0: Automatic setting (initial value)  
1: Manual setting (parameter No.PB18 setting)  
7.6 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop or  
can use an input device to change gains during operation.  
7.6.1 Applications  
This function is used when.  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an input device to ensure stability of the servo system since the load  
inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
7 - 10  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.6.2 Function block diagram  
The valid loop gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection CDP (parameter No.PB26) and gain changing condition CDS (parameter  
No.PB27).  
CDP  
Parameter No.PB26  
Control  
command of  
controller  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
Parameter No.PB27  
GD2  
Parameter No.PB06  
Valid  
GD2 value  
GD2B  
Parameter No.PB29  
PG2  
Parameter No.PB08  
Valid  
PG2 value  
PG2B  
Parameter No.PB30  
VG2  
Parameter No.PB09  
Valid  
VG2 value  
VG2B  
Parameter No.PB31  
VIC  
Parameter No.PB10  
Valid  
VIC value  
VICB  
Parameter No.PB32  
VRF1  
Parameter No.PB19  
Valid  
VRF1 value  
VRF1B  
Parameter No.PB33  
VRF2  
Parameter No.PB20  
Valid  
VRF2 value  
VRF2B  
Parameter No.PB34  
7 - 11  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.6.3 Parameters  
When using the gain changing function, always set "  
3" in parameter No.PA08 (auto tuning) to choose the  
manual mode of the gain adjustment modes. The gain changing function cannot be used in the auto tuning  
mode.  
Parameter No. Abbreviation  
Name  
Unit  
Description  
Multi- Control parameters before changing  
plier  
Ratio of load inertia moment to  
servo motor inertia moment  
PB06  
GD2  
(
1)  
Position and speed gains of a model used to set the  
response level to a command. Always valid.  
PB07  
PG1  
Model loop gain  
rad/s  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
rad/s  
rad/s  
ms  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia  
moment to servo motor inertia  
moment  
Multi- Used to set the ratio of load inertia moment to servo motor  
plier inertia moment after changing.  
PB29  
GD2B  
(
1)  
Used to set the value of the after-changing position loop  
PB30  
PB31  
PG2B  
VG2B  
Gain changing position loop gain 2  
Gain changing speed loop gain 2  
rad/s  
rad/s  
ms  
gain 2.  
Used to set the value of the after-changing speed loop  
gain.  
Gain changing speed integral  
compensation  
Used to set the value of the after-changing speed integral  
compensation.  
PB32  
PB26  
VICB  
CDP  
Gain changing selection  
Used to select the changing condition.  
kpps Used to set the changing condition values.  
PB27  
CDS  
Gain changing condition  
pulse  
r/min  
You can set the filter time constant for a gain change at  
PB28  
PB33  
PB34  
CDT  
Gain changing time constant  
ms  
changing.  
Gain changing vibration suppression  
control vibration frequency setting  
Gain changing vibration suppression  
control resonance frequency setting  
Used to set the value of the after-changing vibration  
VRF1B  
VRF2B  
Hz  
suppression control vibration frequency setting.  
Used to set the value of the after-changing vibration  
Hz  
suppression control resonance frequency setting.  
7 - 12  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(1) Parameters No.PB06 to PB10  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position loop gain, speed loop gain and speed  
integral compensation to be changed.  
(2) Gain changing ratio of load inertia moment to servo motor inertia moment (GD2B: parameter No.PB29)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia moment  
ratio does not change, set it to the same value as ratio of load inertia moment to servo motor inertia moment  
(parameter No.PB06).  
(3) Gain changing position loop gain (parameter No.PB30), Gain changing speed loop gain (parameter  
No.PB31), Gain changing speed integral compensation (parameter No.PB32)  
Set the values of after-changing position loop gain, speed loop gain and speed integral compensation.  
(4) Gain changing selection (parameter No.PB26)  
Used to set the gain changing condition. Choose the changing condition in the first digit and second digit. If  
you set "1" in the first digit here, you can use the control command from controller is valid for gain changing.  
0 0  
Gain changing selection  
Under any of the following conditions, the gains  
change on the basis of the parameter No.PB29 to  
PB32 settings.  
0: Invalid  
1: Control command from controller is valid  
2: Command frequency (Parameter No.PB27 setting)  
3: Droop pulse value (Parameter No.PB27 setting)  
4: Servo motor speed (Parameter No.PB27 setting)  
Gain changing condition  
0: Valid at more than condition (Valid with ON for control command from controller.)  
1: Valid at less than condition (Valid with OFF for control command from controller.)  
(5) Gain changing condition (parameter No.PB27)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (parameter No.PB26), set the gain changing level.  
The setting unit is as follows.  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (parameter No.PB28)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
7 - 13  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.6.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by input device  
(a) Setting  
Parameter No. Abbreviation  
Name  
Setting  
100  
Unit  
rad/s  
PB07  
PG1  
Model loop gain  
Ratio of load inertia moment to servo motor  
inertia moment  
Multiplier  
PB06  
GD2  
4.0  
(
1)  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
120  
3000  
20  
rad/s  
rad/s  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia moment  
to servo motor inertia moment  
Gain changing position loop gain  
Gain changing speed loop gain  
Gain changing speed integral compensation  
Ms  
Multiplier  
PB29  
GD2B  
10.0  
(
1)  
PB30  
PB31  
PB32  
PG2B  
VG2B  
VICB  
84  
rad/s  
rad/s  
ms  
4000  
50  
0001  
PB26  
PB28  
CDP  
CDT  
Gain changing selection  
(Changed by ON/OFF of input device)  
100  
Gain changing time constant  
ms  
Hz  
Used to set the value of the after-changing  
vibration suppression control vibration  
frequency setting.  
Gain changing vibration suppression control  
vibration frequency setting  
PB33  
PB34  
VRF1B  
VRF2B  
Used to set the value of the after-changing  
vibration suppression control resonance  
frequency setting.  
Gain changing vibration suppression control  
resonance frequency setting  
Hz  
(b) Changing operation  
OFF  
OFF  
ON  
After-changing gain  
Control command  
of controller  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Model loop gain 1  
100  
Ratio of load inertia moment  
to servo motor inertia moment  
Position loop gain  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed loop gain  
Speed integral compensation  
7 - 14  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
Parameter No. Abbreviation  
Name  
Setting  
100  
Unit  
rad/s  
PB07  
PG1  
Model loop gain  
Ratio of load inertia moment to servo motor  
inertia moment  
Multiplier  
PB06  
GD2  
4.0  
(
1)  
PB08  
PB09  
PB10  
PG2  
VG2  
VIC  
Position loop gain  
120  
3000  
20  
rad/s  
rad/s  
Speed loop gain  
Speed integral compensation  
Gain changing ratio of load inertia moment to  
servo motor inertia moment  
ms  
Multiplier  
PB29  
GD2B  
10.0  
(
1)  
PB30  
PB31  
PB32  
PG2B  
VG2B  
VICB  
Gain changing position loop gain  
Gain changing speed loop gain  
Gain changing speed integral compensation  
84  
rad/s  
rad/s  
ms  
4000  
50  
0003  
PB26  
CDP  
Gain changing selection  
(Changed by droop pulses)  
PB27  
PB28  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
Droop pulses [pulses]  
0
CDS  
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Model loop gain  
100  
Ratio of load inertia moment  
to servo motor inertia moment  
Position loop gain  
4.0  
10.0  
4.0  
10.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed loop gain  
Speed integral compensation  
7 - 15  
7. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
7 - 16  
8. TROUBLESHOOTING  
8. TROUBLESHOOTING  
POINT  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
If an alarm/warning has occurred, refer to this chapter and remove its cause.  
8.1 Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or warning  
has occurred, refer to section 8.2 or 8.3 and take the appropriate action. When an alarm occurs, the ALM turns  
OFF.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked in the alarm  
deactivation column. The alarm is automatically canceled after removing the cause of occurrence.  
Alarm deactivation  
Display  
Name  
Display  
10 Undervoltage  
Name  
Power  
Error  
CPU  
reset  
92 Battery cable disconnection warning  
96 Home position setting warning  
9F Battery warning  
OFF ON reset  
12 Memory error 1 (RAM)  
13 Clock error  
E0 Excessive regeneration warning  
E1 Overload warning 1  
15 Memory error 2 (EEP-ROM)  
16 Encoder error 1 (At power on)  
17 Board error  
E3 Absolute position counter warning  
E4 Parameter warning  
E6 Servo forced stop warning  
E7 Controller forced stop warning  
E8 Cooling fan speed reduction warning  
E9 Main circuit off warning  
19 Memory error 3 (Flash-ROM)  
1A Motor combination error  
20 Encoder error 2  
24 Main circuit error  
EC Overload warning 2  
25 Absolute position erase  
ED Output watt excess warning  
(Note 1) (Note 1) (Note 1)  
30 Regenerative error  
31 Overspeed  
32 Overcurrent  
33 Overvoltage  
(Note 2)  
34 Receive error 1  
35 Command frequency error  
36 Receive error 2  
37 Parameter error  
(Note 1) (Note 1) (Note 1)  
(Note 1) (Note 1) (Note 1)  
45 Main circuit device overheat  
46 Servo motor overheat  
47 Cooling fan error  
50 Overload 1  
(Note 1) (Note 1) (Note 1)  
(Note 1) (Note 1) (Note 1)  
51 Overload 2  
52 Error excessive  
8A USB communication time-out error  
8E USB communication error  
888 Watchdog  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. In some controller communication status, the alarm factor may not be removed.  
8 - 1  
8. TROUBLESHOOTING  
8.2 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (25) occurred, always make home position setting  
again. Not doing so may cause unexpected operation.  
CAUTION  
As soon as an alarm occurs, mark Servo-off and power off the main circuit and  
control circuit.  
POINT  
When any of the following alarms has occurred, do not deactivate the alarm  
and resume operation repeatedly. To do so will cause the servo amplifier/servo  
motor to fail. Remove the cause of occurrence, and leave a cooling time of  
more than 30 minutes before resuming operation. To protect the main circuit  
elements, any of these servo alarms cannot be deactivated from the servo  
system controller until the specified time elapses after its occurrence. Judging  
the load changing condition until the alarm occurs, the servo amplifier  
calculates this specified time automatically.  
Regenerative error (30)  
Overload 1 (50)  
Overload 2 (51)  
The alarm can be deactivated by switching power off, then on or by the error  
reset command CPU reset from the servo system controller. For details, refer  
to section 8.1.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the servo  
motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. Use the MR  
Configurator to refer to a factor of alarm occurrence.  
Display  
10  
Name  
Definition  
Cause  
Action  
Undervoltage  
Power supply voltage 1. Power supply voltage is low.  
Check the power supply.  
dropped.  
2. There was an instantaneous control  
power failure of 60ms or longer.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
MR-J3- B:  
160VAC or less  
MR-J3- B1:  
83VAC or less  
MR-J3- B4:  
280VAC or less  
4. The bus voltage dropped to the  
following value or less.  
MR-J3- B: 200VDC  
MR-J3- B1: 158VDC  
MR-J3- B4: 380VDC  
5. Faulty parts in the servo amplifier  
Checking method  
Change the servo amplifier.  
Alarm (10) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
8 - 2  
8. TROUBLESHOOTING  
Display  
12  
Name  
Definition  
Cause  
Action  
Memory error 1 RAM, memory fault Faulty parts in the servo amplifier  
(RAM)  
Clock error  
Change the servo amplifier.  
Checking method  
13  
Printed board fault  
Alarm (any of 12 and 13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
Clock error  
transmitted from the  
controller  
Faulty controller  
Change the servo system controller.  
Change the servo amplifier.  
Checking method  
Alarm (13) occurs, if servo  
controller is used in multiple CPU  
system.  
1. Faulty parts in the servo amplifier  
15  
Memory error 2 EEP-ROM fault  
(EEP-ROM)  
Checking method  
Alarm (15)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
16  
Encoder error 1 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
(At power on)  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder fault  
3. Encoder cable faulty  
(Wire breakage or shorted)  
Change the servo motor.  
Repair or change the cable.  
4. Encoder cable type (2-wire, 4-wire) Correct the setting in the fourth digit of  
selection was wrong in parameter  
setting.  
parameter No.PC04.  
17  
19  
Board error 2  
CPU/parts fault  
Faulty parts in the servo amplifier  
Checking method  
Alarm (17 or 19) occurs if  
Change the servo amplifier.  
Memory error 3 ROM memory fault  
(Flash ROM)  
power is switched on after  
disconnection of all cables but the  
control circuit power supply cable.  
1A  
20  
Motor  
combination  
error  
Wrong combination Wrong combination of servo amplifier Use correct combination.  
of servo amplifier  
and servo motor.  
and servo motor connected.  
Encoder error 2 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder cable faulty  
(Wire breakage or shorted)  
3. Encoder fault  
Repair or change the cable.  
Change the servo motor.  
24  
Main circuit error Ground fault  
1. Power input wires and servo motor Connect correctly.  
power wires are in contact.  
occurred at the servo  
motor power (U,V  
and W phases) of  
the servo amplifier.  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
3. Main circuit of servo amplifier failed.  
Change the servo amplifier.  
Checking method  
Alarm (24) occurs if the servo is  
switched on after disconnecting  
the U, V, W power cables from  
the servo amplifier.  
25  
Absolute  
position erase  
Absolute position  
data in error  
1. Voltage drop in encoder  
(Battery disconnected.)  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
2. Battery voltage low  
Change the battery.  
Always make home position setting again.  
3. Battery cable or battery is faulty.  
Power was switched 4. Home position not set.  
on for the first time in  
the absolute position  
After leaving the alarm occurring for a few  
minutes, switch power off, then on again.  
Always make home position setting again.  
detection system.  
8 - 3  
8. TROUBLESHOOTING  
Display  
30  
Name  
Definition  
Permissible  
regenerative power  
of the built-in  
regenerative resistor  
or regenerative  
option is exceeded.  
Cause  
Action  
Regenerative  
error  
1. Wrong setting of parameter No.  
PA02  
2. Built-in regenerative resistor or  
regenerative option is not  
connected.  
Set correctly.  
Connect correctly.  
3. High-duty operation or continuous  
1. Reduce the frequency of positioning.  
regenerative operation caused the 2. Use the regenerative option of larger  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage is abnormal.  
MR-J3- B:260VAC or more  
Check the power supply.  
MR-J3- B1:More than 135VAC  
MR-J3- B4: 535VAC or more  
5. Built-in regenerative resistor or  
regenerative option faulty.  
Change the servo amplifier or regenerative  
option.  
Regenerative  
transistor fault  
Change the servo amplifier.  
6. Regenerative transistor faulty.  
Checking method  
1) The regenerative option has  
overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
31  
Overspeed  
Speed has exceeded 1. Small acceleration/deceleration time Increase acceleration/deceleration time  
the instantaneous  
permissible speed.  
constant caused overshoot to be  
large.  
constant.  
2. Servo system is instable to cause  
overshoot.  
1. Re-set servo gain to proper value.  
2. If servo gain cannot be set to proper  
value.  
1) Reduce load inertia moment ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Change the servo motor.  
3. Encoder faulty.  
Current that flew is  
higher than the  
32  
Overcurrent  
1. Short occurred in servo motor power Correct the wiring.  
(U, V, W).  
permissible current of  
the servo amplifier.  
(If the alarm (32)  
occurs again when  
turning ON the servo  
after resetting the  
alarm by turning  
OFF/ON the power  
when the alarm (32)  
first occurred, the  
transistor (IPM  
2. Transistor (IPM IGBT) of the servo Change the servo amplifier.  
amplifier faulty.  
Checking method  
Alarm (32) occurs if power is  
switched on after U,V and W are  
disconnected.  
3. Ground fault occurred in servo  
motor power (U, V, W).  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Correct the wiring.  
Take noise suppression measures.  
IGBT) of the servo  
amplifier may be at  
fault. In the case, do  
not repeat to turn  
OFF/ON the power.  
Check the transistor  
with the checking  
method of “Cause  
2”.)  
8 - 4  
8. TROUBLESHOOTING  
Display  
33  
Name  
Definition  
Cause  
Action  
Use the regenerative option.  
Set correctly.  
Overvoltage  
The following shows 1. Regenerative option is not used.  
the input value of  
converter bus  
voltage.  
2. Though the regenerative option is  
used, the parameter No.PA02  
setting is "  
00 (not used)".  
MR-J3- B(1):  
400VDC or more  
MR-J3- B4:  
3. Lead of built-in regenerative resistor 1. Change the lead.  
or regenerative option is open or  
disconnected.  
2. Connect correctly.  
800VDC or more  
4. Regenerative transistor faulty.  
5. Wire breakage of built-in  
regenerative resistor or regenerative  
option  
Change the servo amplifier.  
1. For wire breakage of built-in regenerative  
resistor, change the servo amplifier.  
2. For wire breakage of regenerative option,  
change the regenerative option.  
Add regenerative option or increase  
capacity.  
6. Capacity of built-in regenerative  
resistor or regenerative option is  
insufficient.  
7. Power supply voltage high.  
8. Ground fault occurred in servo  
motor power (U, V, W).  
Check the power supply.  
Correct the wiring.  
9. The jumper across BUE-SD of the Fit the jumper across BUE-SD.  
FR-BU2 brake unit is removed.  
34  
Receive error 1 SSCNET  
communication error  
1. The SSCNET cable is  
disconnected.  
Connect it after turning off the control circuit  
power supply for servo amplifier.  
(Continuously  
communication error  
with about 3.5ms  
interval.)  
2. The surface at the end of SSCNET Wipe dirt at the surface away. (Refer to  
cable got dirty.  
section 3.9)  
3. The SSCNET cable is broken or  
severed.  
Change the cable.  
4. Noise entered the servo amplifier.  
5. Optical characteristic of SSCNET  
cable deteriorated because vinyl  
tape and/or wire sheath, which  
contains migrating plasticizer,  
adhered to the cable.  
Take noise suppression measures.  
Remove the vinyl tape and/or wire sheath,  
which contains migrating plasticizer, and  
exchange the cable.  
35  
Command  
Input pulse frequency 1. Command given is greater than the Check operation program.  
frequency error of command pulse is  
too high.  
maximum speed of the servo motor.  
2. Servo system controller failure.  
3. Noise entered the servo amplifier.  
Change the servo system controller.  
Take noise of I/O signal suppression  
measures.  
4. Noise entered the controller.  
Take noise from the controller suppression  
measures.  
36  
Receive error 2 SSCNET  
communication error  
(Intermittently  
1. The SSCNET cable is  
disconnected.  
Connect it after turning off the control circuit  
power supply for servo amplifier.  
2. The surface at the end of SSCNET Wipe dirt away from the surface. (Refer to  
communication error  
with about 70ms  
interval.)  
cable got dirty.  
section 3.9)  
3. The SSCNET cable is broken or Change the cable.  
severed.  
4. Noise entered the servo amplifier.  
5. Optical characteristic of SSCNET  
cable deteriorated because vinyl  
tape and/or wire sheath, which  
contains migrating plasticizer,  
adhered to the cable.  
Take noise suppression measures.  
Remove the vinyl tape and/or wire sheath,  
which contains migrating plasticizer, and  
exchange the cable.  
8 - 5  
8. TROUBLESHOOTING  
Display  
37  
Name  
Definition  
Cause  
Action  
Parameter error Parameter setting is 1. Servo amplifier fault caused the  
Change the servo amplifier.  
wrong.  
parameter setting to be rewritten.  
2. There is a parameter whose value Change the parameter value to within the  
was set to outside the setting range setting range.  
by the controller.  
Change the servo amplifier.  
3. The number of write times to EEP-  
ROM exceeded 100,000 due to  
parameter write, etc.  
45  
Main circuit  
device overheat overheat  
Main circuit device  
1. Servo amplifier faulty.  
Change the servo amplifier.  
The drive method is reviewed.  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
3. Ambient temperature of servo motor Check environment so that ambient  
is over 55 temperature is 0 to 55  
Use within the range of specifications.  
.
.
4. Used beyond the specifications of  
close mounting.  
46  
47  
Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo motor Check environment so that ambient  
temperature rise  
actuated the thermal  
sensor.  
is over 40  
.
temperature is 0 to 40  
.
2. Servo motor is overloaded.  
1. Reduce load.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
3. Thermal sensor in encoder is faulty. Change the servo motor.  
1. Cooling fan life expiration (Refer to Change the cooling fan of the servo  
Cooling fan  
error  
The cooling fan of  
the servo amplifier  
stopped, or its speed  
decreased to or  
below the alarm  
level.  
section 2.5.)  
amplifier.  
2. Foreign matter caught in the cooling Remove the foreign matter.  
fan stopped rotation.  
3. The power supply of the cooling fan Change the servo amplifier.  
failed.  
50  
Overload 1  
Load exceeded  
overload protection  
characteristic of  
servo amplifier.  
1. Servo amplifier is used in excess  
of its continuous output current.  
1. Reduce load.  
2. Check operation pattern.  
3. Use servo motor that provides larger  
output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto tuning.  
2. Change the auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
3. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
4. Wrong connection of servo motor.  
Servo amplifier's output terminals U,  
V, W do not match servo motor's  
input terminals U, V, W.  
Connect correctly.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
6. After Overload 2 (51) occurred, turn 1. Reduce load.  
OFF/ON the power supply to clear 2. Check operation pattern.  
the alarm. Then the overload  
operation is repeated.  
3. Use servo motor that provides larger  
output.  
8 - 6  
8. TROUBLESHOOTING  
Display  
51  
Name  
Definition  
Cause  
Action  
Overload 2  
Machine collision or 1. Machine struck something.  
the like caused max.  
1. Check operation pattern.  
2. Install limit switches.  
For the time of the  
2. Wrong connection of servo motor.  
Servo amplifier's output terminals U,  
V, W do not match servo motor's  
input terminals U, V, W.  
Connect correctly.  
alarm occurrence,  
refer to the section  
10.1.  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/deceleration to  
execute auto tuning.  
2. Change the auto tuning response setting.  
3. Set auto tuning to OFF and make gain  
adjustment manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do not  
vary in proportion to the rotary angle  
of the shaft but the indication skips  
or returns midway.  
52  
Error excessive The deviation  
between the model  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/deceleration time  
constant.  
position and the  
2. Torque limit value set with controller Increase the torque limit value.  
is too small.  
actual servo motor  
position exceeds the  
parameter No.PC01  
setting value (initial  
value: 3 revolutions).  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
1. Check the power supply capacity.  
2. Use servo motor which provides larger  
output.  
4. Position loop gain 1 (parameter  
No.PB08) value is small.  
Increase set value and adjust to ensure  
proper operation.  
5. Servo motor shaft was rotated by  
external force.  
1. When torque is limited, increase the limit  
value.  
2. Reduce load.  
3. Use servo motor that provides larger  
output.  
6. Machine struck something.  
1. Check operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty  
8. Wrong connection of servo motor.  
Servo amplifier's output terminals U,  
V, W do not match servo motor's  
input terminals U, V, W.  
9. SSCNET cable fault  
Change the SSCNET cable.  
10. Optical characteristic of SSCNET Remove the vinyl tape and/or wire sheath,  
cable deteriorated because vinyl  
tape and/or wire sheath, which  
contains migrating plasticizer,  
adhered to the cable.  
which contains migrating plasticizer, and  
exchange the cable.  
8A  
8E  
USB  
Communication with 1. USB cable breakage.  
Change the USB cable.  
communication MR Configurator in  
time-out error  
test operation mode  
stopped for longer  
than the specified  
time.  
Serial communication  
error occurred  
between servo  
amplifier and  
communication  
device (e.g. personal  
computer).  
USB  
1. USB cable fault  
Change the USB cable.  
communication  
error  
(Open cable or short circuit)  
2. Communication device (e.g.  
personal computer) faulty  
Change the communication device (e.g.  
personal computer).  
8 - 7  
8. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
(Note) Watchdog  
888  
CPU, parts faulty  
Fault of parts in servo amplifier  
Change the servo amplifier.  
Checking method  
Alarm (888) occurs if power is  
switched on after disconnection of  
all cables but the control circuit  
power supply cable.  
Note. At power-on, "888" appears instantaneously, but it is not an error.  
8.3 Remedies for warnings  
If an absolute position counter warning (E3) occurred, always make home position  
setting again. Not doing so may cause unexpected operation.  
CAUTION  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo amplifier  
and servo motor may become faulty. If the power of the servo amplifier is  
switched OFF/ON during the alarms, allow more than 30 minutes for cooling  
before resuming operation.  
Excessive regenerative warning (E0)  
Overload warning 1 (E1)  
If E6, E7 or E9 occurs, the servo off status is established. If any other warning occurs, operation can be  
continued but an alarm may take place or proper operation may not be performed.  
Remove the cause of warning according to this section. Use the MR Configurator to refer to a factor of warning  
occurrence.  
Display  
92  
Name  
Definition  
Cause  
Action  
Repair cable or changed.  
Change the battery.  
Battery cable  
disconnection  
warning  
Absolute position detection 1. Battery cable is open.  
system battery voltage is  
low.  
2. Battery voltage supplied from the servo  
amplifier to the encoder fell to about 3V or  
less.  
(Detected with the encoder)  
96  
Home position  
setting warning  
Home position setting  
could not be made.  
1. Droop pulses remaining are greater than Remove the cause of droop pulse  
the in-position range setting. occurrence  
2. Command pulse entered after clearing of Do not enter command pulse  
droop pulses.  
after clearing of droop pulses.  
Reduce creep speed.  
3. Creep speed high.  
9F Battery warning  
Voltage of battery for  
Battery voltage fell to 3.2V or less.  
Change the battery.  
absolute position detection (Detected with the servo amplifier)  
system reduced.  
E0 Excessive  
regeneration  
warning  
There is a possibility that Regenerative power increased to 85% or  
1. Reduce frequency of  
positioning.  
regenerative power may  
exceed permissible  
regenerative power of  
built-in regenerative  
resistor or regenerative  
option.  
more of permissible regenerative power of  
built-in regenerative resistor or regenerative 2. Change the regenerative  
option.  
option for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
8 - 8  
8. TROUBLESHOOTING  
Cause  
E1 Overload warning There is a possibility that Load increased to 85% or more of overload Refer to 50, 51.  
overload alarm 1 or 2 may alarm 1 or 2 occurrence level.  
occur.  
Display  
Name  
Definition  
Action  
1
Cause, checking method  
Refer to 50,51.  
E3 Absolute position Absolute position encoder 1. Noise entered the encoder.  
counter warning pulses faulty.  
Take noise suppression  
measures.  
2. Encoder faulty.  
Change the servo motor.  
Make home position setting  
again.  
The multi-revolution  
counter value of the  
absolute position encoder  
exceeded the maximum  
revolution range.  
3. The movement amount from the home  
position exceeded a 32767 rotation or  
37268 rotation in succession.  
E4 Parameter  
warning  
Parameter outside setting Parameter value set from servo system Set it correctly.  
range  
controller is outside setting range  
E6 Servo forced stop EM1 is off.  
warning  
External forced stop was made valid. (EM1 Ensure safety and deactivate  
was turned off.)  
forced stop.  
E7 Controller forced  
Forced stop signal was entered into the  
servo system controller.  
Ensure safety and deactivate  
forced stop.  
stop warning  
E8 Cooling fan speed The speed of the servo  
Cooling fan life expiration (Refer to section Change the cooling fan of the  
reduction warning amplifier decreased to or 2.5.)  
below the warning level.  
servo amplifier.  
This warning is not  
The power supply of the cooling fan is  
Change the servo amplifier.  
displayed with MR-J3-  
70B/100B among servo  
amplifiers equipped with a  
cooling fan.  
broken.  
E9 Main circuit off  
warning  
Servo-on command was  
issued with main circuit  
power off.  
Switch on main circuit power.  
EC Overload warning Operation, in which a  
During a stop, the status in which a current 1. Reduce the positioning  
2
current exceeding the  
rating flew intensively in  
any of the U, V and W  
phases of the servo motor,  
was repeated.  
flew intensively in any of the U, V and W  
phases of the servo motor occurred  
repeatedly, exceeding the warning level.  
frequency at the specific  
positioning address.  
2. Reduce the load.  
3. Replace the servo amplifier/  
servo motor with the one of  
larger capacity.  
ED Output watt  
The status, in which the  
output wattage (speed  
Continuous operation was performed with  
1. Reduce the servo motor  
excess warning  
the output wattage (speed  
torque) of the speed.  
torque) of the servo motor servo motor exceeding 150% of the rated  
exceeded the rated output, output.  
2. Reduce the load.  
continued steadily.  
8 - 9  
8. TROUBLESHOOTING  
MEMO  
8 - 10  
9. OUTLINE DRAWINGS  
9. OUTLINE DRAWINGS  
9.1 Servo amplifier  
(1) MR-J3-10B MR-J3-20B  
MR-J3-10B1 MR-J3-20B1  
[Unit: mm]  
6 mounting hole  
40  
6
4
Approx.80  
135  
(Note)  
CNP1  
(Note)  
CNP2  
CNP3  
6
Approx.  
25.5  
Approx.68  
With MR-J3BAT  
Note. This data applies to the 3-phase or 1-phase 200 to 230VAC power supply models.  
For a single-phase, 100 to 120VAC power supply, refer to the terminal signal layout.  
Mass: 0.8 [kg] (1.76 [lb])  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
Terminal signal layout  
For 3-phase or  
For 1-phase  
1-phase  
PE terminal  
100 to 120VAC 200 to 230VAC  
Approx. 40  
6
L1  
L1  
L2  
L3  
N
L2  
N
CNP1  
CNP1  
Screw size: M4  
Tightening torque:  
2-M5 screw  
1.2 [N m] (10.6 [lb in])  
P1  
P2  
P1  
P2  
P
C
P
C
CNP2  
CNP3  
CNP2  
CNP3  
D
D
L11  
L21  
L11  
L21  
U
V
U
V
W
W
Mounting hole process drawing  
9 - 1  
9. OUTLINE DRAWINGS  
(2) MR-J3-40B MR-J3-60B  
MR-J3-40B1  
[Unit: mm]  
6 mounting hole  
40  
6
5
Approx.80  
170  
(Note)  
L1  
L2  
CNP1  
(Note)  
L3  
N
P1  
P2  
CNP2  
CNP3  
P
C
D
L11  
L21  
U
V
W
CHARGE  
6
Approx.  
25.5  
Approx.68  
With MR-J3BAT  
Note. This data applies to the 3-phase or 1-phase 200 to 230VAC power supply models.  
For a single-phase, 100 to 120VAC power supply, refer to the terminal signal layout.  
Mass: 1.0 [kg] (2.21 [lb])  
Terminal signal layout  
For 3-phase or  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
For 1-phase  
1-phase  
PE terminal  
Approx. 40  
6
100 to 120VAC 200 to 230VAC  
L1  
L1  
L2  
L3  
N
L2  
N
CNP1  
CNP1  
Screw size: M4  
Tightening torque:  
2-M5 screw  
1.2 [N m] (10.6 [lb in])  
P1  
P2  
P1  
P2  
P
C
P
C
CNP2  
CNP3  
CNP2  
CNP3  
D
D
L11  
L21  
L11  
L21  
U
V
U
V
Mounting hole process drawing  
W
W
9 - 2  
9. OUTLINE DRAWINGS  
(3) MR-J3-70B MR-J3-100B  
[Unit: mm]  
12  
6 mounting hole  
Approx.80  
60  
6
185  
CNP1  
CNP2  
CNP3  
6
Cooling fan  
wind direction  
12  
Approx.68  
Approx.25.5  
With MR-J3BAT  
42  
Mass: 1.4 [kg] (3.09 [lb])  
Terminal signal layout  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
PE terminal  
L1  
L2  
L3  
N
Approx. 60  
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
1.2 [N m] (10.6 [lb in])  
P
C
CNP2  
CNP3  
D
3-M5 screw  
42 0.3  
L11  
L21  
U
V
Approx. 6  
Mounting hole process drawing  
Approx. 12  
W
9 - 3  
9. OUTLINE DRAWINGS  
(4) MR-J3-60B4 MR-J3-100B4  
[Unit: mm]  
Approx. 80  
60  
195  
6mounting hole  
6
12  
CNP1  
CNP2  
CNP3  
6
42  
12  
Approx. 68  
Approx. 25.5  
With MR-J3BAT  
Mass: 1.7 [kg] (3.75 [lb])  
Mounting screw  
Screw size: M5  
Terminal signal layout  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
PE terminal  
L1  
L2  
L3  
Approx. 60  
CNP1  
N
Screw size: M4  
Tightening torque:  
P1  
1.2 [N m] (10.6 [lb in])  
P2  
P
C
D
3-M5 screw  
42 0.3  
CNP2  
CNP3  
L11  
L21  
U
V
Approx. 12  
Approx. 6  
W
Mounting hole process drawing  
9 - 4  
9. OUTLINE DRAWINGS  
(5) MR-J3-200B(4)  
POINT  
Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200B servo  
amplifier have been changed from January 2008 production. Model name of  
the existing servo amplifier is changed to MR-J3-200B-RT. For MR-J3-200B-  
RT, refer to appendix 5.  
[Unit: mm]  
6mounting hole  
Approx. 80  
90  
85  
195  
6
45  
CNP1  
CNP2  
CNP3  
6
Approx.  
Cooling fan  
25.5  
wind direction  
Approx. 68  
6
6
78  
With MR-J3BAT  
Mass: 2.1 [kg] (4.63 [lb])  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
Terminal signal layout  
PE terminal  
L1  
L2  
L3  
Approx. 90  
CNP1  
N
Screw size: M4  
Tightening torque:  
P1  
1.2 [N m] (10.6 [lb in])  
P2  
P
C
D
3-M5 screw  
CNP2  
CNP3  
L11  
L21  
U
V
Approx. 6  
Mounting hole process drawing  
Approx. 6  
78 0.3  
W
9 - 5  
9. OUTLINE DRAWINGS  
(6) MR-J3-350B  
[Unit: mm]  
6 mounting hole  
Approx.80  
90  
85  
6
195  
45  
21.4  
6
Cooling fan  
wind direction  
Approx.  
25.5  
6
Approx.68  
78  
With MR-J3BAT  
6
Mass: 2.3 [kg] (5.07 [lb])  
Mounting screw  
Screw size: M5  
Terminal signal layout  
PE terminal  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
L1  
L2  
L3  
N
Approx. 90  
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
1.2 [N m] (10.6 [lb in])  
U
V
CNP3  
CNP2  
W
3-M5 screw  
P
C
D
L11  
L21  
Approx. 6  
Mounting hole process drawing  
Approx. 6  
78 0.3  
9 - 6  
9. OUTLINE DRAWINGS  
(7) MR-J3-350B4 MR-J3-500B(4)  
[Unit: mm]  
Approx. 80  
200  
2- 6 mounting hole  
6
131.5  
68.5  
130  
Cooling fan  
wind direction  
118  
Terminal layout  
(Terminal cover open)  
6
Cooling fan  
TE2  
TE3  
TE1  
With MR-J3BAT  
CHARGE  
20.5  
3 places for  
ground (M4)  
Built-in regenerative  
resistor lead terminal  
fixing screw  
Mass: 4.6 [kg] (10.1 [lb])  
Approx. 130  
Terminal signal layout  
Approx. 6  
118 0.5  
Approx. 6  
TE1  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
P
C
U
V
W
L1  
L2  
L21  
P1  
L3  
(10.6 [lb in])  
4-M5 screw  
TE2  
L11  
Terminal screw: M3.5(Note)  
Tightening torque: 0.8[N m]  
(7.08 [lb in])  
TE3  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
N
P2  
PE terminal  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
Built-in regenerative resistor lead  
terminal fixing screw  
Note. Screw size is M3.5 for the control circuit terminal block (TE2) of the servo  
amplifier manufactured in April 2007 or later. Screw size is M3 for the control  
terminal block (TE2) of the servo amplifier manufactured in March 2007 or earlier.  
Mounting hole process drawing  
9 - 7  
9. OUTLINE DRAWINGS  
(8) MR-J3-700B(4)  
[Unit: mm]  
Approx.80  
200  
6
2- 6 mounting hole  
62  
Cooling fan  
wind direction  
138  
172  
160  
Terminal layout  
(Terminal cover open)  
6
Cooling fan  
With MR-J3BAT  
TE3  
CHARGE  
20.5  
TE1  
6
TE2  
3 places for  
ground (M4)  
Built-in regenerative  
resistor lead terminal  
fixing screw  
Mass: 6.2 [kg] (13.7[lb])  
Mounting screw  
Screw size: M5  
Terminal signal layout  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
Approx. 172  
TE1  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
P
C
U
V
W
L1  
L2  
L3  
Approx. 6  
Approx. 6  
160 0.5  
(10.6 [lb in])  
TE2  
L11  
Terminal screw: M3.5(Note)  
Tightening torque: 0.8[N m]  
L21  
4-M5 screw  
(7.08 [lb in])  
TE3  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
N
P1  
P2  
PE terminal  
Terminal screw: M4  
Tightening torque: 1.2[N m]  
(10.6 [lb in])  
Built-in regenerative resistor lead  
terminal fixing screw  
Note. Screw size is M3.5 for the control circuit terminal block (TE2) of the servo  
amplifier manufactured in April 2007 or later. Screw size is M3 for the control  
terminal block (TE2) of the servo amplifier manufactured in March 2007 or earlier.  
Mounting hole process drawing  
9 - 8  
9. OUTLINE DRAWINGS  
(9) MR-J3-11KB(4) to 22KB(4)  
[Unit: mm]  
260  
236  
Approx. 80  
260  
12  
12  
Cooling fan  
wind direction  
2- 12mounting hole  
With MR-J3BAT  
Rating plate  
123.5 13  
12  
183  
227  
26  
6
26 156  
52  
Approx. 260  
236 0.5  
Approx. 12  
Approx. 12  
4-M10 screw  
Servo amplifier  
Mass[kg]([lb])  
MR-J3-11KB(4)  
MR-J3-15KB(4)  
MR-J3-22KB(4)  
18.0 (40)  
18.0 (40)  
19.0 (42)  
Mounting hole process drawing  
Terminal signal layout  
TE  
L1  
Mounting screw  
L11 L21  
N
U
L2  
P
L3  
C
V
W
Servo  
amplifier  
Screw Tightening torque  
size  
[N m][(Ib:in)]  
P1  
MR-J3-11KB(4)  
MR-J3-15KB(4) M10  
MR-J3-22KB(4)  
26.5  
(234.5)  
L1 L2 L3  
U
N
V
W
L11 L21  
P1  
P
C
Screw size  
M6  
M4  
1.2  
M4  
1.2  
MR-J3-11KB(4)  
MR-J3-15KB(4)  
Tightening torque  
[(lb:in)][N m]  
3.0  
M8  
6.0  
Screw size  
MR-J3-22KB(4)  
Tightening torque  
[(lb:in)][N m]  
9 - 9  
9. OUTLINE DRAWINGS  
9.2 Connector  
(1) CN1A CN1B connector  
[Unit: mm]  
F0-PF2D103  
F0-PF2D103-S  
4.8  
4.8  
1.7  
1.7  
2.3  
2.3  
17.6 0.2  
20.9 0.2  
17.6 0.2  
20.9 0.2  
8
8
(2) Miniature delta ribbon (MDR) system (3M)  
(a) One-touch lock type  
[Unit: mm]  
E
A
C
Logo etc, are indicated here.  
B
12.7  
Each type of dimension  
Connector  
Shell kit  
10320-52F0-008  
A
B
C
D
E
10120-3000PE  
22.0  
33.3  
14.0  
10.0  
12.0  
9 - 10  
9. OUTLINE DRAWINGS  
(b) Jack screw M2.6 type  
This is not available as option.  
[Unit: mm]  
E
F
A
C
Logo etc, are indicated here.  
B
12.7  
Each type of dimension  
Connector  
Shell kit  
10320-52F0-008  
A
B
C
D
E
F
10120-3000PE  
22.0  
33.3  
14.0  
10.0  
12.0  
27.4  
(3) SCR connector system (3M)  
Receptacle: 36210-0100PL  
Shell kit  
: 36310-3200-008  
39.5  
34.8  
9 - 11  
9. OUTLINE DRAWINGS  
MEMO  
9 - 12  
10. CHARACTERISTICS  
10. CHARACTERISTICS  
10.1 Overload protection characteristics  
An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier from  
overloads. Overload 1 alarm (50) occurs if overload operation performed is above the electronic thermal relay  
protection curve shown in any of Figs 10.1. Overload 2 alarm (51) occurs if the maximum current flew  
continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side area of  
the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
When you carry out adhesion mounting of the servo amplifier, make circumference temperature into 0 to 45  
or use it at 75% or smaller effective load ratio.  
,
1000  
1000  
During operation  
During operation  
100  
100  
During servo lock  
During servo lock  
10  
1
10  
1
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
MR-J3-10B(1)  
MR-J3-20B(1) MR-J3-40B(1)  
MR-J3-60B(4) to MR-J3-100B(4)  
10000  
1000  
1000  
100  
During operation  
During operation  
During servo lock  
During servo lock  
10  
1
100  
10  
0.1  
0
1
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
(Note) Load ratio [%]  
(Note) Load ratio [%]  
MR-J3-200B(4) to MR-J3-350B(4)  
MR-J3-500B(4) MR-J3-700B(4)  
10 - 1  
10. CHARACTERISTICS  
10000  
1000  
During operation  
100  
During servo lock  
10  
1
0
100  
200  
300  
(Note) Load ratio [%]  
MR-J3-11KB(4) to MR-J3-22KB(4)  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor  
stop status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the  
electronic thermal relay protection is not activated.  
Fig 10.1 Electronic thermal relay protection characteristics  
10 - 2  
10. CHARACTERISTICS  
10.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the servo amplifier  
Table 10.1 indicates servo amplifiers' power supply capacities and losses generated under rated load. For  
thermal design of an enclosure, use the values in Table 10.1 in consideration for the worst operating  
conditions. The actual amount of generated heat will be intermediate between values at rated torque and  
servo off according to the duty used during operation. When the servo motor is run at less than the  
maximum speed, the power supply capacity will be smaller than the value in the table, but the servo  
amplifier's generated heat will not change.  
Table 10.1 Power supply capacity and generated heat per servo amplifier at rated output  
(Note 1)  
(Note 2)  
Area required for  
heat dissipation  
[m2]  
Servo amplifier  
MR-J3-10B (1)  
Servo motor  
Power supply  
capacity[kVA]  
Servo amplifier-generated heat[W]  
At rated torque  
25  
With servo off  
HF-MP053  
0.3  
0.3  
0.3  
0.5  
0.5  
0.9  
0.9  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.7  
1.5  
1.7  
2.5  
3.5  
2.1  
3.5  
1.8  
2.5  
2.5  
2.5  
5.5  
3.5  
3.5  
3.5  
4.8  
7.5  
5.5  
7.5  
5.5  
7.5  
4.5  
7.5  
6.7  
15  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
0.8  
0.8  
0.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.8  
1.8  
1.8  
1.8  
1.0  
1.8  
1.8  
1.8  
2.7  
1.8  
1.8  
1.8  
2.4  
3.9  
2.7  
3.9  
3.9  
3.9  
2.4  
3.9  
3.2  
HF-MP13  
25  
15  
HF-KP053 13  
HF-MP23  
25  
15  
25  
15  
MR-J3-20B (1)  
MR-J3-40B (1)  
HF-KP23  
25  
15  
HF-MP43  
35  
15  
HF-KP43  
35  
15  
HF-SP52 (4)  
HF-SP51  
40  
15  
MR-J3-60B (4)  
MR-J3-70B  
40  
15  
HC-LP52  
40  
15  
HF-MP73  
50  
15  
HF-KP73  
50  
15  
HC-UP72  
50  
15  
HF-SP102 (4)  
HF-SP81  
50  
15  
MR-J3-100B (4)  
50  
15  
HC-LP102  
HF-SP152 (4)  
HF-SP202 (4)  
HF-SP121  
HF-SP201  
HC-RP103  
HC-RP153  
HC-UP152  
HC-LP152  
HF-SP352 (4)  
HC-RP203  
HC-UP202  
HC-LP202  
HF-SP301  
HF-SP502 (4)  
HC-RP353  
HC-RP503  
HC-UP352  
HC-UP502  
HC-LP302  
HA-LP502  
HF-SP421  
50  
15  
90  
20  
90  
20  
90  
20  
90  
20  
MR-J3-200B (4)  
MR-J3-350B (4)  
MR-J3-500B (4)  
50  
15  
90  
20  
90  
20  
90  
20  
130  
90  
20 (25) (Note 3)  
20  
20  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
90  
90  
120  
195  
135  
195  
195  
195  
120  
195  
160  
10 - 3  
10. CHARACTERISTICS  
(Note 1)  
(Note 2)  
Area required for  
heat dissipation  
[m2]  
Servo amplifier  
MR-J3-700B (4)  
Servo motor  
Power supply  
capacity[kVA]  
Servo amplifier-generated heat[W]  
At rated torque  
300  
With servo off  
HF-SP702 (4)  
10.0  
10.6  
10.0  
11.0  
16.0  
12.0  
18.0  
16.0  
22.0  
22.0  
22.0  
33.0  
30.1  
37.6  
33.0  
25  
25  
25  
25  
45  
45  
45  
45  
45  
45  
45  
55  
55  
55  
55  
6.0  
6.0  
HA-LP702  
300  
HA-LP601 (4)  
HA-LP701M (4)  
HC-LP11K2 (4)  
HC-LP801 (4)  
HC-LP12K1 (4)  
HC-LP11K1M (4)  
HC-LP15K2 (4)  
HC-LP15K1 (4)  
HC-LP15K1M (4)  
HC-LP22K2 (4)  
HC-LP20K1 (4)  
HC-LP25K1  
260  
5.2  
300  
6.0  
530  
11.0  
7.8  
390  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
580  
11.6  
11.0  
13.0  
13.0  
13.0  
17.0  
15.5  
19.4  
17.0  
530  
640  
640  
640  
850  
775  
970  
HC-LP22K1M (4)  
850  
Note 1. Note that the power supply capacity will vary according to the power supply impedance. This value is applicable when the  
power factor improving reactor is not used.  
2. Heat generated during regeneration is not included in the servo amplifier-generated heat. To calculate heat generated by the  
regenerative option, refer to section 11.2.  
3. For 400V class, the value is within the ( ).  
10 - 4  
10. CHARACTERISTICS  
(2) Heat dissipation area for enclosed servo amplifier  
The enclosed control box (hereafter called the control box) which will contain the servo amplifier should be  
designed to ensure that its temperature rise is within 10 at the ambient temperature of 40 . (With a 5  
(41 ) safety margin, the system should operate within a maximum 55 (131 ) limit.) The necessary  
enclosure heat dissipation area can be calculated by Equation 10.1.  
P
............................................................................................................................................. (10.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
: Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
T
]
K
When calculating the heat dissipation area with Equation 10.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 10.1 for heat generated by the servo amplifier. "A" indicates the  
effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that extra  
amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore, arrangement  
of the equipment in the enclosure and the use of a cooling fan should be considered.  
Table 10.1 lists the enclosure dissipation area for each servo amplifier when the servo amplifier is operated  
at the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 10.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because the  
temperature slope inside and outside the enclosure will be steeper.  
10 - 5  
10. CHARACTERISTICS  
10.3 Dynamic brake characteristics  
10.3.1 Dynamic brake operation  
(1) Calculation of coasting distance  
Fig. 10.3 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 10.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to (2)(a), (b) of this section.)  
ON  
Forced stop(EM1)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 10.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
....................................................................................................................... (10.2)  
Lmax  
te  
1
Lmax  
Vo  
JM  
: Maximum coasting distance .................................................................................................... [mm][in]  
: Machine rapid feed rate..............................................................................................[mm/min][in/min]  
: Servo motor inertial moment..................................................................................... [kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft ............ [kg cm2][oz in2]  
: Brake time constant .......................................................................................................................... [s]  
: Delay time of control section............................................................................................................. [s]  
For 7kW or less servo, there is internal relay delay time of about 30ms. For 11k to 22kW servo,  
there is delay time of about 100ms caused by a delay of the external relay and a delay of the  
magnetic contactor built in the external dynamic brake.  
JL  
t
e
(2) Dynamic brake time constant  
The following shows necessary dynamic brake time constant for the equations (10.2).  
(a) 200V class servo motor  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
73  
23  
73  
23  
053  
43  
13  
053  
43  
13  
0
0
0
1000 2000 3000 4000 5000 6000  
Speed [r/min]  
0
1000 2000 3000 4000 5000 6000  
Speed [r/min]  
HF-MP series  
HF-KP series  
10 - 6  
10. CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
52  
51  
352  
81  
421  
30  
20  
10  
0
102  
702  
301  
2000  
201  
202  
152  
121  
1500  
502  
0
500 1000 1500 2000 2500 3000  
0
500  
1000  
Speed [r/min]  
Speed [r/min]  
HF-SP1000r/min series  
HF-SP2000r/min series  
18  
16  
14  
12  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
72  
502  
352  
103  
503  
8
6
153  
4
2
0
353  
202  
203  
152  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500  
1000 1500 2000  
Speed [r/min]  
HC-RP series  
HC-UP2000r/min series  
70  
60  
50  
40  
30  
20  
10  
0
20K1  
73  
60  
50  
40  
30  
20  
10  
0
12K1  
15K1  
801  
601  
25K1  
0
200 400 600 800 1000 1200  
Speed[r/min]  
43  
23  
13  
0
50 500 10001500200025003000  
Speed [r/min]  
HC-UP3000r/min  
HA-LP1000r/min series  
120  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
22K1M  
11K1M  
15K2  
11K2  
22K2  
702  
15K1M  
701M  
1500  
502  
0
500  
1000  
2000  
0
500  
1000  
1500  
2000  
Speed[r/min]  
Speed[r/min]  
HA-LP1500r/min series  
HA-LP2000r/min series  
10 - 7  
10. CHARACTERISTICS  
200  
160  
120  
80  
52  
202  
302  
102  
40  
152  
2000  
0
0
500  
1000  
Speed[r/min]  
1500  
HC-LP series  
(b) 400V class servo motor  
90  
35  
30  
25  
20  
15  
10  
5
2024  
1024  
20K14  
75  
60  
45  
524  
12K14  
8014  
3524  
15K14  
30  
15  
0
5024  
6014  
1524  
2000  
7024  
0
0
400  
800  
1200  
0
1000  
3000  
Speed[r/min]  
Speed[r/min]  
HA-SP2000r/min series  
HA-LP1000r/min series  
20  
40  
35  
30  
16  
25  
12  
8
11K1M4  
701M4  
15K24  
15K1M4  
20  
15  
11K24  
10  
4
22K1M4  
5
0
22K2  
0
0
500  
1000  
1500  
0
500  
1000 1500 2000  
Speed[r/min]  
Speed[r/min]  
HA-LP1500r/min series  
HA-LP2000r/min series  
10 - 8  
10. CHARACTERISTICS  
10.3.2 The dynamic brake at the load inertia moment  
Use the dynamic brake under the load inertia moment ratio indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the load  
inertia moment may exceed the value, contact Mitsubishi.  
The values of the load inertia moment ratio in the table are the values at the maximum rotation speed of the  
servo motor.  
Servo motor  
HF-SP 1 HF-SP 2 HC-RP HC-UP  
Servo  
HA-  
amplifier  
HF-KP  
HF-MP  
HC-LP  
HA-LP  
1
HA-LP  
2
LP 1M  
MR-J3-10B(1)  
MR-J3-20B(1)  
MR-J3-40B(1)  
MR-J3-60B  
30  
30  
30  
30  
30  
30  
30  
30  
30  
MR-J3-70B  
30  
30  
30  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
MR-J3-700B  
30  
30  
16  
15  
30  
30  
30  
30  
16  
15  
30  
16  
15  
30  
16  
15  
16  
15  
15  
5 (Note 1) 5 (Note 1) 5 (Note 1)  
5 (Note 1)  
MR-J3-11KB  
(Note 2)  
30  
30  
30  
30  
30  
30  
30  
30  
30  
MR-J3-15KB  
(Note 2)  
MR-J3-22KB  
(Note 2)  
Servo motor  
Servo  
HA-LP  
1M4  
amplifier  
HF-SP 4 HA-LP 14  
HA-LP 24  
MR-J3-60B4 5 (Note 1)  
MR-J3-100B4 5 (Note 1)  
MR-J3-200B4 5 (Note 1)  
MR-J3-350B4 5 (Note 1)  
MR-J3-500B4 5 (Note 1)  
MR-J3-700B4 5 (Note 1)  
MR-J3-11KB4  
10  
30  
10  
30  
30  
30  
30  
(Note 2)  
MR-J3-15KB4  
(Note 2)  
30  
30  
30  
30  
MR-J3-22KB4  
(Note 2)  
Note 1. The load inertia moment ratio is 15 at the rated rotation speed.  
2. When the external dynamic brake is used.  
10 - 9  
10. CHARACTERISTICS  
10.4 Cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flex life encoder cable  
Long flex life motor power cable  
Long flex life motor brake cable  
SSCNET cable using long distance cable  
b : Standard encoder cable  
1
5
106  
105  
Standard motor power cable  
Standard motor brake cable  
SSCNET cable using inside panel standard cord  
SSCNET cable using outside panel standard cable  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
10.5 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference data) that will flow when the maximum permissible  
voltage (200V class: 253VAC, 400V class: 528VAC) is applied at the power supply capacity of 2500kVA and  
the wiring length of 1m (3.28ft).  
Inrush currents (A0-p)  
Servo amplifier  
Main circuit power supply (L1, L2, L3)  
38A (Attenuated to approx. 14A in 10ms)  
30A (Attenuated to approx. 5A in 10ms)  
54A (Attenuated to approx. 12A in 10ms)  
120A (Attenuated to approx. 12A in 20ms)  
44A (Attenuated to approx. 20A in 20ms)  
88A (Attenuated to approx. 20A in 20ms)  
Control circuit power supply (L11, L21)  
MR-J3-10B1 to 40B1  
MR-J3-10B to 60B  
MR-J3-70B 100B  
MR-J3-200B 350B  
MR-J3-500B  
20 to 30A  
(Attenuated to approx. 0A in 1 to 2ms)  
MR-J3-700B  
30A (Attenuated to approx. 0A in 3ms)  
MR-J3-11KB  
235A (Attenuated to approx. 20A in 20ms)  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-60B4 100B4  
MR-J3-200B4  
MR-J3-350B4 500B4  
MR-J3-700B4  
100A (Attenuated to approx. 5A in 10ms)  
120A (Attenuated to approx. 12A in 20ms)  
66A (Attenuated to approx. 10A in 20ms)  
67A (Attenuated to approx. 34A in 20ms)  
40 to 50A  
(Attenuated to approx. 0A in 2ms)  
41A (Attenuated to approx. 0A in 3ms)  
45A (Attenuated to approx. 0A in 3ms)  
MR-J3-11KB4  
325A (Attenuated to approx. 20A in 20ms)  
MR-J3-15KB4  
MR-J3-22KB4  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic contactors.  
(Refer to section 11.12.)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped by an  
inrush current.  
10 - 10  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or peripheral equipment, turn off the power and wait  
for 15 minutes or more until the charge lamp turns off. Then, confirm that the  
voltage between P( ) and N( ) is safe with a voltage tester and others.  
Otherwise, an electric shock may occur. In addition, always confirm from the front  
of the servo amplifier whether the charge lamp is off or not.  
WARNING  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
CAUTION  
11.1 Cable/connector sets  
POINT  
Protective structure indicated for cables and connecters is for a cable or  
connector alone. When the cables and connectors are used to connect the  
servo amplifier and servo motor, and if protective structures of the servo  
amplifier and servo motor are lower than that of the cable and connector,  
specifications of the servo amplifier and servo motor apply.  
As the cables and connectors used with this servo, purchase the options indicated in this section.  
11 - 1  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.1.1 Combinations of cable/connector sets  
Servo system  
cont  
Personal computer  
35)  
32)33)34)  
Servo amplifier  
Servo amplifier  
37)  
1)2)  
CN5  
CN5  
CN3  
Note  
CNP1  
CN3  
36)  
CN1A  
CN1B  
CN2  
CN1A  
CNP2  
32)33)34)  
CN1B  
CNP3  
CN2  
CN4  
Cap  
(Servo amplifier  
attachment)  
CN4  
Direct connection type (cable length 10m or less, IP65)  
15)16)17)18)  
31)  
Junction type (cable length more than 10m, IP20)  
21)22)  
19)20)  
Battery  
MR-J3BAT  
23)  
13)14)  
To 24VDC power  
supply for  
electromagnetic  
brake  
9)10)11)12)  
7)8)  
Servo  
motor  
3)4)5)6)  
HF-MP  
HF-KP  
Power supply  
connector  
Brake  
connector connector  
Encoder  
26)  
24)25)  
27)  
Servo  
motor  
HF-SP  
28)29)  
30)  
To next page a)  
To next page b)  
Power supply  
connector  
Brake  
connector connector  
Encoder  
Note. Connectors for 3.5kW or less. For 5kW or more, terminal blocks.  
11 - 2  
11. OPTIONS AND AUXILIARY EQUIPMENT  
From previous page a)  
From previous page b)  
26)  
24)25)  
38)  
Servo motor  
HC-RP  
30)39)40)  
HC-UP  
HC-LP  
Power supply  
connector  
Encoder  
connector  
Brake  
connector  
26)  
24)25)  
Servo motor  
HA-LP  
Terminal box  
No.  
1) Servo  
amplifier  
Product  
Model  
Description  
Application  
Supplied with  
servo  
power supply  
connector  
amplifiers of  
1kW or less in  
100V class  
and 200V  
class  
CNP1  
CNP2  
CNP3  
connector: 54928-0610 connector: 54928-0520 connector: 54928-0310  
(Molex)  
(Molex)  
(Molex)  
<Applicable cable example>  
Wire size: 0.14mm2(AWG26) to 2.5mm2  
(AWG14)  
REC. Lever:  
Cable finish OD: to 3.8mm  
54932-0000  
(Molex)  
11 - 3  
11. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
2) Servo  
amplifier  
Product  
Model  
Description  
Application  
Supplied with  
servo  
power supply  
connector  
amplifiers of  
3.5kW in 200V  
class  
CNP1 connector:  
PC4/6-STF-7.62-  
CRWH  
CNP2 connector:  
54928-0520  
(Molex)  
CNP3 connector:  
PC4/3-STF-7.62-  
CRWH  
(Phoenix Contact)  
(Phoenix Contact)  
<Applicable cable example>  
Wire size: 0.2mm2 (AWG24) to 5.5mm2  
(AWG10)  
REC. Lever:  
Cable finish OD: to 5mm  
54932-0000  
(Molex)  
Supplied with  
servo  
amplifiers of  
2kW in 200V  
class and 2kW  
in 400V class  
CNP1 connector:  
721-207/026-000  
(Plug)  
CNP2 connector:  
721-205/026-000  
(Plug)  
CNP3 connector:  
721-203/026-000  
(Plug)  
(WAGO)  
(WAGO)  
(WAGO)  
<Applicable cable example>  
Wire size: 0.08mm2 (AWG28) to 2.5mm2  
(AWG12)  
REC. Lever: 231-131  
(WAGO)  
Cable finish OD: to  
mm  
4.1  
3) Motor power MR-PWS1CBL M-A1-L  
supply cable Cable length: 2 10m  
4) Motor power MR-PWS1CBL M-A1-H  
supply cable Cable length: 2 10m  
IP65  
Power supply connector  
5
Load side lead  
IP65  
HF-MP series  
HF-KP series  
5
Load side lead  
Long flex life  
Refer to section 11.1.3 for details.  
5) Motor power MR-PWS1CBL M-A2-L  
supply cable Cable length: 2 10m  
IP65  
Power supply connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
6) Motor power MR-PWS1CBL M-A2-H  
supply cable Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
IP55  
Refer to section 11.1.3 for details.  
7) Motor power MR-PWS2CBL03M-A1-L  
supply cable Cable length: 0.3m  
Power supply connector  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 11.1.3 for details.  
8) Motor power MR-PWS2CBL03M-A2-L  
supply cable Cable length: 0.3m  
IP55  
Power supply connector  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
Refer to section 11.1.3 for details.  
11 - 4  
11. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
9) Motor brake MR-BKS1CBL M-A1-L  
cable Cable length: 2 10m  
10) Motor brake MR-BKS1CBL M-A1-H  
cable Cable length: 2 10m  
Product  
Model  
Description  
Application  
IP65  
Brake connector  
5
Load side lead  
IP65  
HF-MP series  
HF-KP series  
5
Load side lead  
Long flex life  
Refer to section 11.1.4 for details.  
11) Motor brake MR-BKS1CBL M-A2-L  
cable Cable length: 2 10m  
IP65  
Brake connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
12) Motor brake MR-BKS1CBL M-A2-H  
cable Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
IP55  
Refer to section 11.1.4 for details.  
13) Motor brake MR-BKS2CBL03M-A1-L  
cable Cable length: 0.3m  
Brake connector  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 11.1.4 for details.  
Refer to section 11.1.4 for details.  
Refer to section 11.1.2 (1) for details.  
Refer to section 11.1.2 (1) for details.  
14) Motor brake MR-BKS2CBL03M-A2-L  
IP55  
Brake connector  
cable  
Cable length: 0.3m  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
15) Encoder  
cable  
MR-J3ENCBL M-A1-L  
IP65  
Encoder connector  
Cable length: 2  
MR-J3ENCBL M-A1-H  
Cable length: 2 10m  
5
10m  
Load side lead  
IP65  
16) Encoder  
cable  
HF-MP series  
HF-KP series  
5
Opposite-to-  
load side lead  
Long flex life  
17) Encoder  
cable  
MR-J3ENCBL M-A2-L  
Cable length: 2 10m  
IP65  
Encoder connector  
5
Opposite-to-  
load side lead  
IP65  
HF-MP series  
HF-KP series  
18) Encoder  
cable  
MR-J3ENCBL M-A2-H  
Cable length: 2 10m  
5
Opposite-to-  
load side lead  
Long flex life  
IP20  
19) Encoder  
cable  
MR-J3JCBL03M-A1-L  
Cable length: 0.3m  
Encoder connector  
Load side lead  
HF-MP series  
HF-KP series  
Refer to section 11.1.2 (3) for details.  
Encoder connector  
20) Encoder  
cable  
MR-J3JCBL03M-A2-L  
Cable length: 0.3m  
IP20  
Opposite-to-  
load side lead  
HF-MP series  
HF-KP series  
Refer to section 11.1.2 (3) for details.  
11 - 5  
11. OPTIONS AND AUXILIARY EQUIPMENT  
No  
Product  
Model  
Description  
Application  
IP20  
21) Encoder  
cable  
MR-EKCBL M-L  
Cable length: 20 30m  
MR-EKCBL M-H  
Cable length:  
22) Encoder  
cable  
IP20  
Long flex life  
For HF-MP HF-KP series  
20 30 40 50m  
MR-ECNM  
Refer to section 11.1.2 (2) for details.  
23) Encoder  
connector  
set  
IP20  
For HF-MP HF-KP series  
Refer to section 11.1.2 (2) for details.  
24) Encoder  
cable  
MR-J3ENSCBL M-L  
Cable length:  
IP67  
Standard flex  
life  
2
5
10 20 30m  
For HF-SP HC-UP HC-LP HC-RP HA-LP series  
Refer to section 11.1.2 (4) for details.  
25) Encoder  
cable  
MR-J3ENSCBL M-H  
Cable length:  
IP67  
Long flex life  
2
5
10 20 30 40  
50m  
26) Encoder  
connector  
set  
MR-J3SCNS  
IP67  
For HF-SP HC-UP HC-LP HC-RP HA-LP series  
Refer to section 11.1.2 (4) for details.  
Straight plug: CM10-SP2S-L  
Socket contact: CM10-#22SC(S2)-100  
(DDK)  
27) Brake  
connector  
set  
MR-BKCNS1  
MR-PWCNS4  
IP67  
IP67  
For HF-SP series  
28) Power  
supply  
Plug: CE05-6A18-10SD-D-BSS  
Cable clamp: CE3057-10A-1-D  
(DDK)  
connector  
set  
For HF-SP51 81  
For HF-SP52 152  
Example of applicable cable  
Applicable wire size: 2mm2 (AWG14) to  
3.5mm2 (AWG12)  
Cable finish D: 10.5 to 14.1mm  
29) Power  
supply  
MR-PWCNS5  
Plug: CE05-6A22-22SD-D-BSS  
Cable clamp: CE3057-12A-1-D  
(DDK)  
IP67  
connector  
set  
For HF-SP121 to 301  
For HF-SP202 to 502  
Example of applicable cable  
Applicable wire size: 5.5mm2 (AWG10) to  
8mm2 (AWG8)  
Cable finish D: 12.5 to 16mm  
Plug: CE05-6A32-17SD-D-BSS  
Cable clamp: CE3057-20A-1-D  
(DDK)  
30) Power  
supply  
MR-PWCNS3  
IP67  
Be sure to use  
this when  
corresponding  
to EN  
connector  
set  
For HF-SP421  
For HF-SP702  
For HA-LP702  
Example of applicable cable  
Applicable wire size: 14mm2 (AWG6) to  
22mm2 (AWG4)  
Standard.  
Cable finish D: 22 to 23.8mm  
31) Cable for  
connecting  
battery  
MR-J3BTCBL03M  
For connection  
of battery  
Refer to section 11.1.2 (5) for details.  
11 - 6  
11. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
MR-J3BUS  
Description  
Connector: PF-2D103  
Application  
32) SSCNET  
cable  
M
Connector: PF-2D103  
Inside panel  
Cable length: 0.15 to 3m (Japan Aviation Electronics  
(Refer to section 11.1.5.) Industry, Ltd.)  
MR-J3BUS M-A  
(Japan Aviation Electronics  
Industry, Ltd.)  
standard cord  
33) SSCNET  
cable  
Outside panel  
standard cable  
Cable length: 5 to 20m  
(Refer to section 11.1.5.)  
34) SSCNET  
cable  
MR-J3BUS M-B  
Connector: PF-2D103  
Connector: PF-2D103  
(Japan Aviation Electronics  
Industry, Ltd.)  
Long distance  
cable  
Cable length: 30 to 50m  
(Refer to section 11.1.5.) Industry, Ltd.)  
(Japan Aviation Electronics  
35) USB cable  
MR-J3USBCBL3M  
Cable length: 3m  
For CN5 connector  
minB connector (5 pins)  
For personal computer connector For connection  
A connector  
with PC-AT  
compatible  
personal  
computer  
36) Connector set MR-CCN1  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or similar product)  
37) Junction  
terminal block  
(Recommend  
ed)  
PS7DW-20V14B-F  
(YOSHIDA ELECTRIC  
INDUSTRY CO., LTD.)  
MR-J2HBUS  
M
Junction terminal block PS7DW-20V14B-F is not available from us as  
option. For using the junction terminal block, our option MR-  
J2HBUS M is necessary. Refer to section 11.7 for details.  
Plug: D/MS3106A10SL-4S(D190) (DDK)  
38) Break  
connector set  
MR-BKCN  
EN standard  
compliant  
IP65  
For cable connector : YS010-5-8(Daiwa Dengyo)  
Example of applicable cable  
Applicable wire size: 0.3mm2 (AWG22) to 1.25mm2  
For HA-LP  
For HC-UP  
(AWG16)  
For HC-LP  
Cable finish: 5 to 8.3mm  
39) Power supply MR-PWCNS1  
connector set  
Plug: CE05-6A22-23SD-D-BSS  
Cable clamp: CE3057-12A-2-D (DDK)  
Example of applicable cable  
Be sure to use  
this when  
corresponding  
to EN standard  
IP65  
For HC-UP  
Applicable wire size: 2mm2 (AWG14) to 3.5mm2  
For HC-LP  
(AWG12)  
For HC-RP  
Cable finish: 9.5 to 13mm  
40) Power supply MR-PWCNS2  
connector set  
Plug: CE05-6A24-10SD-D-BSS  
Cable clamp: CE3057-16A-2-D (DDK)  
Example of applicable cable  
For HA-LP  
Applicable wire size: 5.5mm2 (AWG10) to 8mm2  
For HC-UP  
(AWG8)  
For HC-LP  
Cable finish: 13 to 15.5mm  
For HC-RP  
11 - 7  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.1.2 Encoder cable/connector sets  
(1) MR-J3ENCBL M-A1-L/H MR-J3ENCBL M-A2-L/H  
These cables are encoder cables for the HF-MP HF-KP series servo motors. The numerals in the Cable  
Length field of the table are the symbols entered in the part of the cable model. The cables of the lengths  
with the symbols are available.  
Cable length  
10m 20m 30m  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
2
5m  
5
40m  
50m  
For HF-MP HF-KP servo  
motor  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A1-H  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A2-H  
10  
10  
10  
10  
IP65  
IP65  
IP65  
IP65  
Standard  
Long flex  
life  
Load side lead  
2
2
2
5
5
5
Standard  
For HF-MP HF-KP servo  
motor  
Long flex  
life  
Opposite-to-load side lead  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A1-H  
2)  
Servo motor  
HF-MP  
HF-KP  
1)  
or  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A2-H  
2)  
Servo motor  
HF-MP  
CN2  
HF-KP  
1)  
Cable model  
1) For CN2 connector  
2) For encoder connector  
MR-J3ENCBL M-  
A1-L  
Connector set: 54599-1019(Molex)  
Connector: 1674320-1  
Crimping tool for ground clip:  
1596970-1  
Receptacle: 36210-0100PL  
Shell kit: 36310-3200-008  
(3M)  
Crimping tool for receptacle  
contact: 1596847-1  
(Tyco Electronics)  
MR-J3ENCBL M-  
A1-H  
(Note) Signal layout  
(Note) Signal layout  
2
6
5
10  
(Note) Signal layout  
2
4
6
5
8
7
10  
LG  
4
8
7
MRR  
LG  
MRR  
SHD  
9
7
5
3
1
or  
1
P5  
9
BAT  
MR-J3ENCBL M-  
A2-L  
8
6
4
2
1
3
9
BAT  
3
MR  
P5 MR  
MR  
P5  
P5G  
MRR  
BAT  
View seen from wiring side.  
View seen from wiring side.  
MR-J3ENCBL M-  
A2-H  
View seen from wiring side.  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided  
for manufacturer adjustment. If it is connected with any other pin, the  
servo amplifier cannot operate normally.  
Note. Keep open the pin shown  
with an  
.
11 - 8  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Cable internal wiring diagram  
MR-J3ENCBL2M-L/-H  
MR-J3ENCBL5M-L/-H  
MR-J3ENCBL10M-L/-H  
Encoder side  
connector  
Servo amplifier  
side connector  
P5  
1
2
3
4
3
6
5
4
2
9
P5  
LG  
LG  
MR  
MRR  
BAT  
SD  
MR  
MRR  
BAT  
SHD  
9
Plate  
(2) MR-EKCBL M-L/H  
POINT  
The following encoder cables are of four-wire type. When using any of these  
encoder cables, set parameter No.PC04 to "1  
type.  
" to select the four-wire  
MR-EKCBL30M-L  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
The servo amplifier and servo motor cannot be connected with these cables only. The servo motor side  
encoder cable (MR-J3JCBL03M-A1-L or MR-J3JCBL03M-A2-L) is required.  
The numerals in the Cable Length field of the table are the symbols entered in the part of the cable  
model. The cables of the lengths with the symbols are available.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
5m  
10m  
20m  
30m  
40m  
50m  
For HF-MP HF-KP servo  
motor  
(Note)  
30  
MR-EKCBL M-L  
20  
IP20  
IP20  
Standard  
Use in combination with  
MR-J3JCBL03M-A1-L or  
MR-J3JCBL03M-A2-L.  
(Note) (Note) (Note)  
30 40 50  
Long flex  
life  
MR-EKCBL M-H  
20  
Note. Four-wire type cable.  
11 - 9  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-EKCBL M-L  
MR-EKCBL M-H  
MR-J3JCBL03M-L  
Cable length: 0.3m  
Servo motor  
HF-MP  
HF-KP  
CN2  
1)  
2)  
Cable model  
1) For CN2 connector  
2) For encoder connector  
MR-EKCBL M-L  
Connector set: 54599-1019(Molex)  
Housing: 1-172161-9  
Receptacle: 36210-0100PL  
Shell kit: 36310-3200-008  
(3M)  
Crimping pin: 170359-1  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industries)  
(Note) Signal layout  
(Note) Signal layout  
2
6
5
10  
Signal layout  
2
4
6
5
8
10  
LG  
4
8
MRR  
MDR  
LG  
MRR  
MDR  
or  
1
2
3
1
P5  
9
BAT  
1
3
7
MD  
9
BAT  
MR MRR BAT  
3
MR  
7
MD  
P5 MR  
MR-EKCBL M-H  
4
5
6
MD MDR CONT  
View seen from wiring side.  
View seen from wiring side.  
7
8
9
P5 LG SHD  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided  
View seen from wiring side.  
for manufacturer adjustment. If it is connected with any other pin, the  
servo amplifier cannot operate normally.  
Note. Keep open the pin shown  
with an  
.
11 - 10  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Internal wiring diagram  
MR-EKCBL20M-L  
MR-EKCBL30M-L  
Servo amplifier side Encoder side  
Servo amplifier side  
Encoder side  
P5  
LG  
1
2
7
8
P5E  
P5  
LG  
1
2
7
8
P5E  
P5G  
P5G  
MR  
3
4
1
2
3
9
MR  
MR  
3
4
7
8
9
1
2
4
5
3
6
9
MR  
MRR  
BAT  
SD  
MRR  
BAT  
SHD  
MRR  
MD  
MRR  
MD  
9
Plate  
MDR  
BAT  
MDR  
BAT  
CONT  
SHD  
(Note)  
Plate  
SD  
(Note)  
MR-EKCBL20M-H  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
Servo amplifier side  
Encoder side  
Servo amplifier side  
Encoder side  
P5  
LG  
1
2
7
8
P5E  
P5G  
P5  
LG  
1
2
7
8
P5E  
P5G  
MR  
3
4
1
2
3
9
MR  
MRR  
BAT  
SD  
MRR  
BAT  
SHD  
MR  
3
4
7
8
9
1
2
4
5
3
6
9
MR  
9
MRR  
MD  
MRR  
MD  
Plate  
(Note)  
MDR  
BAT  
MDR  
BAT  
CONT  
SHD  
SD  
Plate  
(Note)  
Note. Always make connection for use in an absolute position detection system. Wiring is not necessary for use in an incremental  
system.  
When fabricating the cable, use the wiring diagram corresponding to the length indicated below.  
Applicable wiring diagram  
Cable flex life  
Less than 10m  
MR-EKCBL20M-L  
MR-EKCBL20M-H  
30m to 50m  
Standard  
Long flex life  
MR-EKCBL30M-H  
MR-EKCBL40M-H  
MR-EKCBL50M-H  
11 - 11  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(c) When fabricating the encoder cable  
When fabricating the cable, prepare the following parts and tool, and fabricate it according to the wiring  
diagram in (b). Refer to section 11.8 for the specifications of the used cable.  
Parts/tool  
Description  
Connector set  
MR-ECNM  
Servo amplifier side connector  
Receptacle: 36210-0100PL  
Shell kit: 536310-3200-008  
(3M)  
Encoder side connector  
Housing: 1-172161-9  
Connector pin: 170359-1  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industries)  
Or  
Connector set: 54599-1019(Molex)  
(3) MR-J3JCBL03M-A1-L MR-J3JCBL03M-A2-L  
The servo amplifier and servo motor cannot be connected with these cables only. The servo motor side  
encoder cable (MR-EKCBL M-L/H) is required.  
Protective  
Cable model  
Cable length  
Flex life  
Application  
structure  
MR-J3JCBL03M-A1-L  
For HF-MP HF-KP servo motor  
Load side lead  
Use in combination with MR-EKCBL  
M-L/H.  
0.3m  
IP20  
Standard  
MR-J3JCBL03M-A2-L  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
Use in combination with MR-EKCBL  
M-L/H.  
11 - 12  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(a) Connection of servo amplifier and servo motor  
MR-J3JCBL03M-A1-L  
2)  
Servo amplifier  
Servo motor  
HF-MP  
HF-KP  
1)  
MR-EKCBL M-L/-H  
or  
MR-J3JCBL03M-A2-L  
2)  
Servo motor  
HF-MP  
HF-KP  
CN2  
1)  
Cable model  
1) Junction connector  
2) For encoder connector  
MR-J3JCBL03M-A1-L Housing: 1-172169-9  
Contact: 1473226-1  
Connector: 1674320-1  
Crimping tool for ground clip: 1596970-1  
Crimping tool for receptacle contact: 1596847-1  
(Tyco Electronics)  
Cable clamp: 316454-1  
Crimping tool: 91529-1  
(Tyco Electronics)  
Signal layout  
Signal layout  
9 SHD  
7 MDR 8 MD  
5 MR 6 P5G  
MR-J3JCBL03M-A2-L  
3
2
1
BAT MRR MR  
3
P5 4 MRR  
6
CONT  
9
5
4
1 CONT 2 BAT  
MDR MD  
8
View seen from wiring  
7
SHD LG P5  
View seen from wiring side.  
(b) Internal wiring diagram  
MR-J3JCBL03M-A1-L  
Junction  
connector  
Encoder side  
connector  
P5  
7
8
1
3
6
5
4
8
7
2
1
P5  
LG  
MR  
P5G  
MR  
MRR  
MD  
2
4
5
3
6
MRR  
MD  
MDR  
BAT  
SEL  
MDR  
BAT  
CONT  
SHD  
9
9
SHD  
11 - 13  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(4) MR-J3ENSCBL M-L MR-J3ENSCBL M-H  
These cables are detector cables for HF-SP HA-LP HC-RP HC-UP HC-LP Series servo motors. The  
number in the cable length column of the table indicates the symbol filling the square in the cable model.  
Cable lengths corresponding to the specified symbols are prepared.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
2m  
2
5m  
5
10m  
10  
20m  
30m  
40m  
40  
50m  
50  
MR-J3ENSCBL  
M-L  
For HF-SP HA-LP  
HC-RP HC-UP  
20  
30  
30  
IP67  
IP67  
Standard  
MR- J3ENSCBL  
M-H  
Long flex  
life  
HC-LP servo motor  
2
5
10  
20  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
MR-J3ENSCBL M-L  
MR-J3ENSCBL M-H  
2)  
Servo motor  
HF-SP  
CN2  
1)  
Cable model  
1) For CN2 connector  
2) For encoder connector  
Connector set: 54599-1019(Molex)  
In case of 10m or shorter cables  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-  
#22SC(C1)-100  
MR-J3ENSCBL M-L Receptacle: 36210-0100PL  
Shell kit: 36310-3200-008  
(3M)  
Crimping tool: 357J-50446  
(DDK)  
(Note) Signal layout  
(Note) Signal layout  
Applicable cable AWG20 to 22  
2
6
5
10  
2
4
6
5
8
7
10  
LG  
4
8
7
MRR  
LG  
MRR  
In case of 20m or longer cables  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-  
#22SC(C2)-100  
or  
1
P5  
9
BAT  
1
3
9
BAT  
3
MR  
P5 MR  
Crimping tool: 357J-50447  
(DDK)  
View seen from wiring side.  
View seen from wiring side.  
Applicable cable AWG23 to 28  
Note. Keep open the pins shown with  
. Especially, pin 10 is provided for  
MR-J3ENSCBL M-  
H
(Note) Signal layout  
manufacturer adjustment. If it is connected with any other pin, the servo  
amplifier cannot operate normally.  
3
2
1
MRR  
MR  
7
6
5
4
LG  
BAT  
10  
9
8
SHD  
P5  
View seen from wiring side  
Note. Keep open the pin shown  
with an  
.
11 - 14  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Internal wiring diagram  
MR-J3ENSCBL2M-L/H  
MR-J3ENSCBL5M-L/H  
MR-J3ENSCBL10M-L/H  
MR-J3ENSCBL20M-L  
MR-J3ENSCBL30M-L  
MR-J3ENSCBL20M-H  
MR-J3ENSCBL30M-H  
MR-J3ENSCBL40M-H  
MR-J3ENSCBL50M-H  
Encoder side  
connector  
Servo amplifier  
side connector  
Encoder side  
connector  
Servo amplifier  
side connector  
Encoder side  
connector  
Servo amplifier  
side connector  
P5  
1
2
8
5
P5  
LG  
LG  
1
8
P5  
P5  
P5  
1
2
8
5
P5  
2
3
5
1
LG  
LG  
LG  
LG  
MR  
MRR  
BAT  
SD  
MR  
4
2
MRR  
BAT  
SHD  
9
4
MR  
3
4
1
2
4
MR  
10  
Plate  
MRR  
BAT  
SD  
MRR  
BAT  
9
10 SHD  
Plate  
MR  
3
4
9
1
2
4
MR  
MRR  
BAT  
SD  
MRR  
BAT  
10 SHD  
Plate  
(c) When fabricating the encoder cable  
When fabricating the cable, prepare the following parts and tool, and fabricate it according to the wiring  
diagram in (b). Refer to section 11.8 for the specifications of the used cable.  
Parts/Tool  
Description  
Connector set  
MR- J3SCNS (Option)  
Servo amplifier side connector  
Receptacle: 36210-0100PL  
Shell kit: 536310-3200-008  
(3M)  
Encoder side connector  
Straight plug: CM10-SP10S-M  
Socket contact: CM10-#22SC(S1)-100  
Applicable wire size: AWG20 or less  
Recommended tightening jig: 357J-51456T  
(DDK)  
Or  
Connector set: 54599-1019  
(Molex)  
11 - 15  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(5) MR-J3BTCBL03M  
This cable is a battery connection cable. Use this cable to retain the current position even if the detector  
cable is disconnected from the servo amplifier.  
Cable model  
Cable length  
0.3m  
Application  
MR-J3BTCBL03M  
For HF-MP HF-KP HF-SP HA-LP HC-RP HC-UP HC-LP  
servo motor  
(a) Connection of servo amplifier and servo motor  
Servo amplifier  
1)  
MR-J3BTCBL03M  
2)  
(Note)  
Encoder cable  
Servo motor  
CN2  
Battery  
3)  
Note. For the detector cable, refer to (1), (2), (3) and (4) of this section.  
Cable model  
MR-J3BTCBL03M  
1) For CN2 connector  
2) Junction connector  
3) For battery connector  
Receptacle: 36210-0100PL  
Plug: 36110-3000FD  
Shell kit: 36310-F200-008  
(3M)  
Connector: DF3-2EP-2C  
Contact: DF3-EP2428PCA  
(Hirose Denki)  
Shell kit: 536310-3200-008  
(3M)  
Or  
Connector set: 54599-1019  
(Molex)  
11 - 16  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.1.3 Motor power supply cables  
These cables are motor power supply cables for the HF-MP HF-KP series servo motors. The numerals in the  
Cable length field of the table are the symbols entered in the part of the cable model. The cables of the  
lengths with the symbols are available.  
Refer to section 3.10 when wiring.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
0.3m  
2m  
5m  
10m  
10  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL M-A1-L  
MR-PWS2CBL M-A2-L  
2
5
IP65  
IP65  
IP65  
IP65  
IP55  
IP55  
Standard  
Standard  
2
2
2
5
5
5
10  
10  
10  
Long flex  
life  
Long flex  
life  
03  
03  
Standard  
Standard  
(1) Connection of servo amplifier and servo motor  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A1-H  
MR-PWS2CBL03M-A1-L  
1)  
Servo amplifier  
Servo motor  
HF-MP  
or  
HF-KP  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL03M-A2-L  
CNP3 connector  
supplied with servo  
amplifier  
1)  
Servo motor  
HF-MP  
CNP3  
HF-KP  
Cable model  
1) For motor power supply connector  
Connector: JN4FT04SJ1-R  
Hood, socket insulator  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
Signal layout  
1
2 U  
3 V  
Connector: JN4FT04SJ2-R  
Hood, socket insulator  
4
W
MR-PWS2CBL03M-A1-L  
MR-PWS2CBL03M-A2-L  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
View seen from wiring side.  
(2) Internal wiring diagram  
MR-PWS1CBL M-A1-H MR-PWS1CBL M-A2-H  
MR-PWS2CBL03M-A1-L MR-PWS2CBL03M-A2-L  
AWG 19 (Red) (Note)  
U
V
W
AWG 19 (White)  
AWG 19 (Black)  
AWG 19 (Green/yellow)  
Note. These are not shielded cables.  
11 - 17  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.1.4 Motor brake cables  
These cables are motor brake cables for the HF-MP HF-KP series servo motors. The numerals in the Cable  
length field of the table are the symbols entered in the part of the cable model. The cables of the lengths with  
the symbols are available.  
Refer to section 3.11 when wiring.  
Cable length  
Protective  
structure  
Cable model  
Flex life  
Application  
0.3m  
2m  
5m  
10m  
10  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
For HF-MP HF-KP servo motor  
Load side lead  
For HF-MP HF-KP servo motor  
Opposite-to-load side lead  
MR-PWS1CBL M-A1-L  
MR-PWS1CBL M-A2-L  
MR-PWS1CBL M-A1-H  
MR-PWS1CBL M-A2-H  
MR-PWS2CBL M-A1-L  
MR-PWS2CBL M-A2-L  
2
5
IP65  
IP65  
IP65  
IP65  
IP55  
IP55  
Standard  
Standard  
2
2
2
5
5
5
10  
10  
10  
Long flex  
life  
Long flex  
life  
03  
03  
Standard  
Standard  
(1) Connection of servo amplifier and servo motor  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A1-H  
MR-BKS2CBL03M-A1-L  
1)  
Servo motor  
HF-MP  
HF-KP  
24VDC power  
supply for  
electromagnetic  
brake  
or  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A2-H  
MR-BKS2CBL03M-A2-L  
1)  
Servo motor  
HF-MP  
HF-KP  
Cable model  
1) For motor brake connector  
Connector: JN4FT02SJ1-R  
Hood, socket insulator  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
MR-BKS1CBL M-A1-H  
MR-BKS1CBL M-A2-H  
Signal layout  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
Connector: JN4FT02SJ2-R  
1 B1  
2 B2  
View seen from wiring side.  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
Hood, socket insulator  
Bushing, ground nut  
Contact: ST-TMH-S-C1B-100-(A534G)  
Crimping tool: CT160-3-TMH5B  
(Japan Aviation Electronics Industry)  
(2) Internal wiring diagram  
MR-BKS1CBL M-A1-H  
MR-BKS2CBL03M-A1-L  
MR-BKS1CBL M-A2-H  
MR-BKS2CBL03M-A2-L  
(Note)  
B1  
AWG 20  
AWG 20  
B2  
Note. These are not shielded cables.  
11 - 18  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.1.5 SSCNET cable  
POINT  
Do not see directly the light generated from CN1A CN1B connector of servo  
amplifier or the end of SSCNET cable. When the light gets into eye, you  
may feel something is wrong for eye. (The light source of SSCNET complies  
with class1 defined in JIS C6802 or IEC60825-1.)  
(1) Model explanations  
Numeral in the column of cable length on the table is a symbol put in the part of cable model. Cables of  
which symbol exists are available.  
Cable length  
5m 10m  
Application  
remark  
Cable model  
Flex life  
0.15m 0.3m  
0.5m  
05  
1m  
1
3m  
3
20m  
30m  
40m  
50m  
Using inside  
MR-J3BUS M  
015  
03  
Standard panel standard  
cord  
Using outside  
MR-J3BUS M-A  
5
10  
20  
Standard panel standard  
cable  
(Note)  
Long flex Using long  
30  
40  
50  
MR-J3BUS M-B  
life  
distance cable  
Note. For cable of 30m or less, contact our company.  
(2) Specifications  
Description  
SSCNET cable model  
SSCNET cable length  
Optical  
MR-J3BUS M  
MR-J3BUS M-A  
5 to 20m  
MR-J3BUS M-B  
30 to 50m  
0.15m  
0.3 to 3m  
Enforced covering cord: 50mm Enforced covering cord: 50mm  
Cord: 25mm Cord: 30mm  
420N 980N  
(Enforced covering cord)  
Minimum bend radius  
25mm  
cable  
(cord)  
Tension strength  
70N  
140N  
(Enforced covering cord)  
-20 to 70  
Temperature range  
for use (Note)  
-40 to 85  
Indoors (no direct sunlight)  
No solvent or oil  
Ambient  
4.4 0.1  
4.4 0.4  
External appearance  
[mm]  
2.2 0.07  
4.4 0.1  
6.0 0.2  
7.6 0.5  
Note. This temperature range for use is the value for optical cable (cord) only. Temperature condition for the connector is the same as  
that for servo amplifier.  
11 - 19  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawings  
(a) MR-J3BUS015M  
[Unit: mm]  
(6.7)  
(15)  
(13.4)  
(37.65)  
Protective tube  
50  
0
150  
(20.9)  
0
8
(b) MR-J3BUS03M to MR-J3BUS3M  
Refer to the table shown in (1) of this section for cable length (L).  
[Unit: mm]  
Protective tube  
(Note)  
(100)  
(100)  
L
Note. Dimension of connector part is the same as that of MR-J3BUS015M.  
(c) MR-J3BUS5M-A to MR-J3BUS20M-A MR-J3BUS30M-B to MR-J3BUS50M-B  
Refer to the table shown in (1) of this section for cable length (L).  
Distortion dimension [mm]  
SSCNET cable  
A
B
MR-J3BUS5M-A to MR-J3BUS20M-A  
MR-J3BUS30M-B to MR-J3BUS50M-B  
100  
150  
30  
50  
[Unit: mm]  
Protective tube  
(Note)  
(A)  
(B)  
(B)  
(A)  
L
Note. Dimension of connector part is the same as that of MR-J3BUS015M.  
11 - 20  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.2 Regenerative options  
The specified combinations of regenerative options and servo amplifiers may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combination and regenerative power  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power[W]  
Built-in  
(Note 1)  
MR-RB50  
[13 ]  
(Note 1)  
MR-MB51  
[6.7 ]  
Servo amplifier  
MR-RB032  
[40 ]  
MR-RB12  
[40 ]  
MR-RB30  
[13 ]  
MR-RB31  
[6.7 ]  
MR-RB32  
[40 ]  
regenerative  
resistor  
MR-J3-10B (1)  
MR-J3-20B (1)  
MR-J3-40B (1)  
MR-J3-60B  
30  
30  
30  
30  
30  
30  
10  
10  
100  
100  
100  
100  
100  
10  
MR-J3-70B  
20  
300  
300  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
MR-J3-700B  
20  
100  
100  
130  
170  
300  
300  
500  
500  
300  
300  
500  
500  
Regenerative power[W]  
(Note 1) (Note 1) (Note 1)  
Built-in  
(Note 1)  
(Note 1)  
Servo amplifier  
MR-RB1H-4  
[82 ]  
regenerative  
resistor  
MR-RB3M-4 MR-RB3G-4 MR-RB5G-4 MR-RB34-4 MR-RB54-4  
[120 ]  
300  
[47 ]  
[47 ]  
[26 ]  
[26 ]  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
MR-J3-700B4  
15  
15  
100  
100  
300  
100  
100  
130  
170  
300  
300  
500  
500  
300  
300  
500  
500  
(Note 2) Regenerative power[W]  
Servo amplifier  
External regenerative  
resistor (Accessory)  
MR-RB5E  
[6 ]  
MR-RB9P  
[4.5 ]  
MR-RB9F  
[3 ]  
MR-RB6B-4 MR-RB60-4 MR-RB6K-4  
[20 ]  
[12.5 ]  
[10 ]  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
500 (800)  
850 (1300)  
850 (1300)  
Note 1. Always install a cooling fan.  
2. Values in parentheses assume the installation of a cooling fan.  
11 - 21  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Selection of the regenerative option  
Use the following method when regeneration occurs continuously in vertical motion applications or when it  
is desired to make an in-depth selection of the regenerative option.  
(a) Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
tf(1 cycle)  
No  
Up  
Time  
Down  
M
t1  
Tpsa1  
t2  
t3  
t4  
Tpsd1  
Tpsa2  
Tpsd2  
Friction  
torque  
1)  
( )  
(Driving)  
2)  
TF  
4)  
8)  
5)  
TU  
6)  
3)  
7)  
(Regenerative)  
( )  
Formulas for calculating torque and energy in operation  
Torque applied to servo motor [N m]  
Regenerative power  
Energy [J]  
0.1047  
2
(JL JM)  
1
Tpsa1  
N0  
E1  
N0 T1 Tpsa1  
T1  
TU  
TF  
1)  
2)  
104  
9.55  
T2 TU TF  
E2 0.1047 N0 T2 t1  
(JL JM)  
N0  
9.55 104  
0.1047  
2
1
E3  
N0 T3 Tpsd1  
T3  
TU  
TF  
3)  
Tpsd1  
T4 TU  
E4 0 (No regeneration)  
0.1047  
4), 8)  
5)  
(JL JM)  
1
Tpsa2  
N0  
E5  
N0 T5 Tpsa2  
T5  
T6  
T7  
TU TF  
9.55 104  
TU TF  
2
E6 0.1047 N0 T6 t3  
0.1047  
6)  
(JL JM)  
1
N0  
N0  
E7  
T7 Tpsd2  
TU TF  
7)  
9.55 104  
2
Tpsd2  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative energies.  
11 - 22  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Losses of servo motor and servo amplifier in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and servo amplifier in the  
regenerative mode.  
Servo amplifier Inverse efficiency[%] Capacitor charging[J]  
Servo amplifier Inverse efficiency[%] Capacitor charging[J]  
MR-J3-10B  
MR-J3-10B1  
MR-J3-20B  
MR-J3-20B1  
MR-J3-40B  
MR-J3-40B1  
MR-J3-60B(4)  
MR-J3-70B  
MR-J3-100B  
MR-J3-100B4  
55  
55  
70  
70  
85  
85  
85  
80  
80  
80  
9
MR-J3-200B  
85  
85  
85  
85  
90  
90  
90  
90  
90  
40  
25  
4
MR-J3-200B4  
MR-J3-350B  
9
40  
4
MR-J3-350B4  
MR-J3-500B(4)  
MR-J3-700B(4)  
MR-J3-11KB(4)  
MR-J3-15KB(4)  
MR-J3-22KB(4)  
36  
11  
10  
11  
18  
18  
12  
45  
70  
120  
170  
250  
Inverse efficiency ( ) : Efficiency including some efficiencies of the servo motor and servo amplifier  
when rated (regenerative) torque is generated at rated speed. Since the  
efficiency varies with the speed and generated torque, allow for about 10%.  
Capacitor charging (Ec) : Energy charged into the electrolytic capacitor in the servo amplifier.  
Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by  
the inverse efficiency to calculate the energy consumed by the regenerative option.  
ER [J]  
Es Ec  
Calculate the power consumption of the regenerative option on the basis of single-cycle operation  
period tf [s] to select the necessary regenerative option.  
PR [W] ER/tf  
(3) Parameter setting  
Set parameter No.PA02 according to the option to be used.  
Parameter No.PA02  
0 0  
Selection of regenerative option  
00: Regenerative option is not used  
For servo amplifier of 100W, regenerative resistor is not used.  
For servo amplifier of 200 to 7kW, built-in regenerative resistor is used.  
Supplied regenerative resistors or regenerative option is used with  
the servo amplifier of 11k to 22kW.  
For a drive unit of 30kW or more, select regenerative option by the  
converter unit.  
01: FR-BU2-(H) FR-RC-(H) FR-CV-(H)  
02: MR-RB032  
03: MR-RB12  
04: MR-RB32  
05: MR-RB30  
06: MR-RB50(Cooling fan is required)  
08: MR-RB31  
09: MR-RB51(Cooling fan is required)  
80: MR-RB1H-4  
81: MR-RB3M-4(Cooling fan is required)  
82: MR-RB3G-4(Cooling fan is required)  
83: MR-RB5G-4(Cooling fanis required)  
84: MR-RB34-4(Cooling fanis required)  
85: MR-RB54-4(Cooling fanis required)  
FA: Whenhe supplied regenerative resistor is cooled by the cooling fan to  
increase the ability with the servo amplifier of 11k to 22kW.  
11 - 23  
11. OPTIONS AND AUXILIARY EQUIPMENT  
The following are setting values for regenerative resistor and regenerative option which are used with a  
servo amplifier of 11k to 22kW.  
Setting  
Regenerative resistor, regenerative option  
value  
Standard supplied regenerative resistor  
Standard supplied regenerative resistor  
(with a cooling fan to cool it)  
MR-RB5E  
00  
FA  
00  
FA  
00  
FA  
00  
FA  
00  
00  
FA  
00  
FA  
00  
MR-RB5E (with a cooling fan to cool it)  
MR-RB9P  
MR-RB9P (with a cooling fan to cool it)  
MR-RB9F  
MR-RB9F (with a cooling fan to cool it)  
MR-RB6B-4  
MR-RB6B-4 (with a cooling fan to cool it)  
MR-RB60-4  
MR-RB60-4 (with a cooling fan to cool it)  
MR-RB6K-4  
MR-RB6K-4 (with a cooling fan to cool it)  
(4) Connection of the regenerative option  
POINT  
When the MR-RB50 MR-RB51 MR-RB3M-4 MR-RB3G-4 MR-RB5G-4  
MR-RB34-4 MR-RB54-4 is used, a cooling fan is required to cool it.  
The cooling fan should be prepared by the customer.  
For the sizes of wires used for wiring, refer to section 11.11.  
The regenerative option will cause a temperature rise of 100 relative to the ambient temperature. Fully  
examine heat dissipation, installation position, used cables, etc. before installing the option. For wiring, use  
flame-resistant wires and keep them clear of the regenerative option body. Always use twisted cables of  
max. 5m length for connection with the servo amplifier.  
11 - 24  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(a) MR-J3-350B or less MR-J3-200B4 or less  
Always remove the wiring from across P-D and fit the regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is disconnected when the regenerative option  
overheats abnormally.  
Always remove the lead from across P-D.  
Servo amplifier  
Regenerative option  
P
P
C
D
C
G3  
(Note 2)  
5m max.  
G4  
(Note 1)  
Cooling fan  
Note 1. When using the MR-RB50 MR-RB3M-4 MR-RB3G-4 MR-RB5G-4, forcibly cool it with a cooling fan (92 92, minimum air  
flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
For the MR-RB50 MR-RB3M-4 MR-RB3G-4 MR-RB5G-4 install the cooling fan as shown.  
[Unit : mm]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
(Screw hole already  
machined)  
Cooling fan  
Terminal block  
Thermal relay  
Bottom  
82.5  
40  
Installation surface  
Horizontal installation  
Vertical  
installation  
11 - 25  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-J3-350B4 MR-J3-500B(4) MR-J3-700B(4)  
Always remove the wiring (across P-C) of the servo amplifier built-in regenerative resistor and fit the  
regenerative option across P-C.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Always remove wiring (across P-C) of servo  
amplifier built-in regenerative resistor.  
Servo amplifier  
Regenerative option  
P
P
C
C
G3  
(Note 2)  
5m or less  
G4  
Cooling fan(Note 1)  
Note 1. When using the MR-RB51 MR-RB3G-4 MR-RB5G-4 MR-RB34-4 MR-RB54-4, forcibly  
cool it with a cooling fan (92 92, minimum air flow : 1.0m3).  
2. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating  
occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5A/4.8VDC  
Maximum capacity: 2.4VA  
When using the regenerative resistor option, remove the servo amplifier's built-in regenerative resistor  
terminals (across P-C), fit them back to back, and secure them to the frame with the accessory screw as  
shown below.  
Mounting method  
Accessory screw  
11 - 26  
11. OPTIONS AND AUXILIARY EQUIPMENT  
The drawing below shows the MR-J3-350B4 MR-J3-500B(4). Refer to section 9.1 (6) outline drawings  
for the position of the fixing screw for MR-J3-700B(4).  
Built-in regenerative resistor  
lead terminal fixing screw  
For the MR-RB51, MR-RB3G-4, MR-RB5G-4, MR-RB34-4 or MR-RB54-4 install the cooling fan as  
shown.  
[Unit : mm]  
Cooling fan installation screw hole dimensions  
2-M3 screw hole  
Top  
(for cooling fan installation)  
Depth 10 or less  
(Screw hole already  
machined)  
Cooling fan  
Terminal block  
Thermal relay  
Bottom  
82.5  
40  
Installation surface  
Horizontal installation  
Vertical  
installation  
11 - 27  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-J3-11KB(4) to MR-J3-22KB(4) (when using the supplied regenerative resistor)  
When using the regenerative resistors supplied to the servo amplifier, the specified number of resistors  
(4 or 5 resistors) must be connected in series. If they are connected in parallel or in less than the  
specified number, the servo amplifier may become faulty and/or the regenerative resistors burn. Install  
the resistors at intervals of about 70mm. Cooling the resistors with two cooling fans (92 92, minimum  
air flow : 1.0m3) improves the regeneration capability. In this case, set "  
FA" in parameter No.PA02.  
5m or less  
Do not remove  
Servo amplifier  
the short bar.  
P1  
P
C
(Note) Series connection  
Cooling fan  
Note. The number of resistors connected in series depends on the resistor type. The thermal sensor is not mounted on the  
attached regenerative resistor. An abnormal heating of resistor may be generated at a regenerative circuit failure. Install a  
thermal sensor near the resistor and establish a protective circuit to shut off the main circuit power supply when abnormal  
heating occurs. The detection level of the thermal sensor varies according to the settings of the resistor. Set the thermal  
sensor in the most appropriate position on your design basis or use the thermal sensor built-in regenerative option (MR-  
RB5E, 9P, 9F, 6B-4, 60-4 and 6K-4) provided by Mitsubishi Electric Corporation.  
Regenerative  
resistor  
Regenerative power [W] Resistance  
Number of  
resistors  
Servo amplifier  
[ ]  
Normal  
500  
Cooling  
800  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-2.0  
6
4.5  
3
4
5
5
4
5
5
850  
1300  
1300  
800  
850  
500  
20  
850  
1300  
1300  
12.5  
10  
850  
11 - 28  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-J3-11KB(4)-PX to MR-J3-22KB(4)-PX (when using the regenerative option)  
The MR-J3-11KB(4)-PX to MR-J3-22KB(4)-PX servo amplifiers are not supplied with regenerative  
resistors. When using any of these servo amplifiers, always use the MR-RB5E, 9P, 9F, 6B-4, 60-4 and  
6K-4 regenerative option.  
The MR-RB5E, 9P, 9F, 6B-4, 60-4 and 6K-4 are regenerative options that have encased the GRZG400-  
1.5 , GRZG400-0.9 , GRZG400-0.6 , GRZG400-5.0 , GRZG400-2.5 , GRZG400-2.0 respectively.  
When using any of these regenerative options, make the same parameter setting as when using the  
GRZG400-1.5 , GRZG400-0.9 , GRZG400-0.6 , GRZG400-5.0 , GRZG400-2.5 , GRZG400-2.0  
(supplied regenerative resistors or regenerative option is used with 11kW or more servo amplifier).  
Cooling the regenerative option with cooling fans improves regenerative capability.  
The G3 and G4 terminals are for the thermal protector. G3-G4 is opened when the regenerative option  
overheats abnormally.  
Servo amplifier  
Do not remove  
Regenerative option  
the short bar.  
P1  
P
C
P
C
G3  
G4  
(Note)  
Configure up a circuit which  
shuts off main circuit power  
when thermal protector operates.  
Note. Specifications of contact across G3-G4  
Maximum voltage : 120V AC/DC  
Maximum current : 0.5A/4.8VDC  
Maximum capacity : 2.4VA  
Regenerative power [W]  
Regenerative option  
Servo amplifier  
model  
Resistance [ ]  
Without  
With  
cooling fans  
cooling fans  
MR-J3-11KB-PX  
MR-J3-15KB-PX  
MR-J3-22KB-PX  
MR-J3-11KB4-PX  
MR-J3-15KB4-PX  
MR-J3-22KB4-PX  
MR-RB5E  
MR-RB9P  
6
4.5  
3
500  
850  
850  
500  
850  
850  
800  
1300  
1300  
800  
MR-RB9F  
MR-RB6B-4  
MR-RB60-4  
MR-RB6K-4  
20  
12.5  
10  
1300  
1300  
When using cooling fans, install them using the mounting holes provided in the bottom of the  
regenerative option. In this case, set "  
FA" in parameter No.PA02.  
Top  
MR-RB5E 9P 9F 6B-4 60-4 6K-4  
Bottom  
TE1  
2 cooling fans  
(92 92, minimum air flow: 1.0m3)  
TE  
G4 G3 C  
P
Mounting screw  
4-M3  
11 - 29  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Outline drawing  
(a) MR-RB032 MR-RB12  
[Unit: mm (in)]  
TE1  
Terminal block  
G3  
G4  
P
6 mounting hole  
LA  
LB  
C
Terminal screw: M3  
Tightening torque: 0.5 to 0.6 [N m]  
(4 to 5 [lb in])  
MR-RB  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m]  
(28.7 [lb in])  
5
G3  
G4  
P
TE1  
C
1.6  
6
Approx. 20  
LD  
LC  
Regenerative  
Variable dimensions  
Mass  
option  
LA  
LB  
LC  
LD  
[kg] [lb]  
MR-RB032  
MR-RB12  
30  
40  
15  
15  
119  
169  
99  
0.5 1.1  
1.1 2.4  
149  
11 - 30  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-RB30 MR-RB31 MR-RB32 MR-RB34-4 MR-RB3M-4 MR-RB3G-4  
[Unit: mm (in)]  
TE1  
Terminal block  
Cooling fan mounting  
screw (2-M4 screw)  
P
C
G3  
G4  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.62 [lb in])  
Mounting screw  
Screw size: M6  
7
101.5  
82.5  
318  
10  
90  
Tightening torque: 5.4 [N m] (47.79 [lb in])  
A
100  
B
Variable  
Wind blows in the  
arrow direction  
Regenerative  
option  
Mass  
dimensions  
[kg] (Ib)  
A
B
MR-RB30  
MR-RB31  
17  
335  
MR-RB32  
2.9 (6.4)  
MR-RB34-4  
MR-RB3M-4  
MR-RB3G-4  
23  
341  
(c) MR-RB50 MR-RB51 MR-RB54-4 MR-RB5G-4  
[Unit: mm (in)]  
Terminal block  
Cooling fan mounting  
screw (2-M3 screw)  
On opposite side  
P
C
G3  
G4  
49  
82.5  
Terminal screw: M4  
Tightening torque: 1.2 [N m] (10.62 [lb in])  
Mounting screw  
Screw size: M6  
7 14  
slot  
Tightening torque: 5.4 [N m] (47.79 [lb in])  
Variable  
Wind blows  
in the arrow  
direction  
Regenerative  
option  
Mass  
dimensions  
[kg] (Ib)  
A
B
MR-RB50  
MR-RB51  
17  
217  
5.6 (12.3)  
MR-RB54-4  
MR-RB5G-4  
23  
233  
2.3  
7
200  
B
A
12  
108  
120  
(30)  
8
11 - 31  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(d) MR-RB5E MR-RB9P MR-RB9F MR-RB6B-4 MR-RB60-4 MR-RB6K-4  
[Unit: mm (in)]  
Terminal block  
2- 10  
mounting hole  
G4 G3 C  
P
Terminal screw: M5  
Tightening torque: 2.0 [N m] (17.70 [lb in])  
Mounting screw  
Screw size: M8  
Tightening torque: 13.2 [N m] (116.83 [lb in])  
Regenerative  
option  
Mass  
[kg]  
10  
11  
11  
10  
11  
11  
[Ib]  
MR-RB5E  
MR-RB9P  
22.0  
24.3  
24.3  
22.0  
24.3  
24.3  
TE1  
G4 G3 C P  
MR-RB9F  
10  
2.3  
15  
230  
260  
230  
MR-RB6B-4  
MR-RB60-4  
MR-RB6K-4  
215  
Cooling fan mounting screw  
4-M3 screw  
82.5 82.5  
(e) GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-  
2.0 (standard accessories)  
Approx.  
10  
C
Variable  
Tightening  
Approx. A  
Approx. 2.4  
Regenerative  
brake  
Mounting  
Mass [kg]  
([lb])  
dimensions  
torque  
[N m]  
([lb in])  
screw size  
A
C
K
GRZG400-1.5  
GRZG400-0.9  
GRZG400-0.6  
GRZG400-5.0  
GRZG400-2.5  
GRZG400-2.0  
10  
16  
5.5  
8.2  
39  
46  
Approx. 330  
385  
9.5  
40  
13.2  
0.8  
(1.76)  
411  
M8  
(116.83)  
Approx. 47  
10  
5.5  
39  
11 - 32  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(f) MR-RB1H-4  
[Unit: mm (in)]  
Terminal screw: M3  
Tightening torque: 0.5 to 0.6 [N m]  
(4.43 to 5.31 [lb in])  
40  
36  
G3  
G4  
P
15  
6 mounting hole  
C
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m]  
(28.32 [lb in])  
Regenerative  
Mass [kg] ([lb])  
option  
MR-RB1H-4  
1.1 (2.4)  
TE1  
2
6
6
Approx. 24  
149  
173  
11 - 33  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.3 FR-BU2-(H) Brake unit  
POINT  
Use a 200V class brake unit and a resistor unit with a 200V class servo  
amplifier, and a 400V class brake unit and a resistor unit with a 400V class  
servo amplifier. Combination of different voltage class units and servo  
amplifier cannot be used.  
Install a brake unit and a resistor unit on a flat surface vertically. When the  
unit is installed horizontally or diagonally, the heat dissipation effect  
diminishes.  
Temperature of the resistor unit case rises to higher than 100 . Keep cables  
and flammable materials away from the case.  
Ambient temperature condition of the brake unit is between 10 (14 ) and  
50 (122 ). Note that the condition is different from the ambient  
temperature condition of the servo amplifier (between 0 (32 ) and 55  
(131 )).  
Configure the circuit to shut down the power-supply with the alarm output of  
the brake unit and resistor unit under abnormal condition.  
Use the brake unit with a combination indicated in section 11.3.1.  
For executing a continuous regenerative operation, use FR-RC-(H) power  
regeneration converter or FR-CV-(H) power regeneration common converter.  
Brake unit and regenerative options (Regenerative resistor) cannot be used  
simultaneously.  
Connect the brake unit to the bus of the servo amplifier. As compared to the MR-RB regenerative option, the  
brake unit can return larger power. Use the brake unit when the regenerative option cannot provide sufficient  
regenerative capability.  
When using the brake unit, set the parameter No.PA02 of the servo amplifier to "  
01".  
When using the brake unit, always refer to the FR-BU2-(H) Brake Unit Instruction Manual.  
11 - 34  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.3.1 Selection  
Use a combination of servo amplifier, brake unit and resistor unit listed below.  
Number of  
connected  
units  
Permissible  
continuous  
power [kW]  
Total  
Applicable servo  
amplifier  
Brake unit  
Resistor unit  
resistance  
[
]
200V FR-BU2-15K  
class  
FR-BR-15K  
1
0.99  
1.98  
8
4
MR-J3-500B (Note)  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-22KB  
MR-J3-500B4  
MR-J3-700B4  
MR-J3-11KB4  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
MR-J3-22KB4  
2 (parallel)  
FR-BU2-30K  
FR-BU2-55K  
FR-BR-30K  
FR-BR-55K  
1
1
1.99  
3.91  
4
2
2
MT-BR5-55K  
FR-BR-H30K  
1
1
5.5  
400V FR-BU2-H30K  
class  
1.99  
16  
FR-BU2-H55K  
FR-BR-H55K  
1
1
3.91  
7.5  
8
FR-BU2-H75K  
MT-BR5-H75K  
6.5  
11.3.2 Brake unit parameter setting  
Normally, when using the FR-BU2-(H), changing parameters is not necessary. Whether a parameter can be  
changed or not is listed below.  
Parameter  
Name  
Change  
possible/  
impossible  
Remarks  
No.  
0
1
Brake mode switchover  
Impossible  
Possible  
Do not change the parameter.  
Refer to the FR-BU2-(H) Brake Unit  
Instruction Manual.  
Monitor display data selection  
2
3
Input terminal function selection 1  
Input terminal function selection 2  
Parameter write selection  
Impossible  
Do not change the parameter.  
77  
78  
Cumulative energization time  
carrying-over times  
CLr Parameter clear  
ECL Alarm history clear  
C1  
For manufacturer setting  
11 - 35  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.3.3 Connection example  
POINT  
Connecting PR terminal of the brake unit to P terminal of the servo amplifier  
results in brake unit malfunction. Always connect the PR terminal of the brake  
unit to the PR terminal of the resistor unit.  
(1) Combination with FR-BR-(H) resistor unit  
(a) When connecting a brake unit to a servo amplifier  
(Note 8) Servo motor  
thermal relay  
RA2  
Controller  
forced stop  
RA3  
ON  
MC  
EM1  
OFF  
MC  
SK  
ALM  
RA1  
(Note 5)  
Servo amplifier  
CN3  
NFB  
MC  
20 EM1  
L1  
L2  
L3  
(Note 1)  
Power  
supply  
DOCOM  
3
24VDC  
RA1  
FR-BR-(H)  
(Note 6)  
DICOM  
10  
TH1  
TH2  
15 ALM  
P
L11  
PR  
L21  
P1  
(Note 3)  
FR-BU2-(H)  
P2  
PR  
P/  
MSG  
P(  
N(  
)
SD  
A
(Note 4)  
(Note 9)  
N/  
B
C
)
C
BUE  
SD  
(Note 10)  
(Note 7)  
(Note 2)  
Note 1. For power supply specifications, refer to section 1.3.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals. For the servo amplifier of 11k to 22kW, do not connect a supplied regenerative resistor to the P and C  
terminals.  
3. Always connect P1 and P2 terminals (P1 and P for the servo amplifier of 11k to 22kW) (Factory-wired). When using the power  
factor improving DC reactor, refer to section 11.13.  
4. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
5. For 400VAC class, a step-down transformer is required.  
6. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
7. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
8. For the servo amplifier of 11kW or more, connect the thermal relay censor of the servo amplifier.  
9. Do not connect more than one cable to each P( ) to N( ) terminals of the servo amplifier.  
10. Always connect BUE and SD terminals (Factory-wired).  
11 - 36  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) When connecting two brake units to a servo amplifier  
POINT  
To use brake units with a parallel connection, use two sets of FR-BU2 brake  
unit. Combination with other brake unit results in alarm occurrence or  
malfunction.  
Always connect the master and slave terminals (MSG and SD) of the two  
brake units.  
Do not connect the servo amplifier and brake units as below. Connect the  
cables with a terminal block to distribute as indicated in this section.  
Servo amplifier  
Brake unit  
Servo amplifier  
Brake unit  
P (  
N (  
)
)
P/  
N/  
P (  
N (  
)
)
P/  
N/  
Brake unit  
Brake unit  
P/  
N/  
P/  
N/  
Connecting two cables to  
P and N terminals  
Passing wiring  
11 - 37  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(Note 7) Servo motor  
thermal relay  
RA2  
Controller  
forced stop  
RA3  
ON  
MC  
OFF  
EM1  
MC  
SK  
ALM  
RA1  
Servo amplifier  
CN3  
NFB  
MC  
(Note 1)  
Power  
supply  
20 EM1  
L1  
L2  
L3  
DOCOM  
3
24VDC  
RA1  
FR-BR  
(Note 5)  
DICOM  
10  
TH1  
TH2  
15 ALM  
P
L11  
PR  
L21  
P1  
(Note 3)  
FR-BU2-(H)  
P2  
(Note 11)  
PR  
P/  
MSG  
(Note 10)  
(Note 4)  
P
SD  
A
(Note 8)  
N/  
B
C
BUE  
N
C
(Note 6)  
(Note 9)  
SD  
Terminal  
block  
(Note 2)  
FR-BR  
(Note 5)  
TH1  
TH2  
P
PR  
FR-BU2-(H)  
PR  
P/  
MSG  
(Note 10)  
(Note 4)  
SD  
A
N/  
B
C
BUE  
(Note 9)  
(Note 6)  
SD  
Note 1. For power supply specifications, refer to section 1.3.  
2. For the servo amplifier of 5k and 7kW, always disconnect the lead of built-in regenerative resistor, which is connected to the P  
and C terminals. For the servo amplifier of 11k and 15kW, do not connect a supplied regenerative resistor to the P and C  
terminals.  
3. Always connect P1 and P2 terminals (P1 and P for the servo amplifier of 11k and 15kW) (Factory-wired). When using the power  
factor improving DC reactor, refer to section 11.13.  
4. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
5. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
6. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
7. For the servo amplifier of 11kW or more, connect the thermal relay censor of the servo amplifier.  
8. Do not connect more than one cable to each P and N terminals of the servo amplifier.  
9. Always connect BUE and SD terminals (Factory-wired).  
10. Connect the MSG and SD terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
11. For the cable to connect the terminal block and the P and N terminals of the servo amplifier, use the cable indicated in (4) (b) of  
this section.  
11 - 38  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Combination with MT-BR5-(H) resistor unit  
Servo motor  
thermal relay  
RA2  
Controller  
forced stop  
RA3  
ON  
MC  
OFF  
EM1  
RA4  
MC  
SK  
ALM  
RA1  
(Note 4)  
NFB  
Servo amplifier  
CN3  
MC  
(Note 1)  
Power  
supply  
20 EM1  
L1  
L2  
L3  
DOCOM  
3
SK  
24VDC  
RA1  
MT-BR5-(H)  
(Note 5)  
DICOM  
10  
TH1  
TH2  
15 ALM  
P
RA4  
L11  
PR  
L21  
FR-BU2-(H)  
C
P1  
)
(Note 9)  
(Note 2)  
PR  
P/  
MSG  
P(  
(Note 7)  
N(  
SD  
A
(Note 3)  
N/  
B
)
C
BUE  
(Note 8)  
(Note 6)  
SD  
Note 1. For power supply specifications, refer to section 1.3.  
2. Always connect P1 - P( ) terminals (Factory-wired). When using the power factor improving DC reactor, refer to section 11.13.  
3. Connect the P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in servo amplifier and  
brake unit malfunction.  
4. For the servo amplifier of 400V class, a step-down transformer is required.  
5. Contact rating: 1a contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is not conducting. Abnormal condition: TH1-TH2 is conducting.  
6. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
7. Do not connect more than one cable to each P and N terminals of the servo amplifier.  
8. Always connect BUE and SD terminals (Factory-wired).  
9. For the servo amplifier of 22kW, do not connect a supplied regenerative resistor to the P and C terminals.  
11 - 39  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Precautions for wiring  
The cables between the servo amplifier and the brake unit, and between the resistor unit and the brake unit  
should be as short as possible. Always twist the cable longer than 5m (twist five times or more per one  
meter). Even when the cable is twisted, the cable should be less than 10m. Using cables longer than 5m  
without twisting or twisted cables longer than 10m, may result in the brake unit malfunction.  
Servo amplifier  
Servo amplifier  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist  
Twist  
P(  
N(  
)
)
P
N
P
PR  
P
PR  
P(  
N(  
)
)
P
N
P
PR  
P
PR  
5m or less  
5m or less  
10m or less  
10m or less  
(4) Cables  
(a) Cables for the brake unit  
For the brake unit, HIV wire (600V Grade heat-resistant polyvinyl chloride insulated wire) is  
recommended.  
1) Main circuit terminal  
Main  
circuit  
terminal  
screw  
size  
Crimping  
terminal  
Wire size  
N/ , P/ , PR,  
Tightening  
torque  
Brake unit  
N/ , P/  
PR,  
,
HIV wire [mm2]  
AWG  
200V FR-BU2-15K  
class FR-BU2-30K  
FR-BU2-55K  
M4  
M5  
M6  
M4  
M5  
M6  
5.5-4  
5.5-5  
14-6  
5.5-4  
5.5-5  
14-6  
1.5  
2.5  
4.4  
1.5  
2.5  
4.4  
3.5  
5.5  
14  
12  
10  
6
N/  
P/  
PR  
400V FR-BU2-H30K  
class FR-BU2-H55K  
FR-BU2-H75K  
3.5  
5.5  
14  
12  
10  
6
Terminal block  
11 - 40  
11. OPTIONS AND AUXILIARY EQUIPMENT  
2) Control circuit terminal  
POINT  
Undertightening can cause a cable disconnection or malfunction.  
Overtightening can cause a short circuit or malfunction due to damage to the  
screw or the brake unit.  
Sheath  
RES  
MSG MSG  
SD  
SD SD  
Core  
BUE  
PC  
SD  
Jumper  
A
B
C
6mm  
Terminal block  
Wire the stripped cable after twisting to prevent the cable  
from becoming loose. In addition, do not solder it.  
Screw size: M3  
Tightening torque: 0.5N m to 0.6N  
m
Wire size: 0.3mm2 to 0.75 mm2  
Screw driver: Small flat-blade screwdriver  
(Tip thickness: 0.4mm/Tip width 2.5mm)  
(b) Cables for connecting the servo amplifier and a distribution terminal block when connecting two sets of  
the brake unit  
Wire size  
Brake unit  
HIV wire [mm2]  
8
AWG  
8
FR-BU2-15K  
11 - 41  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Crimping terminals for P and N terminals of servo amplifier  
(a) Recommended crimping terminals  
POINT  
Always use recommended crimping terminals or equivalent since some  
crimping terminals cannot be installed depending on the size.  
Number of  
(Note 1)  
Applicable  
tool  
Servo amplifier  
Brake unit  
connected  
units  
Crimping terminal (Manufacturer)  
200V MR-J3-500B  
class  
FR-BU2-15K  
1
2
FVD5.5-S4(Japan Solderless Terminal)  
c
8-4NS(Japan Solderless Terminal)  
(Note 2)  
d
FR-BU2-30K  
FR-BU2-15K  
1
2
FVD5.5-S4(Japan Solderless Terminal)  
8-4NS(Japan Solderless Terminal)  
(Note 2)  
c
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
d
FR-BU2-30K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-15K  
FR-BU2-30K  
FR-BU2-55K  
FR-BU2-55K  
FR-BU2-H30K  
FR-BU2-H30K  
FR-BU2-H30K  
FR-BU2-H55K  
FR-BU2-H55K  
FR-BU2-H55K  
FR-BU2-H75K  
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
FVD5.5-S4(Japan Solderless Terminal)  
FVD8-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD8-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD14-6(Japan Solderless Terminal)  
FVD14-8(Japan Solderless Terminal)  
c
a
c
b
a
c
b
b
c
c
c
c
c
c
b
400V MR-J3-500B4  
class MR-J3-700B4  
MR-J3-11KB4  
FVD5.5-S4(Japan Solderless Terminal)  
FVD5.5-S4(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-6(Japan Solderless Terminal)  
FVD5.5-8(Japan Solderless Terminal)  
FVD14-8(Japan Solderless Terminal)  
MR-J3-15KB4  
MR-J3-22KB4  
Note 1. Symbols in the applicable tool field indicate applicable tools in (5)(b) of this section.  
2. Coat the crimping part with an insulation tube.  
(b) Applicable tool  
Servo amplifier side crimping terminals  
Symbol  
Crimping  
terminal  
Applicable tool  
Head  
Manufacturer  
Body  
Dice  
a
b
FVD8-6  
YF-1 E-4  
YNE-38  
DH-111 DH121  
FVD14-6  
FVD14-8  
FDV5.5-S4  
FDV5.5-6  
8-4NS  
YF-1 E-4  
YNE-38  
DH-112 DH122  
Japan Solderless  
Terminal  
c
YNT-1210S  
YHT-8S  
d
11 - 42  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.3.4 Outline dimension drawings  
(1) FR-BU2- (H) brake unit  
[Unit: mm]  
FR-BU2-15K  
5 hole  
(Screw size: M4)  
Rating  
plate  
4
5
18.5  
6
56  
68  
6
52  
62  
132.5  
FR-BU2-30K  
FR-BU2-H30K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
96  
6
6
18.5  
52  
59  
108  
129.5  
FR-BU2-55K  
FR-BU2-H55K, H75K  
2- 5 hole  
(Screw size: M4)  
Rating  
plate  
5
5
18.5  
6
158  
170  
6
52  
72  
142.5  
11 - 43  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) FR-BR- (H) resistor unit  
[Unit: mm]  
2-  
C
(Note)  
Control circuit  
terminal  
(Note)  
Main circuit  
terminal  
C
C
Approx. 35  
Approx. 35  
W1  
1
For FR-BR-55K/FR-BR-H55K, a hanging bolt  
is placed on two locations (Indicated below).  
Hanging bolt  
204  
W
5
Note. Ventilation ports are provided on both sides and the top. The bottom is open.  
Approximate  
Resistor unit  
W
W1  
H
H1  
H2  
H3  
D
D1  
C
mass  
[kg]  
FR-BR-15K  
FR-BR-30K  
FR-BR-55K  
FR-BR-H30K  
FR-BR-H55K  
170 100 450 410 20 432 220 3.2  
340 270 600 560 20 582 220  
480 410 700 620 40 670 450 3.2  
340 270 600 560 20 582 220  
480 410 700 620 40 670 450 3.2  
6
15  
30  
70  
30  
70  
200V  
class  
4
10  
12  
10  
12  
400V  
class  
4
(3) MT-BR5- (H) resistor unit  
[Unit: mm]  
Approximate  
mass  
Resistance  
value  
Resistor unit  
[kg]  
NP  
200V  
class  
400V  
class  
MT-BR5-55K  
2.0  
6.5  
50  
70  
MT-BR5-H75K  
M4  
M6  
193  
189  
37  
60 10 21  
480  
510  
75  
300  
450  
75  
4
15 mounting hole  
7.5  
7.5  
11 - 44  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.4 Power regeneration converter  
When using the power regeneration converter, set "  
01" in parameter No.PA02.  
(1) Selection  
The converters can continuously return 75% of the nominal regenerative power. They are applied to the  
servo amplifiers of the 5k to 22kW.  
Nominal  
Power regeneration  
regenerative power  
(kW)  
Servo amplifier  
500  
converter  
300  
200  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-500B4  
MR-J3-700B4  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
FR-RC-15K  
15  
100  
FR-RC-30K  
FR-RC-55K  
FR-RC-H15K  
30  
55  
15  
50  
30  
20  
0
50  
75 100  
150  
FR-RC-H30K  
FR-RC-H55K  
30  
55  
Nominal regenerative power (%)  
11 - 45  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Servo amplifier  
L11  
L21  
Power factor improving reactor  
NFB  
MC  
FR-BAL-(H)  
L1  
(Note 6)  
Power supply  
L2  
L3  
CN3  
EM1  
24VDC  
RA  
CN3  
Forced stop  
DOCOM  
DICOM  
DOCOM  
(Note 3)  
ALM  
Trouble  
(Note 2)  
P1 P2  
N
C P  
P/  
5m or less  
(Note 4)  
N/  
RDY  
SE  
A
B
(Note 5)  
Ready  
RDY  
B
C
output  
C
R/L1  
S/L2  
T/L3  
Alarm  
output  
RX  
R
(Note 1)  
SX  
S
Phase detection  
terminals  
TX  
T
Power regeneration  
converter FR-RC-(H)  
Operation ready  
ON  
FR-RC-(H)  
ALM  
RA2  
EMG  
OFF  
B
C
MC  
SK  
MC  
Note 1. When not using the phase detection terminals, fit the jumpers across RX-R, SX-S and TX-T. If the jumpers remain  
removed, the FR-RC-(H) will not operate.  
2. When using servo amplifiers of 5kW and 7kW, always remove the lead of built-in regenerative resistor connected  
to P terminal and C terminal.  
3. When setting not to output Trouble (ALM) with parameter change, configure power supply circuit for turning  
magnetic contactor off after detecting an occurrence of alarm on the controller side.  
4. Always connect P1-P2 (For 11k to 22kW, connect P1-P). (Factory-wired.) When using the power factor improving  
DC reactor, refer to section 11.13.  
5. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class in 400V class servo  
amplifiers.  
6. Refer to section 1.3 for the power supply specification.  
11 - 46  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outside dimensions of the power regeneration converters  
[Unit : mm]  
Mounting foot (removable)  
Mounting foot  
movable  
2- D hole  
Rating plate  
Front cover  
Display  
panel  
window  
Cooling fan  
K
D
F
AA  
A
C
Heat generation area outside mounting dimension  
Power  
Approx. mass  
[kg(Ib)]  
regeneration  
converter  
A
AA  
200  
270  
410  
B
BA  
C
D
E
EE  
8
K
F
19  
FR-RC-15K  
270  
340  
480  
450  
600  
700  
432  
582  
670  
195  
195  
250  
10  
10  
12  
10  
10  
15  
3.2  
3.2  
3.2  
87  
(41.888)  
FR-RC-H15K  
FR-RC-30K  
FR-RC-H30K  
FR-RC-55K  
FR-RC-H55K  
31  
8
90  
(68.343)  
55  
15  
135  
(121.3)  
(4) Mounting hole machining dimensions  
When the power regeneration converter is fitted to a totally enclosed type box, mount the heat generating  
area of the converter outside the box to provide heat generation measures. At this time, the mounting hole  
having the following dimensions is machined in the box.  
[Unit : mm]  
Power  
(2- D hole)  
(AA)  
regeneration  
converter  
a
b
D
AA  
200  
270  
BA  
432  
582  
FR-RC-15K  
FR-RC-H15K  
FR-RC-30K  
FR-RC-H30K  
FR-RC-55K  
FR-RC-H55K  
260  
330  
412  
562  
10  
10  
(Mounting hole)  
470  
642  
12  
410  
670  
a
11 - 47  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.5 Power regeneration common converter  
POINT  
Use the FR-CV for the servo amplifier of 200V class and the FR-CV-H for that  
of 400V class.  
For details of the power regeneration common converter FR-CV-(H), refer to  
the FR-CV-(H) Installation Guide (IB(NA)0600075).  
Do not supply power to the main circuit power supply terminals (L1, L2, L3) of  
the servo amplifier. Doing so will fail the servo amplifier and FR-CV-(H).  
Connect the DC power supply between the FR-CV-(H) and servo amplifier  
with correct polarity. Connection with incorrect polarity will fail the FR-CV-(H)  
and servo amplifier.  
Two or more FR-CV-(H)'s cannot be installed to improve regeneration  
capability. Two or more FR-CV-(H)'s cannot be connected to the same DC  
power supply line.  
When using the power regeneration common converter, set parameter No.PA02 to "  
01".  
(1) Model  
Capacity  
Symbol  
7.5K  
11K  
Capacity [kW]  
7.5  
11  
15  
22  
30  
37  
55  
15K  
22K  
30K  
37K  
55K  
Symbol  
None  
H
Voltage class  
200V class  
400V class  
(2) Selection  
The power regenerative common converter FR-CV can be used for the servo amplifier of 200V class with  
750 to 22kW and that of 400V class with 11k to 22kW. The following shows the restrictions on using the  
FR-CV-(H).  
(a) Up to six servo amplifiers can be connected to one FR-CV-(H).  
(b) FR-CV-(H) capacity [W] Total of rated capacities [W] of servo amplifiers connected to FR-CV-(H) 2  
(c) The total of used servo motor rated currents should be equal to or less than the applicable current [A] of  
the FR-CV-(H).  
(d) Among the servo amplifiers connected to the FR-CV-(H), the servo amplifier of the maximum capacity  
should be equal to or less than the maximum connectable capacity [W].  
11 - 48  
11. OPTIONS AND AUXILIARY EQUIPMENT  
The following table lists the restrictions.  
FR-CV-  
22K  
6
Item  
7.5K  
11K  
15K  
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
3.75  
33  
5.5  
46  
5
7.5  
61  
7
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
90  
3.5  
11  
FR-CV-H  
Item  
22K  
30K  
37K  
55K  
Maximum number of connected servo amplifiers  
Total of connectable servo amplifier capacities [kW]  
Total of connectable servo motor rated currents [A]  
Maximum servo amplifier capacity [kW]  
6
11  
90  
11  
15  
115  
15  
18.5  
145  
15  
27.5  
215  
22  
When using the FR-CV-(H), always install the dedicated stand-alone reactor (FR-CVL-(H)).  
Power regeneration common converter  
FR-CV-7.5K(-AT)  
FR-CV-11 K(-AT)  
FR-CV-15K(-AT)  
FR-CV-22K(-AT)  
FR-CV-30K(-AT)  
FR-CV-37K  
Dedicated stand-alone reactor  
FR-CVL-7.5K  
FR-CVL-11 K  
FR-CVL-15K  
FR-CVL-22K  
FR-CVL-30K  
FR-CVL-37K  
FR-CV-55K  
FR-CVL-55K  
FR-CV-H22K(-AT)  
FR-CV-H30K(-AT)  
FR-CV-H37K  
FR-CVL-H22K  
FR-CVL-H30K  
FR-CVL-H37K  
FR-CVL-H55K  
FR-CV-H55K  
11 - 49  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Connection diagram  
(a) 200V class  
Servo amplifier  
Servo motor  
U
FR-CVL  
FR-CV  
NF  
MC  
U
V
L11  
L21  
P1  
P
R/L11  
R2/L12  
S2/L22  
T2/L32  
R2/L1  
3-phase  
200 to  
V
S/L21  
T/L31  
S2/L2  
T2/L3  
Thermal  
W
W
230VAC  
(Note 7)  
relay  
OHS2  
OHS1  
P/L  
N/L  
(Note 6)  
(Note 2)  
N
CN2  
R/L11  
S/L21  
EM1  
RA1  
(Note 1)  
(Note 5)  
EM1  
DOCOM  
DICOM  
P24  
SD  
T/MC1  
RESET  
RES  
RDYB  
RDYA  
RSO  
Servo system  
controller  
SD  
(Note 3)  
(Note 4)  
(Note 1)  
(Note 1)  
SE  
A
EM1  
ON  
RA1 RA2  
OFF  
(Note 1)  
RA1  
MC  
B
C
MC  
SK  
24VDC  
RA2  
power  
supply  
Note 1. Configure a sequence that will shut off main circuit power at an emergency stop or at FR-CV or servo amplifier alarm  
occurrence.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV is ready.  
4. For the FR-CV, the RSO signal turns off when it is put in a ready-to-operate status where the reset signal is input.  
Configure a sequence that will make the servo inoperative when the RSO signal is on.  
5. Configure a sequence that will make a stop with the emergency stop input of the servo system controller if an alarm occurs in  
the FR-CV. When the servo system controller does not have an emergency stop input, use the forced stop input of the servo  
amplifier to make a stop as shown in the diagram.  
6. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regenerative resistor (3.5kW or  
less: P and D, 5k/7kW: P and C).  
7. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P. (Factory-wired.)  
11 - 50  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) 400V class  
Servo amplifier  
Servo motor  
U
FR-CVL  
FR-CV-H  
NF  
MC  
U
V
L11  
L21  
P1  
R/L11  
R2/L12  
S2/L22  
T2/L32  
R2/L1  
S2/L2  
T2/L3  
3-phase  
380 to  
V
S/L21  
T/L31  
Thermal  
W
W
480VAC  
(Note 7)  
relay  
(Note 6)  
OHS2  
OHS1  
P/L  
N/L  
P(  
N(  
)
(Note 2)  
)
CN2  
R/L11  
S/L21  
EM1  
RA1  
(Note 1)  
(Note 5)  
(Note 8)  
EM1  
DOCOM  
DICOM  
P24  
SD  
Stepdown  
transformer  
T/MC1  
RESET  
RES  
RDYB  
RDYA  
RSO  
Servo system  
controller  
SD  
(Note 3)  
(Note 4)  
(Note 1)  
(Note 1)  
SE  
A
EM1  
ON  
RA1 RA2  
OFF  
(Note 1)  
RA1  
MC  
B
C
MC  
SK  
24VDC  
RA2  
power  
supply  
Note 1. Configure a sequence that will shut off main circuit power at an emergency stop or at FR-CV-H or servo amplifier alarm  
occurrence.  
2. For the servo motor with thermal relay, configure a sequence that will shut off main circuit power when the thermal relay  
operates.  
3. For the servo amplifier, configure a sequence that will switch the servo on after the FR-CV-H is ready.  
4. For the FR-CV-H, the RSO signal turns off when it is put in a ready-to-operate status where the reset signal is input.  
Configure a sequence that will make the servo inoperative when the RSO signal is on.  
5. Configure a sequence that will make a stop with the emergency stop input of the servo system controller if an alarm occurs  
in the FR-CV-H. When the servo system controller does not have an emergency stop input, use the forced stop input of the  
servo amplifier to make a stop as shown in the diagram.  
6. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regenerative resistor (2kW or  
less: P and D, 3.5k to 7kW: P and C).  
7. When using the servo amplifier of 11k to 22kW, make sure to connect P1 and P( ). (Factory-wired.)  
8. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class servo amplifiers.  
11 - 51  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Selection example of wires used for wiring  
POINT  
Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
(a) Wire sizes  
1) Across P-P( ), N-N(  
)
The following table indicates the connection wire sizes of the DC power supply (P, N terminals)  
between the FR-CV and servo amplifier.  
Total of servo amplifier capacities [kW]  
Wires[mm2]  
1 or less  
2
2
5
3.5  
5.5  
8
7
11  
15  
22  
14  
22  
50  
The following table indicates the connection wire sizes of the DC power supply (P( ), N(  
terminals) between the FR-CV-H and servo amplifier.  
)
Total of servo amplifier capacities [kW]  
Wires[mm2]  
1 or less  
2
3.5  
5.5  
8
2
5
7
11  
15  
22  
8
22  
22  
2) Grounding  
For grounding, use the wire of the size equal to or greater than that indicated in the following  
table, and make it as short as possible.  
Power regeneration common converter  
FR-CV-7.5K to FR-CV-15K  
FR-CV-22K FR-CV-30K  
Grounding wire size [mm2 ]  
14  
22  
38  
8
FR-CV-37K FR-CV-55K  
FR-CV-H22K FR-CV-H30K  
FR-CV-H37K FR-CV-H55K  
22  
11 - 52  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Example of selecting the wire sizes  
When connecting multiple servo amplifiers, always use junction terminals for wiring the servo amplifier  
terminals P, N. Also, connect the servo amplifiers in the order of larger to smaller capacities.  
1) 200V class  
Wire as short as possible.  
50mm2  
22mm2  
FR-CV-55K  
Servo amplifier (15kW)  
First unit:  
P/L  
N/L  
P
N
R2/L1  
S2/L2  
T2/L3  
50mm2 assuming that the total of servo amplifier  
capacities is 27.5kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
(Note)  
22mm2  
8mm2  
3.5mm2  
2mm2  
Servo amplifier (7kW)  
Second unit:  
P
N
R/L11  
22mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
(Note)  
S/L21  
T/MC1  
8mm2  
2mm2  
Servo amplifier (3.5kW)  
Third unit:  
P
N
8mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
(Note)  
Servo amplifier (2kW)  
Fourth unit:  
P
N
2mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
(Note)  
Junction terminals  
Overall wiring length 5m or less  
Note. When using the servo amplifier of 7kW or less, make sure to disconnect the wiring of built-in regenerative resistor (3.5kW or  
less: P-D, 5k/7kW: P-C).  
2) 400V class  
Wire as short as possible.  
Servo amplifier (15kW)  
22mm2  
14mm2  
FR-CV-55K  
First unit:  
P/L+  
N/L-  
P
N
R2/L1  
S2/L2  
T2/L3  
22mm2 assuming that the total of servo amplifier  
capacities is 27.5kW since 15kW + 7kW + 3.5kW  
+ 2.0kW = 27.5kW.  
14mm2  
5.5mm2  
Servo amplifier (7kW)  
(Note)  
Second unit:  
P
N
R/L11  
14mm2 assuming that the total of servo amplifier  
capacities is 15kW since 7kW + 3.5kW + 2.0kW =  
12.5kW.  
S/L21  
T/MC1  
5.5mm2  
2mm2  
Servo amplifier (3.5kW)  
(Note)  
Third unit:  
P
N
5.5mm2 assuming that the total of servo amplifier  
capacities is 7kW since 3.5kW + 2.0kW = 5.5kW.  
2mm2  
2mm2  
Servo amplifier (2kW)  
(Note)  
Fourth unit:  
P
N
2mm2 assuming that the total of servo amplifier  
capacities is 2kW since 2.0kW = 2.0kW.  
Junction terminals  
Overall wiring length 5m or less  
Note. These servo amplifiers are development forecasted.  
11 - 53  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(5) Other precautions  
(a) Always use the FR-CVL-(H) as the power factor improving reactor. Do not use the FR-BAL or FR-BEL.  
(b) The inputs/outputs (main circuits) of the FR-CV-(H) and servo amplifiers include high-frequency  
components and may provide electromagnetic wave interference to communication equipment (such as  
AM radios) used near them. In this case, interference can be reduced by installing the radio noise filter  
(FR-BIF-(H)) or line noise filter (FR-BSF01, FR-BLF).  
(c) The overall wiring length for connection of the DC power supply between the FR-CV-(H) and servo  
amplifiers should be 5m or less, and the wiring must be twisted.  
11 - 54  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(6) Specifications  
Power regeneration common converter  
FR-CV-  
7.5K  
11K  
15K  
22K  
30K  
37K  
55K  
Item  
Total of connectable servo amplifier capacities [kW]  
3.75  
3.5  
5.5  
5
7.5  
7
11  
11  
15  
15  
18.5  
15  
27.5  
22  
Maximum servo amplifier capacity  
[kW]  
Total of connectable servo motor  
33  
46  
61  
90  
115  
145  
215  
rated currents  
[A]  
Short-time  
Output  
Total capacity of applicable servo motors, 300% torque, 60s (Note 1)  
100% torque  
Regenerative  
braking torque  
rating  
Continuous  
rating  
Rated input AC voltage/frequency  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Power supply capacity (Note 2) [kVA]  
Three-phase 200 to 220V 50Hz, 200 to 230V 60Hz  
Three-phase 170 to 242V 50Hz, 170 to 253V 60Hz  
5%  
Power supply  
17  
20  
28  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 to +50 (non-freezing)  
90%RH or less (non-condensing)  
Environment  
Ambient humidity  
Ambience  
Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt)  
1000m or less above sea level, 5.9m/s2 2 or less  
Altitude, vibration  
30AF  
30A  
50AF  
50A  
100AF  
75A  
100AF  
100A  
225AF  
125A  
225AF  
125A  
225AF  
175A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N95  
S-N125  
Power regeneration common converter  
FR-CV-H  
22K  
30K  
37K  
55K  
Item  
Total of connectable servo amplifier capacities  
Maximum servo amplifier capacity  
[kW]  
[kW]  
11  
11  
15  
15  
18.5  
15  
27.5  
22  
Total of connectable servo motor  
rated currents  
43  
57  
71  
110  
[A]  
Short-time  
Total capacity of applicable servo motors, 300%  
torque, 60s (Note 1)  
Output  
Regenerative  
braking torque  
rating  
Continuous  
rating  
100% torque  
Rated input AC voltage/frequency  
Three-phase 380 to 480V, 50Hz/60Hz  
Three-phase 323 to 528V, 50Hz/60Hz  
5%  
Permissible AC voltage fluctuation  
Permissible frequency fluctuation  
Power supply  
Power supply capacity  
[kVA]  
41  
52  
66  
100  
Protective structure (JEM 1030), cooling system  
Ambient temperature  
Open type (IP00), forced cooling  
-10 to +50 (non-freezing)  
90%RH or less (non-condensing)  
Ambient humidity  
Environment  
Indoors (without corrosive gas, flammable gas, oil  
mist, dust and dirt)  
Ambience  
Altitude, vibration  
1000m or less above sea level, 5.9m/s2 2 or less  
60AF  
60A  
100AF  
175A  
100AF  
175A  
225AF  
125A  
No-fuse breaker or leakage current breaker  
Magnetic contactor  
S-N25  
S-N35  
S-N35  
S-N65  
Note 1. This is the time when the protective function of the FR-CV-(H) is activated. The protective function of the servo amplifier is  
activated in the time indicated in section 10.1.  
2. When connecting the capacity of connectable servo amplifier, specify the value of servo amplifier.  
11 - 55  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.6 External dynamic brake  
POINT  
Configure up a sequence which switches off the contact of the brake unit after  
(or as soon as) it has turned off the servo on signal at a power failure or  
failure.  
For the braking time taken when the dynamic brake is operated, refer to  
section 10.3.  
The brake unit is rated for a short duration. Do not use it for high duty.  
When using the 400V class dynamic brake, the power supply voltage is  
restricted to 1-phase 380VAC to 463VAC (50Hz/60Hz).  
(1) Selection of dynamic brake  
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs  
or the protective circuit is activated, and is built in the 7kW or less servo amplifier. Since it is not built  
in the 11kW or more servo amplifier, purchase it separately if required. Assign the dynamic brake interlock  
(DB) to any of CN3-9, CN3-13, and CN3-15 pins in parameter No.PD07 to PD09.  
Servo amplifier  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
Dynamic brake  
DBU-11K  
DBU-15K  
DBU-22K  
DBU-11K-4  
DBU-22K-4  
11 - 56  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Connection example  
Operation-ready  
Servo amplifier  
ALM  
ON  
RA1  
EM1  
OFF  
Servo motor  
M
MC  
SK  
U
V
MC  
U
V
W
W
NFB  
MC  
(Note 4)  
L1  
L2  
(Note 5)  
Power  
supply  
CN3  
L3  
RA1  
RA2  
15 ALM  
L11  
L21  
P
DICOM  
10  
(Note 3)  
DB  
(Note 2)  
P1  
DICOM  
5
3
DOCOM  
20 EM1  
Plate SD  
(Note 1)  
14  
13  
U
V
W
(Note 6)  
a
b
RA2  
External dynamic brake  
Note 1. Terminals 13, 14 are normally open contact outputs. If the dynamic brake is seized, terminals 13, 14 will open.  
Therefore, configure up an external sequence to prevent servo-on.  
2. For the servo amplifiers from 11k to 22kW, be sure to connect P1 and P. (Factory-wired)  
When using the power factor DC reactor, refer to section 11.13.  
3. Assign the dynamic brake interlock (DB) in the parameters No.PD07 to PD09.  
4. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class in 400V class servo amplifiers.  
5. Refer to section 1.3 for the power supply specification.  
6. The power supply voltage of the inside magnet contactor for 400V class dynamic brake DBU-11K-4 and DBU-22K-4 is restricted  
as follows. When using these dynamic brakes, use them within the range of the power supply.  
Dynamic brake  
DBU-11K-4  
DBU-22K-4  
Power supply voltage  
1-phase 380 to 463VAC 50Hz/60Hz  
11 - 57  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Coasting  
Coasting  
Dynamic brake  
Servo motor rotation  
Dynamic brake  
Present  
Absent  
ON  
Alarm  
Base  
OFF  
ON  
OFF  
RA1  
Invalid  
Valid  
Dynamic brake  
Short  
Open  
Forced stop  
(EM1)  
a. Timing chart at alarm occurrence  
Servo motor speed  
b. Timing chart at forced stop (EM1) validity  
Coasting  
Dynamic brake  
Electro magnetic  
brake interlock  
(Note 1)7ms  
10ms  
ON  
Base circuit  
OFF  
Electro magnetic  
brake interlock(MBR)  
Invalid (ON)  
Valid (OFF)  
(Note 2)15 to 60ms  
Electro magnetic  
brake operation  
delay time  
Invalid  
Valid  
ON  
Alarm  
Main circuit  
Control circuit  
Power  
OFF  
ON  
RA1  
OFF  
Invalid (ON)  
Valid (OFF)  
Dynamic brake  
Note 1. When powering OFF, the RA1 of external dynamic brake circuit will be turned OFF, and the base circuit  
is turned OFF earlier than usual before an output shortage occurs.  
(Only when assigning the DB as the output signal in the parameter No.PD07, PD08 or PD09)  
2. Variable according to the operation status.  
c. Timing chart when both of the main and control circuit power are OFF  
11 - 58  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline dimension drawing  
(a) DBU-11K DBU-15K DBU-22K  
[Unit: mm]  
5
5
G
F
100  
D
D
2.3  
C
Terminal block  
E
U
V
W
a
b
13 14  
(GND)  
Screw : M4  
Screw : M3.5  
Tightening torque: 1.2 [N m](10.6 [lb in])  
Tightening torque: 0.8 [N m](7 [lb in])  
Connection  
Mass  
Dynamic brake  
A
B
C
D
E
F
G
wire [mm2]  
(Note)  
[kg]([Ib])  
DBU-11K  
200  
250  
190  
238  
140  
150  
20  
25  
5
6
170  
235  
163.5  
228  
2 (4.41)  
5.5  
5.5  
DBU-15K, 22K  
6 (13.23)  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
11 - 59  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) DBU-11K-4 DBU-22K-4  
[Unit: mm]  
2- 7mounting hole  
51 73.75  
150  
7
2.3  
15  
25  
25  
15  
195  
210  
200  
15  
170  
Mass: 6.7[kg]  
Terminal block  
TE1  
TE2  
U
a
b
13 14  
V
W
Screw: M3.5  
Screw: M4  
Tightening torque: 1.2[N m](10.6[lb in])  
Tightening torque: 0.8[N m](7[lb in])  
Wire [mm2] (Note)  
Dynamic brake  
a
b
U
V
W
DBU-11K  
2
2
5.5  
5.5  
DBU-15K, 22K  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
11 - 60  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.7 Junction terminal block PS7DW-20V14B-F (recommended)  
(1) How to use the junction terminal block  
Always use the junction terminal block (PS7W-20V14B-F(YOSHIDA ELECTRIC INDUSTRY)) with the  
option cable (MR-J2HBUS M) as a set. A connection example is shown below.  
Servo amplifier  
Cable clamp  
(AERSBAN-ESET)  
Junction terminal block  
PS7DW-20V14B-F  
CN3  
MR-J2HBUS  
M
Ground the option cable on the junction terminal block side with the cable clamp fitting (AERSBAN-ESET).  
For the use of the cable clamp fitting, refer to section 11.14, (2)(c).  
(2) Connection of MR-J2HBUS M cable and junction terminal block  
Junction terminal block  
Servo amplifier  
CN3  
PS7W-20V14B-F  
Terminal block  
CN  
(Note)MR-J2HBUS  
M
LG  
1
2
1
2
1
2
3
4
5
6
7
8
9
1
2
1
2
LG  
DI1  
DI1  
DOC  
MO1  
DICO  
LA  
3
3
3
3
DOC  
MO1  
DICO  
LA  
4
4
4
4
5
5
5
5
6
6
6
6
LB  
7
7
7
7
LB  
LZ  
8
8
8
8
LZ  
INP  
DICO  
LG  
9
9
9
9
INP  
DICO  
LG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DI2  
DI2  
MBR  
MO2  
AMR  
LAR  
LBR  
LZR  
DI3  
MBR  
MO2  
AMR  
LAR  
LBR  
LZR  
DI3  
EM1  
SD  
EM1  
Shell Shell  
Shell Shell  
E
SD  
Connector: 10120-6000EL (3M)  
Shell kit: 10320-3210-000 (3M)  
Note. Symbol indicating cable length is put in  
.
05: 0.5m  
1: 1m  
5: 5m  
11 - 61  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawings of junction terminal block  
[Unit : mm]  
63  
54  
44.11  
7.62  
4.5  
TB.E  
(
6)  
M3 5L  
6.2  
1.42  
M3 6L  
11.8 MR Configurator  
The MR Configurator (MRZJW3-SETUP221E) uses the communication function of the servo amplifier to  
perform parameter setting changes, graph display, test operation, etc. on a personal computer.  
(1) Specifications  
Item  
Description  
The following table shows MR Configurator software version for each servo amplifier.  
Compatible servo amplifier (Drive unit)  
Version  
100V class 200V class  
400V class  
Compatibility with a  
servo amplifier  
7kW or less 11k to 22kW 30k to 37kW 7kW or less 11k to 22kW 30k to 55kW  
B1  
C0 or later  
Display, high speed monitor, trend graph  
Monitor  
Alarm  
Minimum resolution changes with the processing speed of the personal computer.  
Display, history, amplifier data  
Digital I/O, no motor rotation, total power-on time, amplifier version info, motor information,  
tuning data, absolute encoder data, Axis name setting.  
Parameter list, turning, change list, detailed information  
Jog operation, positioning operation, Do forced output, program operation.  
Machine analyzer, gain search, machine simulation.  
Data read, save, delete, print  
Diagnostic  
Parameters  
Test operation  
Advanced function  
File operation  
Others  
Automatic demo, help display  
11 - 62  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to the servo amplifier and servo  
motor.  
Equipment  
(Note 1) Description  
IBM PC/AT compatible where the English version of WindowsR 98, Windows R Me,  
WindowsR 2000 Professional, Windows R XP Professional, WindowsR XP Home Edition,  
Windows VistaR Home Basic, Windows VistaR Home Premium, Windows VistaR Business,  
Windows VistaR Ultimate, Windows VistaR Enterprise operates  
PentiumR 133MHz or more (WindowsR 98, WindowsR 2000 Professional)  
PentiumR 150MHz or more (WindowsR Me)  
OS  
PentiumR 300MHz or more (WindowsR XP Professional, WindowsR XP Home Edition)  
32-bit (x86) processor of 1GHz or higher (Windows VistaR Home Basic, Windows VistaR  
Home Premium, Windows VistaR Business, Windows VistaR Ultimate, Windows VistaR  
Enterprise)  
Processor  
(Note 2, 3)  
Personal computer  
24MB or more (WindowsR 98)  
32MB or more (WindowsR Me, Windows R 2000 Professional)  
128MB or more (WindowsR XP Professional, WindowsR XP Home Edition)  
512MB or more (Windows VistaR Home Basic)  
Memory  
1GB or more (Windows VistaR Home Premium, Windows VistaR Business, Windows VistaR  
Ultimate, Windows VistaR Enterprise)  
Hard Disk 130MB or more of free space  
Internet Explorer 4.0 or more  
Browser  
Display  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
Connectable with the above personal computer.  
MR-J3USBCBL3M  
Keyboard  
Mouse  
Printer  
USB cable  
Note 1. Windows and Windows Vista is the registered trademarks of Microsoft Corporation in the United States and other  
countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, MR Configurator may not run properly.  
3. 64-bit Windows XP and 64-bit Windows Vista are not supported.  
(b) Connection with servo amplifier  
1) For use of USB  
Personal computer  
Servo amplifier  
CN5  
USB cable  
To USB  
connector  
MR-J3USBCBL3M  
(Option)  
CN2  
11 - 63  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.9 Battery MR-J3BAT  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the International Air  
Transport Association (IATA) went into effect on January 1, 2003 and was  
enforced immediately. In this rule, "provisions of the lithium and lithium ion  
batteries" were revised to tighten the restrictions on the air transportation of  
batteries. However, since this battery is non-dangerous goods (non-Class 9),  
air transportation of 24 or less batteries is outside the range of the  
restrictions. Air transportation of more than 24 batteries requires packing  
compliant with the Packing Standard 903. When a self-certificate is necessary  
for battery safety tests, contact our branch or representative. For more  
information, consult our branch or representative. (As of Jun, 2008).  
(1) Purpose of use for MR-J3BAT  
This battery is used to construct an absolute position detection system. Refer to section 12.3 for the fitting  
method, etc.  
(2) Year and month when MR-J3BAT is manufactured  
The year and month when MR-J3BAT is manufactured are written down in Serial No. on the rating plate of  
the battery back face.  
The year and month of manufacture are indicated by the last one digit of the year and 1 to 9, X(10), Y(11),  
Z(12).  
For October 2004, the Serial No. is like, "SERIAL 4X  
".  
MELSERVO  
3.6V,2000mAh  
SERIAL 4X  
MR-J3BAT  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
The year and month of manufacture  
11 - 64  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.10 Heat sink outside mounting attachment (MR-J3ACN)  
Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier in the  
outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and reduce the  
amount of heat generated in the box, thereby allowing a compact control box to be designed.  
In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting  
attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo amplifier to  
the control box.  
The environment outside the control box when using the heat sink outside mounting attachment should be  
within the range of the servo amplifier operating environment conditions.  
The heat sink outside mounting attachment of MR-J3ACN can be used for MR-J3-11KB(4) to MR-J3-22KB(4).  
(1) Panel cut dimensions  
[Unit : mm]  
203  
4-M10 Screw  
Punched  
hole  
236  
255  
270  
(2) How to assemble the attachment for a heat sink outside mounting attachment  
Attachment  
Screw  
(2 places)  
11 - 65  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Fitting method  
Attachment  
Punched  
hole  
Servo  
amplifier  
Servo  
amplifier  
Fit using the  
assembling  
screws.  
Control box  
Attachment  
a. Assembling the heat sink outside mounting attachment  
b. Installation to the control box  
(4) Outline dimension drawing  
[Unit: mm]  
20  
Panel  
Servo  
amplifier  
Servo amplifier  
Attachment  
Panel  
3.2  
155  
Approx. 260  
236  
280  
Approx. 11.5  
105  
Mounting  
hole  
Approx. 260  
11 - 66  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.11 Selection example of wires  
POINT  
Refer to section 11.1.5 for SSCNET cable.  
Wires indicated in this section are separated wires. When using a cable for  
power line (U, V, and W) between the servo amplifier and servo motor, use a  
600V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT).  
For selection of cables, refer to appendix 6.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper  
wires rated at 60 (140 ) or more for wiring. To comply with other  
standards, use a wire that is complied with each standard  
Selection condition of wire size is as follows.  
Construction condition: One wire is constructed in the air  
Wire length: 30m or less  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Servo motor  
Servo amplifier  
Power supply  
L1  
U
V
U
V
L2  
L3 (Note)  
Motor  
W
W
2) Control power supply lead  
L11  
L21  
8) Power regeneration  
converter lead  
4) Electromagnetic  
brake lead  
Electro-  
magnetic  
brake  
B1  
B2  
Power regeneration  
converter  
N
C
Regenerative option  
P
C
Encoder  
P
Encoder cable  
Power supply  
4) Regenerative option lead  
Cooling fan  
BU  
BV  
BW  
6) Cooling fan lead  
7) Thermal  
Thermal  
OHS1  
OHS2  
Note. There is no L3 for 1-phase 100 to 120VAC power supply.  
11 - 67  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(a) When using the 600V Polyvinyl chloride insulated wire (IV wire)  
Selection example of wire size when using IV wires is indicated below.  
Table 11.1 Wire size selection example 1 (IV wire)  
Wires [mm2] (Note 1, 4)  
Servo amplifier  
1)  
3)  
6)  
7)  
2) L11 L21  
4) P  
C
5) B1 B2  
L1 L2 L3  
U
V
W
BU BV BW OHS1 OHS2  
MR-J3-10B(1)  
MR-J3-20B(1)  
MR-J3-40B(1)  
MR-J3-60B  
MR-J3-70B  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14)  
3.5(AWG12)  
3.5(AWG12)  
5.5(AWG10): a  
5.5(AWG10): a 2(AWG14): g  
1.25(AWG16):  
h
MR-J3-700B  
(Note 2)  
2(AWG14)  
(Note 3)  
1.25(AWG16)  
(Note 3)  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
8(AWG8): b  
22(AWG4): d  
30(AWG2): e  
3.5(AWG12): a  
MR-J3-11KB  
(Note 2)  
5.5(AWG10): j 1.25(AWG16)  
MR-J3-15KB  
(Note 2)  
1.25(AWG16):  
g
2(AWG14)  
1.25(AWG16)  
MR-J3-22KB  
(Note 2)  
50(AWG1/0):  
f
60(AWG2/0): f 5.5(AWG10): k  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14): g  
2(AWG14): g  
1.25(AWG16):  
h
2(AWG14): g  
5.5(AWG10): a  
5.5(AWG10): a  
MR-J3-700B4  
(Note 2)  
2(AWG14)  
(Note 3)  
1.25(AWG16)  
(Note 3)  
MR-J3-11KB4  
(Note 2)  
8(AWG8): l  
8(AWG8): l  
3.5(AWG12): j  
5.5(AWG10): j  
5.5(AWG10): k  
MR-J3-15KB4  
(Note 2)  
1.25(AWG16):  
g
14(AWG6): c  
14(AWG6): m  
22(AWG4): d  
22(AWG4): n  
2(AWG14)  
1.25(AWG16)  
MR-J3-22KB4  
(Note 2)  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (1) (c) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
4. Wires are selected based on the highest rated current among combining servo motors.  
Use wires 8) of the following sizes with the power regeneration converter (FR-RC-(H)).  
2
Model  
Wires[mm ]  
14(AWG6)  
14(AWG6)  
22(AWG4)  
14(AWG6)  
14(AWG6)  
14(AWG6)  
FR-RC-15K  
FR-RC-30K  
FR-RC-55K  
FR-RC-H15K  
FR-RC-H30K  
FR-RC-H55K  
11 - 68  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) When using the 600V Grade heat-resistant polyvinyl chloride insulated wire (HIV wire)  
Selection example of wire size when using HIV wires is indicated below. For the wire (8)) for power  
regeneration converter (FR-RC-(H)), use the IV wire indicated in (1) (a) in this section.  
Table 11.2 Wire size selection example 2 (HIV wire)  
Wires [mm2] (Note 1, 4)  
Servo amplifier  
1)  
3)  
6)  
7)  
2) L11 L21  
4) P  
C
5) B1 B2  
L1 L2 L3  
U
V
W
BU BV BW OHS1 OHS2  
MR-J3-10B(1)  
MR-J3-20B(1)  
MR-J3-40B(1)  
MR-J3-60B  
MR-J3-70B  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
(Note 2)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
3.5(AWG12)  
3.5(AWG12)  
5.5(AWG10): a  
5.5(AWG10): a 2(AWG14): g  
1.25(AWG16):  
h
MR-J3-700B  
(Note 2)  
1.25(AWG16) 1.25(AWG16)  
(Note 3) (Note 3)  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
38(AWG1): p  
8(AWG8): b  
14(AWG6): c  
22(AWG4): d  
38(AWG1): p  
1.25(AWG16)  
2(AWG14): g  
MR-J3-11KB  
(Note 2)  
3.5(AWG12): j 1.25(AWG16)  
MR-J3-15KB  
(Note 2)  
1.25(AWG16):  
g
1.25(AWG16) 1.25(AWG16)  
MR-J3-22KB  
(Note 2)  
5.5(AWG10): k  
2(AWG14)  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
(Note 2)  
2(AWG14)  
1.25(AWG16)  
2(AWG14)  
2(AWG14): g  
2(AWG14): g  
1.25(AWG16):  
h
3.5(AWG12): a  
5.5(AWG10): a  
8(AWG8): l  
2(AWG14): g  
3.5(AWG12): a  
MR-J3-700B4  
(Note 2)  
1.25(AWG16) 1.25(AWG16)  
(Note 3) (Note 3)  
MR-J3-11KB4  
(Note 2)  
5.5(AWG10): j  
8(AWG8): l  
2(AWG14): q  
3.5(AWG12): j  
MR-J3-15KB4  
(Note 2)  
1.25(AWG16):  
g
14(AWG6): c  
1.25(AWG16) 1.25(AWG16)  
MR-J3-22KB4  
(Note 2)  
14(AWG6): m  
14(AWG6): m 3.5(AWG12): k  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (1) (c) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
4. Wires are selected based on the highest rated current among combining servo motors.  
11 - 69  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Selection example of crimping terminals  
Selection example of crimping terminals for the servo amplifier terminal box when using the wires  
mentioned in (1) (a) and (b) in this section is indicated below.  
Servo amplifier side crimping terminals  
(Note 2)  
Crimping  
terminal  
Applicable tool  
Symbol  
a
Manufacturer  
Body  
Head  
Dice  
FVD5.5-4  
YNT-1210S  
YHT-8S  
(Note 1)b 8-4NS  
c
FVD14-6  
FVD22-6  
DH-112 DH122  
DH-113 DH123  
YF-1 E-4  
YNE-38  
d
YPT-60-21  
YF-1 E-4  
YPT-60-21  
YF-1 E-4  
(Note 1)e 38-6  
(Note 1)f R60-8  
TD-112 TD-124  
YET-60-1  
YET-60-1  
TD-113 TD-125 Japan Solderless  
Terminal  
g
h
j
FVD2-4  
YNT-1614  
FVD2-M3  
FVD5.5-6  
FVD5.5-8  
FVD8-6  
YNT-1210S  
k
l
DH-111 DH121  
DH-112 DH122  
DH-113 DH123  
YF-1 E-4  
YNE-38  
m
n
FVD14-8  
FVD22-8  
YPT-60-21  
YF-1 E-4  
YNT-1614  
(Note 1)p R38-8  
FVD2-6  
TD-112 TD-124  
YET-60-1  
q
Note 1. Coat the part of crimping with the insulation tube.  
2. Some crimping terminals may not be mounted depending on the size. Make sure to use the  
recommended ones or equivalent ones.  
11 - 70  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent.  
Table 11.3 Wires for option cables  
Characteristics of one core  
(Note 3)  
Finishing  
OD [mm]  
Insulation  
coating OD  
d [mm]  
Length Core size Number  
Structure  
Conductor  
resistance  
Type  
Model  
Wire model  
[m]  
[mm2]  
of Cores  
[Wires/mm]  
[
/mm]  
(Note 1)  
(Note 3)  
VSVP 7/0.26 (AWG#22 or  
equivalent)-3P  
MR-J3ENCBL M-A1-L  
MR-J3ENCBL M-A2-L  
MR-J3ENCBL M-A1-H  
MR-J3ENCBL M-A2-H  
MR-J3JCBL03M-A1-L  
MR-J3JCBL03M-A2-L  
6
53  
or less  
2 to 10 AWG22  
2 to 10 AWG22  
7/0.26  
70/0.08  
30/0.08  
1.2  
1.2  
1.2  
7.1 0.3  
(3 pairs)  
Ban-gi-shi-16823  
(Note 3)  
6
56  
or less  
7.1 0.3 ETFE SVP 70/0.08 (AWG#22 or  
equivalent)-3P Ban-gi-shi-16824  
(3 pairs)  
(Note 5)  
7.1 0.3 T/2464-1061/II A-SB 4P  
26AWG  
8
233  
or less  
0.3  
AWG26  
(4 pairs)  
4
65.7  
or less  
234  
or less  
63.6  
or less  
105  
or less  
105  
or less  
0.3mm2  
12/0.18  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
1.3  
0.67  
1.2  
(Note 3)  
(2 pairs)  
2 to 10  
7.3  
20276 composite 4-pair shielded  
cable (A-TYPE)  
4
0.08mm2  
MR-EKCBL M-L  
MR-EKCBL M-H  
MR-J3ENSCBL M-L  
(2 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
Encoder  
cable  
20 30 0.3mm2  
0.2mm2  
8.2  
7.2  
8.0  
UL20276 AWG#23 6pair(BLACK)  
(Note 3) A14B2343 6P  
20  
0.88  
0.88  
30 to 50 0.2mm2  
(Note 3) J14B0238(0.2*7P)  
(Note 3)  
7.1 0.3 VSVP 7/0.26 (Equivalent to  
AWG#22)-3P Ban-gi-shi-16823  
(Note 3)  
(7 pairs)  
6
53  
or less  
2 to 10 AWG22  
7/0.26  
12/0.18  
70/0.08  
40/0.08  
1.2  
1.2  
(3 pairs)  
12  
(6 pairs)  
63.3  
or less  
20 30 AWG23  
2 to 10 AWG22  
20 to 50 AWG24  
8.2 0.3 20276 VSVCAWG#23 6P  
Ban-gi-shi-15038  
(Note 3)  
6
56  
or less  
1.2  
7.1 0.3 ETEF SVP 70/0.08 (Equivalent to  
AWG#22)-3P Ban-gi-shi-16824  
(Note 3)  
(3 pairs)  
MR-J3ENSCBL M-H  
12  
(6 pairs)  
105  
or less  
0.88  
7.2  
ETFE SVP 40/0.08mm 6P  
Ban-gi-shi-15266  
MR-PWS1CBL M-A1-L 2 to 10  
MR-PWS1CBL M-A2-L 2 to 10  
Motor power MR-PWS1CBL M-A1-H 2 to 10 (Note 6)  
supply cable AWG19  
25.40  
or less  
(Note 4)  
UL Style 2103 AWG19 4 cores  
4
2
50/0.08  
1.8  
1.3  
5.7 0.3  
MR-PWS1CBL M-A2-H 2 to 10  
MR-PWS2CBL03M-A1-L  
MR-PWS2CBL03M-A2-L  
MR-BKS1CBL M-A1-L  
MR-BKS1CBL M-A2-L  
0.3  
0.3  
2 to 10  
2 to 10  
Motor brake MR-BKS1CBL M-A1-H 2 to 10 (Note 6)  
cable AWG20  
38.14  
or less  
(Note 4)  
UL Style 2103 AWG20 2 cores  
100/0.08  
4.0 0.3  
MR-BKS1CBL M-A2-H 2 to 10  
MR-BKS2CBL03M-A1-L  
MR-BKS2CBL03M-A2-L  
0.3  
0.3  
Note 1. d is as shown below.  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry  
3. Standard OD. Max. OD is about 10% greater.  
4. Kurabe  
5. Taiyo Electric Wire and Cable  
6. These wire sizes assume that the UL-compliant wires are used at the wiring length of 10m.  
11 - 71  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.12 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one servo amplifier. When using a fuse  
instead of the no-fuse breaker, use the one having the specifications given in this section.  
No-fuse breaker  
Fuse  
Magnetic  
contactor  
Not using power  
Servo amplifier  
Using power factor  
improving reactor  
Voltage  
AC [V]  
factor improving  
reactor  
(Note) Class Current [A]  
MR-J3-10B (1)  
MR-J3-20B  
30A frame 5A  
30A frame 5A  
30A frame 10A  
30A frame 10A  
30A frame 5A  
30A frame 5A  
30A frame 10A  
30A frame 5A  
10  
10  
15  
15  
MR-J3-20B1  
MR-J3-40B  
S-N10  
MR-J3-60B  
MR-J3-70B  
30A frame 15A  
30A frame 10A  
20  
MR-J3-100B  
MR-J3-40B1  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
MR-J3-700B4  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
250  
30A frame 20A  
30A frame 30A  
50A frame 50A  
100A frame 75A  
30A frame 15A  
30A frame 30A  
50A frame 40A  
50A frame 50A  
40  
70  
S-N18  
S-N20  
S-N35  
S-N50  
S-N65  
S-N95  
S-N125  
125  
150  
T
100A frame 100A 100A frame 75A  
225A frame 125A 100A frame 100A  
225A frame 175A 225A frame 150A  
200  
250  
350  
10  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 40A  
60A frame 60A  
100A frame 75A  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
50A frame 30A  
50A frame 50A  
60A frame 60A  
15  
S-N10  
25  
35  
600  
50  
S-N18  
S-N20  
S-N25  
S-N35  
S-N65  
65  
100  
150  
175  
225A frame 125A 100A frame 100A  
Note. When not using the servo amplifier as a UL/C-UL Standard compliant product, K5 class fuse can be used.  
11.13 Power factor improving DC reactor  
POINT  
For the 100V power supply type (MR-J3- B1), the power factor improving DC  
reactor cannot be used.  
The power factor improving DC reactor increases the form factor of the servo amplifier's input current to  
improve the power factor. It can decrease the power supply capacity. As compared to the power factor  
improving AC reactor (FR-BAL), it can decrease the loss. The input power factor is improved to about 95%.  
It is also effective to reduce the input side harmonics.  
When connecting the power factor improving DC reactor to the servo amplifier, always disconnect P1 and P2  
(For 11kW or more, disconnect P1 and P). If it remains connected, the effect of the power factor improving DC  
reactor is not produced.  
When used, the power factor improving DC reactor generates heat. To release heat, therefore, leave a 10cm or  
more clearance at each of the top and bottom, and a 5cm or more clearance on each side.  
11 - 72  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Rating plate Terminal box - screw size G  
Rating plate  
(Note 1)Terminal cover  
Screw size G  
Servo amplifier  
FR-BEL-(H)  
Servo amplifier  
FR-BEL-(H)  
P1  
(Note 2)  
P2  
P1  
(Note 2)  
(Note 3)  
P2  
5m or less  
E
H
5m or less  
A or less  
B or less  
E
H
2-F L notch  
A or less  
B or less  
2-F L notch  
Mounting leg  
F
Mounting leg  
F
Fig. 11.1  
Fig. 11.2  
Note 1. Since the terminal cover is supplied, attach it after connecting a wire.  
2. When using DC reactor, disconnect P1 and P2.  
3. When over 11kW, "P2" becomes "P", respectively.  
Power factor  
improving DC  
reactor  
Dimensions [mm]  
Outline  
Mounting  
screw size  
Mass  
Wire  
[mm2] (Note)  
Servo amplifier  
drawing  
[kg(lb)]  
A
B
C
D
E
F
L
G
H
MR-J3-10B 20B  
MR-J3-40B  
FR-BEL-0.4K  
FR-BEL-0.75K  
FR-BEL-1.5K  
110  
120  
130  
50  
53  
65  
65  
75  
75  
93  
94  
1.6  
1.6  
1.6  
1.6  
2.0  
2.0  
2.3  
95  
6
6
6
6
6
6
6
12  
12  
12  
12  
12  
12  
14  
M3.5  
M4  
M4  
M4  
M4  
M5  
M5  
25  
25  
30  
30  
40  
40  
50  
M5  
M5  
M5  
M5  
M5  
M5  
M5  
0.5(1.10)  
0.7(1.54)  
1.1(2.43)  
1.2(2.65)  
1.7(3.75)  
102  
110  
110  
102  
126  
132  
105  
115  
115  
135  
135  
155  
MR-J3-60B 70B  
MR-J3-100B  
MR-J3-200B  
MR-J3-350B  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
MR-J3-22KB  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
MR-J3-700B4  
MR-J3-11KB4  
MR-J3-15KB4  
MR-J3-22KB4  
2(AWG14)  
FR-BEL-2.2K Fug. 11.1 130  
FR-BEL-3.7K  
FR-BEL-7.5K  
FR-BEL-11K  
150  
150  
170  
2.3(5.07) 3.5(AWG12)  
3.1(6.83) 5.5(AWG10)  
8(AWG8)  
3.8(8.38)  
FR-BEL-15K  
170  
93  
170  
2.3  
155  
6
14  
M8  
56  
M5  
22(AWG4)  
Fig. 11.2  
FR-BEL-22K  
FR-BEL-30K  
185  
185  
130  
130  
119  
119  
63  
182  
201  
89  
2.6  
2.6  
1.6  
1.6  
2
165  
165  
115  
115  
135  
135  
155  
7
7
6
6
6
6
6
15  
15  
12  
12  
12  
12  
14  
M8  
M8  
70  
70  
32  
32  
40  
40  
50  
M6  
M6  
M5  
M5  
M5  
M5  
M5  
5.4(11.91) 30(AWG2)  
6.7(14.77) 60(AWG2/0)  
0.9(1.98)  
FR-BEL-H1.5K  
FR-BEL-H2.2K  
M3.5  
M3.5  
M4  
63  
101  
102  
124  
132  
1.1(2.43)  
2(AWG14)  
1.7(3.75)  
FR-BEL-H3.7K Fig. 11.1 150  
75  
FR-BEL-H7.5K  
FR-BEL-H11K  
150  
170  
75  
2
M4  
2.3(5.07)  
93  
2.3  
M5  
3.1(6.83) 5.5(AWG10)  
FR-BEL-H15K  
170  
93  
160  
2.3  
155  
6
14  
M6  
56  
M5  
3.7(8.16)  
8(AWG8)  
Fig. 11.2  
FR-BEL-H22K  
FR-BEL-H30K  
185  
185  
119  
119  
171  
189  
2.6  
2.6  
165  
165  
7
7
15  
15  
M6  
M6  
70  
70  
M6  
M6  
5.0(11.02)  
6.7(14.77)  
22(AWG4)  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
11 - 73  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.14 Power factor improving AC reactors  
The power factor improving AC reactors improve the phase factor by increasing the form factor of servo  
amplifier's input current.  
It can reduce the power capacity.  
The input power factor is improved to be about 90%. For use with a 1-phase power supply, it may be slightly  
lower than 90%.  
In addition, it reduces the higher harmonic of input side.  
When using power factor improving reactors for two servo amplifiers or more, be sure to connect a power factor  
improving reactor to each servo amplifier.  
If using only one power factor improving reactor, enough improvement effect of phase factor cannot be  
obtained unless all servo amplifiers are operated.  
[Unit : mm]  
Servo amplifier  
MR-J3- B(4)  
FR-BAL-(H)  
MC  
NFB  
R
S
T
X
Y
Z
L1  
3-phase  
200 to 230VAC  
or  
3-phase  
380 to 480VAC  
L2  
L3  
Servo amplifier  
FR-BAL  
MR-J3-  
B
MC  
NFB  
W
D1  
R
S
T
X
Y
Z
L1  
Installation screw  
(Note)  
1-phase  
200v to 230VAC  
L2  
L3  
RXSYT Z  
W1  
Servo amplifier  
MR-J3- B1  
C
FR-BAL  
MC  
NFB  
R
S
T
X
Y
Z
1-phase  
100 to120VAC  
L1  
Blank  
L2  
Note. For the 1-phase 200V to 230V power supply, Connect the power  
supply to L1, L2 and leave L3 open.  
11 - 74  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Dimensions [mm]  
Mounting  
screw size screw size  
Terminal  
Mass  
[kg (lb)]  
Servo amplifier  
Model  
W
W1  
120  
120  
145  
145  
200  
200  
255  
H
D
D1  
0
C
7.5  
7.5  
7.5  
7.5  
10  
FR-BAL-0.4K  
FR-BAL-0.75K  
FR-BAL-1.5K  
FR-BAL-2.2K  
FR-BAL-3.7K  
FR-BAL-7.5K  
FR-BAL-11K  
MR-J3-10B 20B 10B1  
MR-J3-40B 20B1  
MR-J3-60B 70B 40B1  
MR-J3-100B  
-2.5  
135  
135  
160  
160  
220  
220  
280  
115  
115  
140  
140  
192  
194  
220  
59  
45  
57  
M4  
M4  
M4  
M4  
M5  
M5  
M6  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.41)  
2.8 (6.17)  
0
-2.5  
69  
0
-2.5  
71  
55  
3.7 (8.16)  
0
-2.5  
91  
75  
5.6 (12.35)  
8.5 (18.74)  
14.5 (31.97)  
19 (41.89)  
0
MR-J3-200B  
-2.5  
90  
70  
0
MR-J3-350B  
-2.5  
120  
135  
100  
100  
10  
M5  
0
-2.5  
MR-J3-500B  
MR-J3-700B  
MR-J3-11KB  
MR-J3-15KB  
12.5  
M6  
0
FR-BAL-15K  
-2.5  
295  
270  
275  
133  
110  
12.5  
M6  
M6  
27 (59.53)  
FR-BAL-22K  
170 5  
290  
290  
160  
160  
220  
220  
280  
240  
240  
145  
145  
200  
200  
255  
301  
301  
140  
140  
190  
192  
226  
199  
219  
87  
25  
25  
M8  
M8  
M4  
M4  
M5  
M5  
M6  
M8  
M8  
35 (77.16)  
43 (94.80)  
5.3 (11.68)  
5.9 (13.01)  
8.5 (18.74)  
14 (30.87)  
18.5 (40.79)  
FR-BAL-30K  
190 5  
MR-J3-22KB  
MR-J3-60B4  
MR-J3-100B4  
MR-J3-200B4  
MR-J3-350B4  
MR-J3-500B4  
0
FR-BAL-H1.5K  
FR-BAL-H2.2K  
FR-BAL-H3.7K  
FR-BAL-H7.5K  
FR-BAL-H11K  
-2.5  
70  
7.5  
7.5  
10  
M3.5  
M3.5  
M3.5  
M4  
0
-2.5  
91  
75  
0
-2.5  
90  
70  
100 5  
100 5  
120  
130  
10  
12.5  
M5  
MR-J3-700B4  
MR-J3-11KB4  
FR-BAL-H15K  
FR-BAL-H22K  
110 5  
170 5  
295  
290  
270  
240  
244  
269  
130  
199  
12.5  
25  
M6  
M8  
M5  
M8  
27 (59.53)  
Approx.35  
(Approx.77.16)  
Approx.43  
MR-J3-15KB4  
MR-J3-22KB4  
FR-BAL-H30K  
190 5  
290  
240  
290  
219  
25  
M8  
M8  
(Approx.94.80)  
11.15 Relays (recommended)  
The following relays should be used with the interfaces.  
Interface  
Selection example  
Relay used for digital input command signals (interface DI-1) To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of rated current 40mA or  
less  
(Ex.) Omron : type MY  
11 - 75  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.16 Surge absorbers (recommended)  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
When using the surge absorber, perform insulation beforehand to prevent short-circuit.  
Maximum rating  
Surge  
Static capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Energy  
immunity  
[J]  
Rated  
power  
[W]  
limit voltage  
rating (range) V1mA  
immunity  
[A]  
AC[Vma]  
DC[V]  
[A]  
25  
[V]  
[pF]  
[V]  
(Note)  
220  
140  
180  
5
0.4  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
[Unit: mm]  
13.5  
4.7 1.0  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon chemi-con)  
Outline drawing [mm] (ERZ-C10DK221)  
0.8  
11.17 Noise reduction techniques  
Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and those  
radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier is an  
electronic device which handles small signals, the following general noise reduction techniques are required.  
Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input and output cables) and signal cables side by side or do not bundle  
them together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal transmission,  
and connect the shield to the SD terminal.  
Ground the servo amplifier, servo motor, etc. together at one point (refer to section 3.12).  
(b) Reduction techniques for external noises that cause the servo amplifier to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many relays  
which make a large amount of noise) near the servo amplifier and the servo amplifier may malfunction,  
the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
Although a surge absorber is built into the servo amplifier, to protect the servo amplifier and other  
equipment against large exogenous noise and lightning surge, attaching a varistor to the power input  
section of the equipment is recommended.  
11 - 76  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(c) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction  
Noises produced by the servo amplifier are classified into those radiated from the cables connected to  
the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or  
statically by the signal cables of the peripheral devices located near the main circuit cables, and those  
transmitted through the power supply cables.  
Noise radiated directly  
from servo amplifier  
Noises produced  
by servo amplifier  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
1)  
7)  
Sensor  
power  
supply  
Servo  
amplifier  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
11 - 77  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may malfunction  
due to noise and/or their signal cables are contained in a control box together with the servo amplifier or  
run near the servo amplifier, such devices may malfunction due to noises transmitted through the air. The  
following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
1) 2) 3)  
3. Avoid laying the power lines (Input cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and malfunction  
may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and the servo amplifier.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of the servo  
amplifier.  
4) 5) 6)  
3. Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of the servo amplifier  
system, noises produced by the servo amplifier may be transmitted back through the power supply  
cable and the devices may malfunction. The following techniques are required.  
7)  
8)  
1. Insert the radio noise filter (  
) on the power cables (Input cables) of the servo amplifier.  
FR-BIF-(H)  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of the servo amplifier.  
When the cables of peripheral devices are connected to the servo amplifier to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
(2) Noise reduction products  
(a) Data line filter (Recommended)  
Noise can be prevented by installing a data line filter onto the encoder cable, etc. For example, the  
ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC TOKIN make are available as data line filters. As a  
reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]  
Impedance[ ]  
10 to 100MHz  
80  
100 to 500MHz  
150  
39 1  
34 1  
Loop for fixing the  
cable band  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
11 - 78  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve or the like near the servo  
amplifier is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
This distance should be short  
(within 20cm).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Rated  
voltage  
AC[V]  
Outline drawing [Unit: mm]  
Vinyl sheath  
C [ F]  
0.5  
R [ ]  
Test voltage AC[V]  
18 1.5  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
200  
6
(1W)  
T-C 1000(1 to 5s)  
10 or less  
10 or less  
4
10 3  
10 3  
15 1  
200 or more 48 1.5 200 or more  
31  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of the  
relay or the like  
Maximum current: Not less than twice the drive current of the  
relay or the like  
Diode  
(c) Cable clamp fitting AERSBAN - SET  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown below.  
Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath to  
expose the external conductor, and press that part against the earth plate with the cable clamp. If the  
cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
[Unit: mm]  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
11 - 79  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
Earth plate  
Clamp section diagram  
2- 5 hole  
17.5  
installation hole  
L or less  
10  
22  
6
(Note)M4 screw  
35  
Note. Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
clamp A: 2pcs.  
clamp B: 1pc.  
Clamp fitting  
L
AERSBAN-DSET  
AERSBAN-ESET  
100  
70  
86  
56  
30  
A
B
70  
45  
11 - 80  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BSF01, FR-BLF)  
This filter is effective in suppressing noises radiated from the power supply side and output side of the  
servo amplifier and also in suppressing high-frequency leakage current (zero-phase current) especially  
within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm]  
Use the line noise filters for wires of the main power supply (L1 L2  
FR-BSF01 (for wire size 3.5mm2 (AWG12) or less))  
Approx.110  
L3) and of the motor power supply (U  
V
W). Pass each of the  
3-phase wires through the line noise filter an equal number of  
times in the same direction. For the main power supply, the effect  
of the filter rises as the number of passes increases, but generally  
four passes would be appropriate. For the motor power supply,  
passes must be four times or less. Do not pass the grounding  
(earth) wire through the filter, or the effect of the filter will drop.  
Wind the wires by passing through the filter to satisfy the required  
number of passes as shown in Example 1. If the wires are too  
thick to wind, use two or more filters to have the required number  
of passes as shown in Example 2. Place the line noise filters as  
close to the servo amplifier as possible for their best performance.  
2-  
5
95 0.5  
Approx.65  
33  
Example 1  
NFB MC  
Servo amplifier  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
FR-BLF(for wire size 5.5mm2 (AWG10) or more))  
7
(Number of turns: 4)  
Example 2  
MC  
NFB  
Servo amplifier  
130  
85  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
Two filters are used  
(Total number of turns: 4)  
160  
180  
(e) Radio noise filter (  
FR-BIF-(H))  
This filter is effective in suppressing noises radiated from the power supply side of the servo amplifier  
especially in 10MHz and lower radio frequency bands. The FR-BIF (-H) is designed for the input only.  
Connection diagram  
Outline drawing (Unit: mm)  
Make the connection cables as short as possible.  
Grounding is always required.  
Leakage current: 4mA  
Red White Blue  
Green  
When using the FR-BIF with a single-phase power  
supply, always insulate the wires that are not used  
for wiring.  
Servo amplifier  
NFB  
MC  
L1  
Power  
supply  
29  
L2  
5
hole  
L3  
29  
Radio noise  
filter FR-BIF  
-(H)  
58  
200V class: FR-BIF  
400V class: FR-BIF-H  
7
44  
11 - 81  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(f) Varistors for input power supply (Recommended)  
Varistors are effective to prevent exogenous noise and lightning surge from entering the servo amplifier.  
When using a varistor, connect it between each phase of the input power supply of the equipment. For  
varistors, the TND20V-431K, TND20V-471K and TND20V-102K, manufactured by NIPPON CHEMI-  
CON, are recommended. For detailed specification and usage of the varistors, refer to the manufacturer  
catalog.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Varistor voltage  
rating (range)  
V1mA  
Maximum limit  
voltage  
Power  
supply  
voltage  
Rated  
pulse  
power  
[W]  
Permissible circuit Surge current  
Energy  
Varistor  
voltage  
immunity  
immunity  
AC[Vrms]  
DC[V]  
350  
8/20 s[A]  
2ms[J]  
195  
[A]  
[V]  
710  
775  
[pF]  
1300  
1200  
[V]  
100V class TND20V-431K  
200V class TND20V-471K  
275  
300  
10000/1 time  
7000/2 time  
7500/1 time  
6500/2 time  
430(387 to 473)  
470(423 to 517)  
385  
215  
1.0  
100  
400V class TND20V-102K  
625  
825  
400  
1650  
500  
1000(900 to 1100)  
[Unit: mm]  
D
H
T
E
(Note)L  
min.  
d
W
D
T
Model  
Max.  
Max.  
Max.  
1.0  
0.05  
1.0  
TND20V-431K  
TND20V-471K  
TND20V-102K  
6.4  
6.6  
9.5  
3.3  
3.5  
6.4  
21.5  
24.5  
20  
0.8  
10.0  
22.5  
25.5  
Note. For special purpose items for lead length (L), contact the manufacturer.  
W
E
d
11 - 82  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.18 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo  
motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] (11.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
Mitsubishi  
products  
Type  
Noise  
filter  
NV  
Servo  
amplifier  
Cable  
Ig2  
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-L  
M
Models provided with  
harmonic and surge  
reduction techniques  
1
3
Ig1 Ign  
Iga  
Igm  
BV-C1  
NFB  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals of the  
servo amplifier (Found from Fig. 11.3.)  
Leakage current on the electric channel from the output terminals of the servo amplifier to the  
servo motor (Found from Fig. 11.3.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF(-H))  
Leakage current of the servo amplifier (Found from Table 11.5.)  
Leakage current of the servo motor (Found from Table 11.4.)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
[mA]  
[mA]  
0
2
5.5 14 38 100  
2
3.5 8 1422 38 80 150  
5.5  
30 60 100  
3.5  
8
22 60 150  
30 80  
Cable size[mm2]  
b. 400V class  
Cable size[mm2]  
a. 200V class  
Fig. 11.3 Leakage current example (lg1, lg2) for CV cable run in metal conduit  
11 - 83  
11. OPTIONS AND AUXILIARY EQUIPMENT  
Table 11.4 Servo motor's leakage current example (Igm)  
Table 11.5 Servo amplifier's leakage current example (Iga)  
Servo motor power  
[kW]  
Leakage current  
[mA]  
Servo amplifier capacity  
[kW]  
Leakage current  
[mA]  
0.05 to 1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
1.3  
2.3  
0.1 to 0.6  
0.1  
0.15  
2
2
3.5  
5
0.75 to 3.5 (Note)  
5
7
11 15  
22  
5.5  
7
7
11  
15  
22  
Note. For the 3.5kW of 400V class, leakage current is 2mA,  
which is the same as for 5kW and 7kW.  
Table 11.6 Leakage circuit breaker selection example  
Rated sensitivity current of leakage  
Servo amplifier  
circuit breaker [mA]  
MR-J3-10B to MR-J3-350B  
MR-J3-10B1 to MR-J3-40B1  
MR-J3-60B4 to MR-J3-350B4  
15  
MR-J3-500B(4)  
MR-J3-700B(4)  
30  
50  
MR-J3-11KB(4) to MR-J3-22KB(4)  
100  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions.  
2mm2 5m  
2mm2 5m  
NV  
Servo  
Servo motor  
HF-KP43  
amplifier  
MR-J3-40B  
M
Ig1  
Iga  
Ig2  
Igm  
Use a leakage current breaker generally available.  
Find the terms of Equation (11.1) from the diagram.  
5
1000  
Ig1  
Ig2  
20  
20  
0.1 [mA]  
0.1 [mA]  
5
1000  
Ign 0 (not used)  
Iga 0.1 [mA]  
Igm 0.1 [mA]  
Insert these values in Equation (11.1).  
Ig 10 {0.1 0 0.1 1 (0.1 0.1)}  
4.0 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig)  
of 4.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-SP/SW/CP/CW/HW  
series.  
11 - 84  
11. OPTIONS AND AUXILIARY EQUIPMENT  
11.19 EMC filter (recommended)  
For compliance with the EMC directive of the EN Standard, it is recommended to use the following filter. Some  
EMC filters are large in leakage current.  
(1) Combination with the servo amplifier  
Recommended filter (Soshin Electric)  
Servo amplifier  
Mass [kg]([lb])  
3 (6.61)  
Model  
Leakage current [mA]  
MR-J3-10B to MR-J3-100B  
MR-J3-10B1 to MR-J3-40B1  
MR-J3-250B MR-J3-350B  
MR-J3-500B MR-J3-700B  
MR-J3-11KB to MR-J3-22KB  
MR-J3-60B4 MR-J3-100B4  
MR-J3-200B4 to MR-J3-700B4  
MR-J3-11KB4  
(Note) HF3010A-UN  
5
(Note) HF3030A-UN  
(Note) HF3040A-UN  
(Note) HF3100A-UN  
TF3005C-TX  
5.5 (12.13)  
6.0 (13.23)  
15 (33.07)  
1.5  
6.5  
6(13.23)  
7.5(16.54)  
12.5(27.56)  
TF3020C-TX  
5.5  
TF3030C-TX  
MR-J3-15KB4  
TF3040C-TX  
MR-J3-22KB4  
TF3060C-TX  
Note. A surge protector is separately required to use any of these EMC filters.  
(2) Connection example  
EMC filter  
Servo amplifier  
NFB  
MC  
1
2
3
4
5
6
E
L1  
L2  
L3  
(Note 1)  
Power supply  
L11  
L21  
(Note 2)  
Surge protector 1  
(RAV-781BYZ-2)  
1
2
3
(OKAYA Electric Industries Co., Ltd.)  
(Note 2)  
Surge protector 2  
(RAV-781BXZ-4)  
1
2
3
(OKAYA Electric Industries Co., Ltd.)  
Note 1. For 1-phase 200V to 230VAC power supply, connect the power supply to L1,L2 and leave L3 open.  
There is no L3 for 1-phase 100 to 120VAC power supply. Refer to section 1.3 for the power supply specification.  
2. The example is when a surge protector is connected.  
11 - 85  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Outline drawing  
(a) EMC filter  
HF3010A-UN  
[Unit: mm]  
3-M4  
4-5.5  
7
3-M4  
M4  
IN  
Approx.41  
258  
273  
288  
300  
4
2
4
5
65  
4
HF3030A-UN HF-3040A-UN  
6-K  
3-L  
3-L  
M
J
2
C
1
C
1
H
2
B
A
2
5
Dimensions [mm]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
HF3030A-UN  
HF3040A-UN  
260  
210  
85  
155  
140  
125  
44  
140  
70  
R3.25,  
length  
8
M5  
M4  
260  
210  
85  
155  
140  
125  
44  
140  
70  
M5  
M4  
11 - 86  
11. OPTIONS AND AUXILIARY EQUIPMENT  
HF3100A-UN  
2- 6.5  
2-6.5  
8
M8  
M8  
M6  
380 1  
400 5  
TF3005C-TX TX3020C-TX TF3030C-TX  
[Unit: mm]  
3-M4  
6-R3.25 length8  
M4 M4  
3 M4  
M4  
IN  
Approx.67.5  
3
100 1  
100 1  
290 2  
308 5  
332 5  
150 2  
Approx.160  
170 5  
11 - 87  
11. OPTIONS AND AUXILIARY EQUIPMENT  
TF3040C-TX TF3060C-TX  
[Unit: mm]  
3-M6  
8-M  
M4 M4  
3-M6  
M6  
IN  
D 1  
D 1  
C 2  
B 5  
A 5  
D 1  
L
K 2  
J
H 5  
Dimensions [mm]  
Model  
A
B
C
D
E
F
G
H
J
K
L
M
R3.25  
length 8  
(M6)  
TF3040C-TX  
TF3060C-TX  
438 412 390 100 175 160 145 200  
Approx.190  
180 Approx.91.5  
11 - 88  
11. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge protector  
RAV-781BYZ-2  
[Unit: mm]  
1)  
2)  
3)  
Black Black Black  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
[Unit: mm]  
RAV-781BXZ-4  
1)  
2)  
3)  
4)  
4.2 0.2  
UL-1015AWG16  
1
2
3
41 1.0  
11 - 89  
11. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
11 - 90  
12. ABSOLUTE POSITION DETECTION SYSTEM  
12. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase alarm (25) or absolute position counter warning (E3)  
has occurred, always perform home position setting again. Not doing so can cause  
runaway. Not doing so may cause unexpected operation.  
CAUTION  
POINT  
If the encoder cable is disconnected, absolute position data will be lost in the  
following servo motor series. HF-MP, HF-KP, HC-SP, HC-RP, HC-UP, HC-LP,  
and HA-LP. After disconnecting the encoder cable, always execute home  
position setting and then positioning operation.  
12.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position within  
one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the servo system controller power is on or off.  
Therefore, once home position return is made at the time of machine installation, home position return is not  
needed when power is switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Servo system controller  
Servo amplifier  
Position data  
Current  
position  
Detecting  
Detecting the  
position within  
Home position data  
the number  
LS0  
of revolutions one revolution  
CYC0  
MR-J3BAT  
Battery  
Servo motor  
High speed serial  
communication  
1 pulse/rev accumulative revolution counter  
Within one-revolution counter  
12 - 1  
12. ABSOLUTE POSITION DETECTION SYSTEM  
12.2 Specifications  
POINT  
Replace the battery with only the control circuit power ON. Removal of the battery  
with the control circuit power OFF will erase the absolute position data.  
(1) Specification list  
Item  
Description  
System  
Battery  
Electronic battery backup system  
1 piece of lithium battery ( primary battery, nominal 3.6V)  
Type: MR-J3BAT  
Maximum revolution range  
Home position 32767 rev.  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
Battery storage period  
3000r/min  
Approx. 10,000 hours (battery life with power off)  
5 years from date of manufacture  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years independently of  
whether power is kept on or off.  
(2) Configuration  
Servo amplifier  
CN1 CN2  
CN4  
Servo system controller  
Battery  
(MR-J3BAT)  
Servo motor  
(3) Parameter setting  
Set "  
1" in parameter No.PA03 to make the absolute position detection system valid.  
Parameter No.PA03  
Absolute position detection system selection  
0: Used in incremental system  
1: Used in absolute position detection system  
12 - 2  
12. ABSOLUTE POSITION DETECTION SYSTEM  
12.3 Battery installation procedure  
Before installing a battery, turn off the main circuit power while keeping the control  
circuit power on. Wait for 15 minutes or more (20 minutes or for drive unit 30kW or  
more) until the charge lamp turns off. Then, confirm that the voltage between P(  
and N( ) (L and L for drive unit 30kW or more) is safe with a voltage tester  
and others. Otherwise, an electric shock may occur. In addition, always confirm  
from the front of the servo amplifier whether the charge lamp is off or not.  
)
WARNING  
POINT  
The internal circuits of the servo amplifier may be damaged by static electricity.  
Always take the following precautions.  
Ground human body and work bench.  
Do not touch the conductive areas, such as connector pins and electrical parts,  
directly by hand.  
Before starting battery changing procedure, make sure that the main circuit  
power is switched OFF with the control circuit power ON. When battery is  
changed with the control power OFF, the absolute position data is lost.  
(1) For MR-J3-350B or less MR-J3-200B4 or less  
POINT  
For the servo amplifier with a battery holder on the bottom, it is not possible to  
wire for the earth with the battery installed. Insert the battery after executing  
the earth wiring of the servo amplifier.  
Insert connector into CN4.  
12 - 3  
12. ABSOLUTE POSITION DETECTION SYSTEM  
(2) For MR-J3-500B or more MR-J3-350B4 or more  
Insert connector into CN4.  
12 - 4  
12. ABSOLUTE POSITION DETECTION SYSTEM  
12.4 Confirmation of absolute position detection data  
You can confirm the absolute position data with MR Configurator.  
Choose "Diagnostics" and "Absolute Encoder Data" to open the absolute position data display screen.  
(1) Choosing "Diagnostics" in the menu opens the sub-menu as shown below:  
(2) By choosing "Absolute Encoder Data" in the sub-menu, the absolute encoder data display window appears.  
(3) Press the "Close" button to close the absolute encoder data display window.  
12 - 5  
12. ABSOLUTE POSITION DETECTION SYSTEM  
MEMO  
12 - 6  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
This chapter explains the MELSERVO-J3-B series AC servo featuring a large capacity of 200V (30k to  
37kW)/400V (30k to 55kW).  
Explanation made in this chapter is exclusively for the MR-J3-CR (4) converter units and the MR-J3-DU B(4)  
drive units. Explanations on the following items are the same as those for servo amplifiers with 22kW or less.  
For such explanations, refer to the section indicated in the table.  
Item  
Reference  
Chapter 4  
Chapter 6  
Chapter 7  
Chapter 12  
Startup  
General gain adjustment  
Special adjustment functions  
Absolute position detection system  
13.1. Functions and menus  
POINT  
Explanations on the following item are the same as those for servo amplifiers  
with 22kW or less. Refer to the section below for details.  
Function list section 1.4  
13 - 1  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.1 Function block diagram  
The function block diagram of this servo is shown below.  
Power factor Regenerative  
improving DC option  
Converter  
P1  
P2  
C
Diode  
stack  
Thyristor  
NFB  
MC  
L
L
L1  
L2  
L3  
L
L
Power  
supply  
CHARGE  
lamp  
Regenerative  
TR  
Cooling fan  
L11  
Control  
power  
supply  
L21  
Base  
amplifier  
Voltage  
detection  
Current  
detection  
CPU  
I/F  
CNP1  
CN1  
CN40  
Converter unit  
protection coordination  
CN40  
MC drive  
Trouble, warning, forced stop  
L11  
L21  
13 - 2  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
NFB  
(Note)  
Power  
supply  
Drive unit  
Servo motor  
L
U
V
U
V
L
L
Current  
detector  
M
W
W
L
Cooling fan  
11  
21  
L
L11  
Control  
power  
supply  
L
L21  
Base amplifier  
Over  
current  
Current  
detection  
Encoder  
BU  
BV  
BW  
Cooling fan  
Virtual  
encoder  
Position command  
input  
Model position  
control  
Model speed  
control  
Servo motor  
thermal  
Virtual  
motor  
OHS1  
OHS2  
Model position  
Model speed  
Model torque  
Actual position  
control  
Actual speed  
control  
Current  
control  
CN40  
Termination  
connector  
MR-J3-TM  
(Option)  
MR-J3BAT  
D/A  
USB  
I/F  
Control  
Optional battery  
(For absolute position detection  
system)  
CN3  
CN1A  
CN1B  
CN5  
Personal  
computer  
Controller  
or  
drive unit  
Drive unit  
or  
cap  
Analog monitor  
(2 channel)  
Digital I/O  
control  
USB  
Note. Refer to section 13.3.6 for the power supply specification of the servo motor cooling fan.  
13 - 3  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.2 Packing list  
Unpack the product and check the rating plate to see if the converter unit, drive unit and servo motor are as you  
ordered.  
(1) Converter unit  
POINT  
Regenerative resistor and power factor improving DC reactors are option.  
Purchase them separately if required. (Section 13.9.2, 13.9.6)  
Magnetic contactor  
wiring connector  
[pcs.] (Note)  
To use the AC  
servo safely  
[manuals]  
Converter unit  
[units]  
Eyebolt  
[pcs.]  
Digital I/O connector  
[pcs.]  
Model  
MR-J3-CR55K  
MR-J3-CR55K4  
1
2
1
1
1
Note. Magnetic contactor control connector is mounted to CNP1 of the converter unit before shipping.  
(2) Drive unit  
Connection  
Drive unit  
To use the AC  
servo safely  
[manuals]  
Eyebolt  
[pcs.]  
Model  
conductor  
[pcs.]  
[units]  
MR-J3-DU30KB MR-J3-DU37KB  
MR-J3-DU30KB4 to MR-J3-DU55KB4  
1
2
2
1
(3) Servo motor  
To use the AC  
servo safely  
[manuals]  
Servo motor  
[units]  
Model  
HA-LP30K1 HA-LP37K1  
HA-LP30K1M HA-LP37K1M  
HA-LP30K2 HA-LP37K2  
1
1
HA-LP25K14 to HA-LP37K14  
HA-LP30K1M4 to HA-LP50K1M4  
HA-LP30K24 to HA-LP55K24  
13 - 4  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.3 Standard specifications  
(1) Converter unit  
Model  
MR-J3-CR55K  
MR-J3-CR55K4  
Item  
Voltage/frequency  
Permissible voltage  
fluctuation  
3-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC  
3-phase 380 to 480VAC, 50/60Hz  
3-phase 323 to 528VAC  
Main circuit power  
supply  
Permissible frequency  
fluctuation  
Within 5%  
Voltage/frequency  
Permissible voltage  
fluctuation  
1-phase 200 to 230VAC, 50/60Hz  
1-phase 170 to 253VAC  
1-phase 380 to 480VAC, 50/60Hz  
1-phase 323 to 528VAC  
Control power  
supply  
Permissible frequency  
fluctuation  
Within 5%  
45W  
Power consumption  
Voltage  
Interface power  
supply  
24VDC 10%  
(Note) 130mA  
55kW  
Power supply capacity  
Rated output  
Regenerative power  
One MR-RB139: 1300W  
Three MR-RB137: 3900W  
One MR-RB136-4: 1300W  
Three MR-RB138-4: 3900W  
(Using regenerative option)  
Protective function  
Structure  
Regenerative overvoltage shutoff, overload shutoff (electronic thermal protector)  
Regenerative alarm protection, undervoltage, instantaneous power failure protection  
Force-cooling, open (IP00)  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
In operation  
Ambient  
32 to 131 (non-freezing)  
temperature  
20 to 65 (non-freezing)  
In storage  
4 to 149 (non-freezing)  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg]  
[lb]  
25  
Mass  
55.1  
Note. 130mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
13 - 5  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Drive unit  
(a) 200V class  
Model  
MR-J3-DU30KB  
MR-J3-DU37KB  
Item  
Voltage/frequency  
Permissible voltage  
fluctuation  
1-phase 200 to 230VAC, 50/60Hz  
1-phase 170 to 253VAC  
Within 5%  
Control power  
supply  
Permissible frequency  
fluctuation  
Power consumption  
45W  
The main circuit power of the drive unit is supplied by the converter unit.  
24VDC 10%  
Main circuit power supply  
Interface power  
supply  
Voltage  
Power supply capacity  
(Note) 150mA  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
External option  
Overcurrent shut-off, overload shutoff (electronic thermal protector)  
Servo motor overheat protection, encoder error protection, undervoltage  
Instantaneous power failure protection, overspeed protection  
Excessive error protection  
Protective function  
Structure  
Force-cooling, open (IP00)  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
In operation  
In storage  
Ambient  
32 to 131 (non-freezing)  
temperature  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Ambient  
Altitude  
Vibration  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg]  
[lb]  
26  
Mass  
57.3  
Note. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
13 - 6  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) 400V class  
Model  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
Item  
Voltage/frequency  
Permissible voltage  
fluctuation  
1-phase 380 to 480VAC, 50/60Hz  
1-phase 323 to 528VAC  
Control power  
supply  
Permissible frequency  
fluctuation  
Within 5%  
45W  
Power consumption  
Main circuit power supply  
The main circuit power of the drive unit is supplied by the converter unit.  
24VDC 10%  
Interface power  
supply  
Voltage  
Power supply capacity  
(Note)150mA  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
External option  
Overcurrent shut-off, overload shutoff (electronic thermal protector)  
Servo motor overheat protection, encoder error protection, undervoltage  
Instantaneous power failure protection, overspeed protection  
Excessive error protection  
Protective function  
Structure  
Force-cooling, open(IP00)  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
In operation  
In storage  
Ambient  
32 to 131 (non-freezing)  
temperature  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Ambient  
humidity  
In operation  
In storage  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m above sea level  
Ambient  
Altitude  
Vibration  
5.9 [m/s2] or less  
19.4 [ft/s2] or less  
[kg]  
[lb]  
18  
26  
Mass  
39.7  
57.3  
Note. 150mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of  
I/O points.  
13 - 7  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.4 Model definition  
(1) Rating plate  
ACSERVO  
MITSUBISHI  
Model  
MODE
MR-J3-CR55K  
Capacity  
POWER : 55kW  
Applicable power supply  
INPUT : AC200V-230V 50/60Hz  
Rated output current  
Serial number  
OUTPUT :  
SERIAL : A5*******  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
(2) Model  
(a) Converter unit  
Power supply  
Symbol Power supply  
None 3-phase 200 to 230VAC  
3-phase 380 to 480VAC  
Series  
4
Indicates converter unit.  
Rated output: 55kW  
(b) Drive unit  
Power supply  
Symbol Power supply  
None 3-phase 200 to 230VAC  
3-phase 380 to 480VAC  
Series  
4
Indicates drive unit.  
SSCNET compatible  
Rated output  
Rated output [kW]  
200V class 400V class  
Symbol  
30K  
37K  
45K  
55K  
30  
37  
30  
37  
45  
55  
13 - 8  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.5 Combinations of converter units, drive unit and servo motors  
The following tables indicate the combinations of the converter units, drive unit and servo motors.  
(1) 200V class  
Servo motor  
Converter unit  
MR-J3-CR55K  
Drive unit  
HA-LP  
1500r/min  
30K1M  
1000r/min  
30K1  
2000r/min  
30K2  
MR-J3-DU30KB  
MR-J3-DU37KB  
37K1  
37K1M  
37K2  
(2) 400V class  
Servo motor  
HA-LP  
Converter unit  
Drive unit  
1000r/min  
1500r/min  
2000r/min  
30K24  
25K14  
30K14  
37K14  
MR-J3-DU30KB4  
30K1M4  
MR-J3-CR55K4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
37K1M4  
45K1M4  
50K1M4  
37K24  
45K24  
55K24  
13 - 9  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.6 Parts identification  
(1) Converter unit (MR-J3-CR55K(4))  
POINT  
The servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 13.1.7.  
Detailed  
explanation  
Name/Application  
Magnetic contactor control connector (CNP1)  
Connect to the operation coil of the magnetic contactor.  
Section 13.3.4  
I/O signal connector (CN1)  
Used to connect digital I/O signals.  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Display  
Fixed part  
(4 places)  
The 3-digit, seven-segment LED shows the servo status  
and alarm number.  
Cooling fan  
Operation section  
Used to perform status display, diagnostic, alarm,  
parameter and point table setting operations.  
Section 13.4  
DOWN  
MODE  
UP  
SET  
Used to set data.  
Used to change the  
display or data in each  
mode.  
Used to change the  
mode.  
For manufacturer setting connector (CN6)  
The connector is for manufacturer setting. Although the  
shape is similar to analog monitor connector (CN6) of the  
drive unit, do not connect anything including an analog  
monitor.  
Protection coordination connector (CN40)  
Connect to CN40A of the drive unit.  
For manufacturer setting connector (CN3)  
For manufacturer adjustment. Though the shape is similar  
to RS-422 communication connector (CN3), do not  
connect anything, including a personal computer and MR-  
PRU03 parameter unit.  
L
L
terminal (TE2-2)  
Used to connect to a drive unit using a connection  
conductor supplied with drive unit.  
Control circuit terminal L11 L21(TE3)  
Supply control circuit power.  
Regenerative option Power factor improving DC reactor  
(TE1-2)  
Section 13.3.3  
Protective earth (PE) terminal (  
Ground terminal.  
)
Main circuit terminal block (TE1-1)  
Supply main circuit power.  
L
L
terminal (TE2-1)  
When using brake unit, connect it to this terminal. Do not Section 13.9.10  
connect anything other than the brake unit.  
Rating plate  
Section 13.1.4  
13 - 10  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Drive unit (MR-J3-DU30KB4 MR-J3-DU37KB4)  
POINT  
The servo amplifier is shown with the front cover opened. For removal of the  
front cover, refer to section 13.1.7.  
Detailed  
explanation  
Name/Application  
Display  
Chapter 4  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of drive unit.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
SW2  
1
2
Used to perform the test operation mode  
Section 3.13  
Section 11.8  
by using MR Configurator.  
Spare (Be sure to set to the "Down"  
position).  
1
2
USB communication connector (CN5)  
Connect with the personal computer.  
Fixed part  
(4 places)  
Cooling fan  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis drive unit.  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis drive unit. For the final axis,  
puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
Section 11.9  
Chapter 12  
Converter unit connectors (CN40A)  
Connect to CN40 of the converter unit.  
Section 13.3.2  
Converter unit connectors (CN40B)  
Connect the termination connector (MR-J3-TM).  
L
L
terminals (TE2)  
Connect to the L terminals of the converter unit  
L
using the connection conductors supplied.  
Control circuit terminal L11 L21 (TE3)  
Supply control circuit power.  
Section 13.3.3  
Section 13.1.4  
Motor power supply terminals (TE1)  
Connect to U, V, W of the servo motor.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Rating plate  
13 - 11  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Drive unit (MR-J3-DU30KB MR-J3-DU37KB MR-J3-DU45KB4 MR-J3-DU55KB4)  
POINT  
This servo amplifier is shown without the front cover. For removal of the front  
cover, refer to section 13.1.7.  
Detailed  
Name/Application  
explanation  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of drive unit.  
8
0
0
Section 3.13  
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
SW2  
1
2
Used to perform the test operation mode  
by using MR Configurator.  
Spare (Be sure to set to the "Down"  
1
2
position).  
USB communication connector (CN5)  
Connect with the personal computer.  
Section 11.8  
Cooling fan  
fixed part  
(4 places)  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis drive unit.  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
SSCNET cable connector (CN1B)  
Used to connect the rear axis drive unit. For the final axis,  
puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Section 3.4  
Section 11.1  
Used to connect the servo motor encoder.  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
Section 11.9  
Chapter 12  
Converter unit connectors (CN40A)  
Connect to CN40 of the converter unit.  
Section 13.3.2  
Converter unit connectors (CN40B)  
Connect the termination connector (MR-J3-TM).  
TE2-2  
For manufacturer adjustment. Leave this open.  
Control circuit terminal L11 L21 (TE3)  
Supply control circuit power.  
Motor power supply terminals (TE1)  
Connect to U, V, W of the servo motor.  
Section 13.3.3  
Section 13.1.4  
Protective earth (PE) terminal (  
Ground terminal.  
)
L
L
terminals (TE2)  
Connect to the L  
L
terminals of the converter unit  
using the connection conductors supplied.  
Rating plate  
13 - 12  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.7 Removal and reinstallation of the terminal block cover  
Before removing or installing the front cover, turn off the power and wait for 20  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between L and L is safe with a voltage tester and others. Otherwise, an  
CAUTION  
electric shock may occur. In addition, always confirm from the front of the servo  
amplifier whether the charge lamp is off or not.  
(1) MR-J3-CR55K(4), MR-J3-DU30KB, MR-J3-DU37KB, MR-J3-DU45KB4 or MR-J3-DU55KB4  
Here, the method for removing and reinstalling the terminal block cover using the figure of converter unit as  
an example. For a drive unit, the shape of the main unit is different. However, the removal and reinstallation  
of the terminal block can be performed in the same procedure.  
(a) How to remove the terminal block cover  
Remove the installation screws (A), B), C), D)) on  
the four corners of the terminal block cover.  
A)  
B)  
D)  
C)  
Pull the terminal block cover toward you and  
remove it.  
13 - 13  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) How to reinstall the terminal block cover  
1) Put the terminal block cover on and match the  
screw holes of the cover fit with those of the  
main unit.  
2) Install the installing screws into the screw holes  
(A), B), C), D)).  
A)  
1)  
B)  
D)  
C)  
2) Mounting screw  
13 - 14  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) MR-J3-DU30KB4 or MR-J3-DU37KB4  
(a) Upper terminal block cover  
1) How to open  
Pull up the cover using the axis A), A)' as a  
support.  
A)  
A)'  
When pulled up to the top, the cover is fixed.  
13 - 15  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) How to close  
Close the cover using the axis A), A)' as a  
support.  
Setting tab  
A)  
A)'  
Press the cover against the terminal box until  
the installing knobs click.  
Setting tab  
13 - 16  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) Lower terminal block cover  
1) How to open  
Hold the bottom of the terminal block cover  
with both hands.  
Pull up the cover using the axis B), B)' as a  
support.  
B)  
B)'  
When pulled up to the top, the cover is fixed.  
13 - 17  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) How to close  
Hold the bottom of the terminal block cover  
with both hands.  
Setting tab  
Setting tab  
Close the cover using the axis B), B)' as a  
support.  
B)  
B)'  
Press the cover against the terminal box until  
the installing knobs click.  
Setting tab  
13 - 18  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.1.8 Servo system with auxiliary equipment  
R S T  
3-phase AC  
power supply  
Personal  
computer  
MR Configurator  
No-fuse  
breaker(NFB)  
The MR Configurator is required for  
parameter setting.  
Converter unit  
Communication  
cable  
Magnetic  
contactor(MC)  
Drive unit(Note 3)  
Line noise  
filter(FR-BLF)  
L
L
C
P2P1  
(Note 1)  
L
L1  
L2  
L3  
L
L11  
L21  
(MR-J3CDL05M)  
L11  
L21  
Magnetic contactor  
operation coil  
(I/O signal)  
L11  
L21  
No-fuse  
breaker(NFB)  
P2  
Power factor improving  
DC reactor  
Encoder cable  
(MR-HSCBL M)  
P1  
(MR-DCL K)  
(Note 2)  
BU BV  
BW  
E U V W  
Regenerative option  
R
C
Servo motor  
HA-LP series  
S
P
Note 1. The L+ and L- connection conductors used to connect a converter unit to a drive unit are standard accessories. The converter  
unit is attached to the drive unit actually. (Refer to section 13.2.1.)  
2. The power supply of the servo motor cooling fan differs depending on the capacity of a servo motor. Refer to section 13.3.6.  
3. For MR-J3-DU30KB4 or MR-J3-DU37KB4.  
13 - 19  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.2 Installation  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment to incombustibles. Installing them directly or close to  
combustibles will led to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range. (For the  
environmental conditions, refer to section 13.1.3.)  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering the converter  
CAUTION  
unit drive unit.  
Do not block the intake/exhaust ports of the converter unit drive unit. Otherwise,  
a fault may occur.  
Do not subject the converter unit drive unit to drop impact or shock loads as they  
are precision equipment.  
Do not install or operate a faulty converter unit drive unit.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the converter unit drive unit, be careful about the edged parts  
such as the corners of the converter unit drive unit.  
POINT  
Explanations on the following item are the same as those for servo amplifiers  
with 22kW or less. Refer to the section below for details.  
Keep out foreign materials Refer to section 2.2.  
Cable stress Refer to section 2.3.  
SSCNET cable laying Refer to section 2.4.  
Parts Having Service Lives Refer to section 2.6.  
13 - 20  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.2.1 Installation direction and clearances  
Install the equipment in the specified direction. Not doing so can cause a failure.  
Leave the specified clearances between the converter unit/drive unit and the  
control box inside walls or other equipment. Not doing so can cause a failure.  
CAUTION  
(1) Installation  
POINT  
Make sure to connect a drive unit to the right side of a converter unit as  
shown in the diagram.  
Cooling fan  
wind direction  
100mm or  
more  
80mm or  
more  
Converter unit  
Drive unit  
30mm or  
more  
30mm or  
more  
Air  
intake  
120mm or more  
Front view  
Side view  
(2) Mounting dimensional diagram  
[Unit: mm]  
Approx. W5  
Approx. W3  
Approx. 9.5  
Approx. 20  
Dimensions  
W1 W2 W3 W4 W5  
300  
281  
260  
W1  
W4  
W2  
Drive unit model  
W5  
W3  
9.5  
A
20  
MR-J3-DU30KB, 37KB,  
45KB4, 55KB4  
MR-J3-DU30KB4,  
37KB4  
300 260 20 281 9.5 M6  
240 120 60 222 M5  
9
Converter unit  
punched hole  
Drive unit  
punched hole  
4-M6 screw  
4-M6 screw  
(3) Others  
When using heat generating equipment such as the regenerative option, install them with full consideration  
of heat generation so that the converter unit and drive unit is not affected.  
Install the converter unit and drive unit on a perpendicular wall in the correct vertical direction.  
13 - 21  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.2.2 Inspection  
Before starting maintenance and/or inspection, turn off the power and wait for 20  
minutes or more until the charge lamp turns off. Then, confirm that the voltage  
between L and L is safe with a voltage tester and others. Otherwise, an  
electric shock may occur. In addition, always confirm from the front of the converter  
unit whether the charge lamp is off or not.  
WARNING  
CAUTION  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test the converter unit drive unit with a megger (measure insulation  
resistance), or it may become faulty.  
It is recommended to make the following checks periodically.  
1) Check for loose terminal block screws. Retighten any loose screws.  
2) Check the servo motor bearings, brake section, etc. for unusual noise.  
3) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating  
conditions.  
4) Check the servo motor shaft and coupling for misalignment.  
13 - 22  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3 Signals and wiring  
Any person who is involved in wiring should be fully competent to do the work.  
Before wiring, turn off the power and wait for 20 minutes or more until the charge  
lamp turns off. Then, confirm that the voltage between L and L is safe with a  
voltage tester and others. Otherwise, an electric shock may occur. In addition,  
always confirm from the front of the converter unit whether the charge lamp is off  
or not.  
WARNING  
Ground the converter unit drive unit and the servo motor securely.  
Do not attempt to wire the converter unit drive unit and servo motor until they  
have been installed. Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
operate unexpectedly, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop (EM1) and other protective circuits.  
Converter unit  
drive unit  
Converter unit  
drive unit  
24VDC  
24VDC  
DOCOM  
DICOM  
DOCOM  
DICOM  
Control  
output  
signal  
Control  
output  
signal  
RA  
RA  
CAUTION  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near the converter unit drive  
unit.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF-(H)  
option) with the power line of the servo motor.  
When using the regenerative resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative resistor,  
causing a fire.  
Do not modify the equipment.  
During power-on, do not open or close the motor power line. Otherwise, a  
malfunction or faulty may occur.  
13 - 23  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
POINT  
Explanations on the following item are the same as those for servo amplifiers  
with 22kW or less. Refer to the section below for details.  
I/O signal connection example Refer to section 3.2.  
Signal (device) explanations Refer to section 3.5.  
Interfaces Refer to section 3.7.  
Treatment of cable shield external conductor Refer to section 3.8.  
SSCNET cable connection Refer to section 3.9.  
Grounding Refer to section 3.12.  
Control axis selection Refer to section 3.13.  
The pins with the same signal name are connected in the drive unit.  
13.3.1 Magnetic contactor control connector (CNP1)  
Always connect the magnetic contactor wiring connector to the converter unit. If  
the connector is not connected, an electric shock may occur since CNP1-1 and L11  
are always conducting.  
WARNING  
By enabling the control function of the magnetic contactor (parameter No.PA02  
1 (initial value)), main  
circuit power supply can be shut off automatically when an alarm occurs on the converter unit or the drive unit.  
Parameter No.PA02  
1
Used to select the output of the external magnet contactor drive signal.  
0: No used  
1: Used (initial value)  
13 - 24  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(1) Enabling control function of magnetic contactor (parameter No.PA02  
Connecting the magnetic contactor control connector (CNP1) to the operating coil of the magnetic contactor  
enables to control the magnetic contactor.  
1 (initial value))  
Converter unit  
NFB  
MC  
L1  
Power supply  
L2  
L3  
L11  
Control circuit  
power supply  
L21  
CNP1  
1
MC1  
MC2  
2
(Note)  
Operation  
-ready  
OFF/ON  
Drive unit Servo motor  
trouble thermal relay  
RA1 RA2 RA3  
Forced stop  
EM1  
RA4  
MC  
SK  
Controller  
forced stop  
Converter  
unit trouble  
Note. Stepdown transformer is required when coil voltage of the magnetic contactor is 200V class, and the converter unit and the drive  
unit are 400V class.  
When the converter unit receives a start command from the drive unit while the magnetic contactor control  
connector (CNP1) is connected to the magnetic contactor (refer to section 13.3.2 (1)), CNP1-2 and L21  
conduct in the converter unit. Then the control circuit power is supplied to turn ON the magnetic contactor  
and the main circuit power is supplied to the converter unit.  
Either when an alarm occurs on the converter unit or the drive unit while the control function of the magnetic  
contactor is enabled, or when the forced stop (EM1) of the converter unit or the drive unit is turned OFF, the  
switch between CNP1-2 and L21 in the converter unit is disconnected and the main circuit power supply is  
automatically shut off.  
To automatically shut off the main circuit power supply by alarm, enable the control function of the magnetic  
contactor.  
(2) Disabling control function of magnetic contactor (parameter No.PA02  
0)  
When not connecting the magnetic contactor control connector (CNP1) to the operating coil of the magnetic  
contactor, configure the circuit to shut off the main circuit power supply when detecting an alarm since the  
main circuit power supply is not automatically shut off even when an alarm occurs on the converter unit or  
the drive unit.  
13 - 25  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.2 Input power supply circuit  
Insulate the connections of the power supply terminals. Not doing so can cause an  
electric shock.  
WARNING  
Magnetic contactor wiring connector on the converter unit CNP1.  
Unattached state may cause an electric shock.  
Always, connect the magnetic contactor (MC) between the main circuit power  
supply and L1, L2, and L3 of the converter unit, and configure to shut off the power  
supply on the side of the converter unit power supply. If the magnetic contactor  
(MC) is not connected, a large current keeps flowing and may cause a fire when  
the converter unit or the drive unit malfunctions.  
Use the trouble signal to switch power off. Otherwise, a regenerative transistor  
fault or the like may overheat the regenerative resistor, causing a fire.  
CAUTION  
Connect the power supply phases (U, V, W) of the servo amplifier and servo motor  
correctly. Not doing so can cause the servo motor to run abnormally.  
Do not connect a 3-phase 200V power supply or a 3-phase 400V power supply  
directly to the servo motor. Doing so can cause a failure.  
POINT  
Magnetic contactor control connector (CNP1) of the converter unit can be  
made valid or invalid with parameter No.PA02 of the converter unit. Refer to  
section 13.3.1 and 13.3.6 for details of CNP1 and section 13.5 for the  
parameter settings.  
When using the external dynamic brake, refer to section 11.6 and 13.9.3.  
13 - 26  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(1) When magnetic contactor control connector (CNP1) is made valid (factory-set)  
POINT  
The converter unit controls the main circuit magnetic contactor.  
Refer to section 13.3.7 (1) for the power circuit timing chart, section 13.3.7 (2)  
for the alarm occurrence timing chart, section 13.3.7 (3) for the forced stop  
(EM1) timing chart.  
Always connect a protection coordination cable (MR-J3CDL05M) and a  
termination connector (MR-J3-TM). When they are not connected properly,  
the servo-on may not be turned ON.  
For the control power supplies of the converter unit and the drive unit, always  
turn ON or OFF at the same time.  
(a) 200V class (MR-J3-DU30KB MR-J3-DU37KB)  
Converter unit  
Drive unit  
Dynamic  
brake  
(Option)  
TE2-2  
L
TE2-1  
L
NFB  
MC  
L
L
L1  
Servo motor  
M
3-phase  
200 to 230VAC  
50/60Hz  
CN40  
L2  
CN40A  
MR-J3CDL05M  
cable  
Termination  
connector  
MR-J3-TM  
(Option)  
L3  
U
V
CN40B U  
L11  
L21  
V
W
W
Encoder cable  
NFB  
CNP1 CN1  
CN2  
DICOM  
MC1  
MC2  
1
2
1
5
6
2
7
9
Encoder  
24VDC  
BU  
BV  
BW  
DOCOM  
(Note 4)  
Power  
supply  
Power factor improving  
DC reactor (Option)  
DICOM  
Cooling fan  
(Note 2)  
ALM  
RA2  
P1  
EM1  
OHS2  
24VDC  
power supply  
OHS1  
P2  
(Note 3)  
Servo  
motor  
thermal  
relay  
DOCOM  
C
RA3  
CN3  
10  
P
C
P
C
P
C
DICOM  
G3  
G4  
G3  
G4  
G3  
G4  
Regenerative  
option(Note 1)  
Regenerative  
option(Note 1)  
Regenerative  
option(Note 1)  
15 ALM  
RA1  
24VDC  
Cooling fan  
Cooling fan  
Cooling fan  
DICOM  
5
R
S
R
S
R
S
DOCOM  
3
20 EM1  
Plate SD  
L11  
L21  
(Note 3)  
(Note 3) Operation  
Drive  
unit  
RA1 RA2 RA3 RA4  
Motor  
-ready  
Forced stop  
thermal relay  
EM1  
OFF/ON  
MC  
SK  
Controller  
forced stop  
Converter  
unit  
Note 1. For the MR-RB137. For the MR-RB137, three units are used as one set (permissible wattage: 3900W).  
2. When using the Power factor improving DC reactor, disconnect the short bar across P1-P2.  
3. Make up a sequence that turns off the drive unit forced stop (EM1) and the converter unit forced stop (EM1) at the same time.  
4. For specifications of cooling fan power supply, refer to section 13.3.8.  
13 - 27  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) 400V class (MR-J3-DU30KB4 to MR-J3-DU55KB4)  
NFB  
(Note 5)  
Power  
supply  
Converter unit  
Drive unit  
TE2-2  
L
TE2-1  
L
L
L
Dynamic  
brake  
Dynamic  
brake  
CN40  
CN40A  
(Option)  
NFB  
(Option)  
MR-J3CDL05M  
cable  
Termination  
connector  
MR-J3-TM  
(Option)  
MC  
L1  
L2  
L3  
CN40B  
3-phase  
380 to 480VAC  
50/60Hz  
Servo motor  
M
U
V
CN1  
1
L11  
U
V
DICOM  
L21  
24VDC  
W
DOCOM  
5
6
2
7
9
W
CNP1  
1
DICOM  
MC1  
MC2  
CN2  
BU  
BV  
BW  
2
ALM  
RA2  
Encoder  
Power factor improving  
DC reactor (Option)  
EM1  
Encoder cable  
(Note 3)  
Cooling fan  
DOCOM  
P1  
(Note 2)  
P2  
C
OHS1  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
RA3  
P
C
P
C
P
C
CN3  
10  
G3  
Regenerative  
option(Note 1)  
G4  
G3  
Regenerative  
option(Note 1)  
G4  
G3  
Regenerative  
option(Note 1)  
G4  
DICOM  
Cooling fan  
R400S400  
Cooling fan  
R400S400  
Cooling fan  
R400S400  
15 ALM  
RA1  
24VDC  
DICOM  
5
DOCOM  
3
L11  
20 EM1  
Plate SD  
L21  
(Note 3)  
(Note 4)  
Drive  
unit  
Motor  
Operation  
-ready  
Stepdown  
(Note 3)  
Forced stop  
EM1  
transformer  
thermal relay  
OFF/ON  
RA1 RA2 RA3 RA4  
MC  
SK  
Controller  
forced stop  
Converter  
unit  
Note 1. For the MR-RB138-4. For the MR-RB138-4, three units are used as one set (permissible wattage: 3900W).  
2. When using the Power factor improving DC reactor, disconnect the short bar across P1-P2.  
3. Make up a sequence that turns off the drive unit forced stop (EM1) and the converter unit forced stop (EM1) at the same time.  
4. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
5. For specifications of cooling fan power supply, refer to section 13.3.8.  
13 - 28  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) When magnetic contactor control connector (CNP1) is made invalid  
POINT  
The converter unit controls the main circuit magnetic contactor.  
When making CNP1 invalid, set "0000" in parameter No.PA02.  
(Refer to section 13.5.)  
Always connect a protection coordination cable (MR-J3CDL05M) and a  
termination connector (MR-J3-TM). When they are not connected properly,  
the servo-on may not be turned ON.  
For the control power supplies of the converter unit and the drive unit, always  
turn ON or OFF at the same time.  
(a) 200V class (MR-J3-DU30KB MR-J3-DU37KB)  
Converter unit  
Drive unit  
Dynamic  
brake  
(Option)  
TE2-2  
L
TE2-1  
L
NFB  
MC  
L
L
L1  
Servo motor  
M
3-phase  
200 to 230VAC  
50/60Hz  
CN40  
L2  
CN40A  
MR-J3CDL05M  
cable  
Termination  
connector  
MR-J3-TM  
(Option)  
L3  
U
V
CN40B U  
L11  
L21  
V
W
W
Encoder cable  
NFB  
(Note 4)  
MC1  
CNP1 CN1  
CN2  
DICOM  
1
2
1
5
6
2
7
9
Encoder  
24VDC  
BU  
BV  
BW  
DOCOM  
MC2  
(Note 5)  
Power  
supply  
Power factor improving  
DC reactor (Option)  
DICOM  
Cooling fan  
(Note 2)  
ALM  
RA2  
P1  
EM1  
OHS2  
24VDC  
power supply  
OHS1  
P2  
(Note 3)  
Servo  
motor  
thermal  
relay  
DOCOM  
C
RA3  
CN3  
10  
P
C
P
C
P
C
DICOM  
G3  
G4  
G3  
G4  
G3  
G4  
Regenerative  
option(Note 1)  
Regenerative  
option(Note 1)  
Regenerative  
option(Note 1)  
15 ALM  
RA1  
24VDC  
Cooling fan  
Cooling fan  
Cooling fan  
DICOM  
5
R
S
R
S
R
S
DOCOM  
3
20 EM1  
Plate SD  
L11  
L21  
(Note 3)  
(Note 3) Operation  
-ready  
Drive  
unit  
RA1 RA2 RA3 RA4  
Motor  
Forced stop  
EM1 OFF  
thermal relay  
ON  
MC  
SK  
Controller  
forced stop  
Converter  
unit  
MC  
Note 1. For the MR-RB137. For the MR-RB137, three units are used as one set (permissible wattage: 3900W).  
2. When using the Power factor improving DC reactor, disconnect the short bar across P1-P2.  
3. Make up a sequence that turns off the drive unit forced stop (EM1) and the converter unit forced stop (EM1) at the same time.  
4. Attach connector for magnetic contactor control (CNP1) on the converter unit. Unattached state may cause an electric shock.  
5. For specifications of cooling fan power supply, refer to section 13.3.8.  
13 - 29  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) 400V class (MR-J3-DU30KB4 to MR-J3-DU55KB4)  
NFB  
(Note 6)  
Power  
supply  
Converter unit  
Drive unit  
TE2-2  
L
TE2-1  
L
L
L
Dynamic  
brake  
(Option)  
CN40  
CN40A  
NFB  
MR-J3CDL05M  
cable  
Termination  
connector  
MR-J3-TM  
(Option)  
MC  
L1  
L2  
L3  
CN40B  
3-phase  
380 to 480VAC  
50/60Hz  
Servo motor  
M
U
V
CN1  
1
L11  
U
V
DICOM  
L21  
24VDC  
W
DOCOM  
5
6
2
7
9
W
(Note 5)  
MC1  
CNP1  
1
DICOM  
CN2  
BU  
BV  
BW  
MC2  
2
ALM  
RA2  
Encoder  
Power factor improving  
DC reactor (Option)  
EM1  
Encoder cable  
(Note 3)  
Cooling fan  
DOCOM  
P1  
(Note 2)  
P2  
C
OHS1  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
RA3  
P
C
P
C
P
C
CN3  
10  
G3  
Regenerative  
option(Note 1)  
G4  
G3  
Regenerative  
option(Note 1)  
G4  
G3  
Regenerative  
option(Note 1)  
G4  
DICOM  
Cooling fan  
R400 S400  
Cooling fan  
R400 S400  
Cooling fan  
R400 S400  
15 ALM  
RA1  
24VDC  
DICOM  
5
DOCOM  
3
L11  
20 EM1  
Plate SD  
L21  
(Note 3)  
(Note 4)  
Drive  
unit  
Motor  
Operation  
-ready  
Stepdown  
(Note 3)  
Forced stop  
transformer  
thermal relay  
ON  
EM1 OFF  
RA1 RA2 RA3 RA4  
MC  
SK  
Controller  
forced stop  
Converter  
unit  
MC  
Note 1. For the MR-RB138-4. For the MR-RB138-4, three units are used as one set (permissible wattage: 3900W).  
2. When using the Power factor improving DC reactor, disconnect the short bar across P1-P2.  
3. Make up a sequence that turns off the drive unit forced stop (EM1) and the converter unit forced stop (EM1) at the same time.  
4. Stepdown transformer is required for coil voltage of magnetic contactor more than 200V class.  
5. Attach connector for magnetic contactor wiring on the converter unit. Unattached state may cause an electric shock.  
6. For specifications of cooling fan power supply, refer to section 13.3.8.  
13 - 30  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.3 Terminal  
Refer to section 13.7 for the terminal block arrangement and signal layout.  
(1) Converter unit  
Connection target  
(Application)  
(Note)  
Description  
Abbreviation  
Terminal block  
MR-J3-CR55K  
MR-J3-CR55K4  
Connect 3-phase 200 to  
230VAC, 50/60Hz to L1, L2, L3.  
Connect 1-phase 200 to  
230VAC, 50/60Hz.  
Connect 3-phase 380 to  
480VAC, 50/60Hz to L1, L2, L3.  
Connect 1-phase 380 to  
480VAC, 50/60Hz.  
Main circuit power supply  
Control circuit power supply  
L1 L2 L3  
L11 L21  
P1 P2  
TE1-1  
TE3  
Power factor improving  
DC reactor  
When using the power factor improving DC reactor, connect it after  
removing the connection plate across P1-P2.  
TE1-2  
TE1-2  
Regenerative brake  
P2  
C
Connect to the P2 and C terminals of the regenerative option.  
Connect to the L , L terminals of the drive unit.  
Use the connection bar, which is supplied with the drive unit, to  
connect.  
DC link  
L
L
TE2-2  
Connect this terminal to the protective earth (PE) terminals of the  
servo motor and control box for grounding.  
Grounding  
PE  
Note. The permissible tension applied to any of the terminal blocks TE1-1, TE1-2, TE2-2 is 350[N].  
(2) Drive unit  
Description  
Connection target  
(Application)  
(Note)  
Abbreviation  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4 to  
MR-J3-DU55KB4  
Terminal block  
Connect 1-phase 200 to  
230VAC, 50/60Hz.  
Connect 1-phase 380 to  
480VAC, 50/60Hz.  
Control circuit power supply  
L11 L21  
TE3  
Connect to the L and L terminals of the converter unit.  
Use the connection bar, which is supplied with the drive unit, to  
connect.  
L
L
power supply input  
L
L
TE2-1  
Servo motor power  
Grounding  
U
V
W
TE1A  
PE  
Connect to the servo motor power terminals (U, V, W).  
Connect this terminal to the protective earth (PE) terminals of the  
servo motor and control box for grounding.  
Note. The permissible tension applied to any of the terminal blocks TE1, TE2-1 is 350[N].  
13 - 31  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.4 How to use the connection bars  
Make sure to use the supplied connection conductors and connect the L and L of the drive unit to those of  
the converter unit as shown below. Never use connection conductors other than the ones supplied with the  
drive unit. Both units are shown without the front covers.  
Converter unit  
Drive unit  
Connection  
conductors  
L
L
L
L
13 - 32  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.5 Connectors and signal arrangements  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
(1) Converter unit  
CN1 (Digital I/O connector)  
CN6 Leave this open.  
Model: 17JE-23090-02 (D8A) K11-CG (D-sub 9 pin or  
equivalent)  
CN40 Connect to CN40A of the  
(DDK)  
CNP1 CN1  
drive unit.  
CHARGE  
CN3 Leave this open.  
5
9
DOCOM  
DOCOM  
4
3
8
WNG  
7
EM1  
2
6
ALM  
DICOM  
1
DICOM  
CNP1 (Magnetic contactor wiring connector)  
Model: GFKC 2.5/2-STF-7.62  
(Phoenix Contact)  
1
MC1  
2
MC2  
13 - 33  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Drive unit  
The drive unit front view shown is that of the MR-J3-DU30KB4, MR-J3-DU37KB4 or less. Refer to section  
13.7 Outline Drawings for the appearances and connector layouts of the MR-J3-DU30KB, MR-J3-DU37KB,  
MR-J3-DU45KB4, MR-J3-DU55KB4.  
CN5 (USB connector)  
Refer to section 11.8.  
CN3 (I/O signal connector)  
Refer to section 3.4.  
Connector for the front axis of  
CN1A SSCNET cable.  
Connector for the rear axis of  
CN1B SSCNET cable.  
CN2 (Encoder connector)  
Refer to section 3.4.  
The frames of the CN2 and CN3 connectors are  
connected to the PE (earth) terminal in the amplifier.  
13 - 34  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.6 Converter unit signal (device) explanations  
POINT  
Explanations on the drive unit signals are the same as those for servo  
amplifiers with 22kW or less. Refer to section 3.5.  
(1) Signals  
For the I/O interfaces (symbols in I/O column in the table), refer to (b) of this section.  
I/O  
Signal name  
Pin code Pin No.  
Function/Application  
division  
Digital I/F power  
supply input  
DICOM  
CN1-1 Used to input 24VDC (24VDC 10% 150mA) for I/O interface. The power supply  
CN1-6 capacity changes depending on the number of I/O interface points to be used.  
For the source interface, connect  
of 24VDC external power supply.  
Forced stop  
EM1  
CN1-7 Turn EM1 off to bring the motor to a forced stop state, in which the magnetic  
connector is turned off and the servo-off signal is output to the drive unit.  
Turn EM1 on in the forced stop state to reset that state.  
DI  
Trouble  
ALM  
CN1-2 ALM turns off when power is switched off or the protective circuit is activated.  
Without alarm occurring, ALM turns on within about 1.5s after power-on.  
CN1-8 When warning has occurred, WNG turns on.  
DO  
DO  
Warning  
WNG  
Digital I/F common DOCOM  
CN1-5 Common terminal for the ALM and WNG output signals of the converter unit.  
CN1-9 Separated from LG.  
Pins are connected internally. For the source interface, connect  
external power supply.  
of 24VDC  
Magnetic contactor  
drive output  
MC1  
CNP1-1 Connect to the operation coil of the magnetic contactor. Always supplies the  
control circuit power since it is conducted with L11 in the converter unit.  
Magnetic contactor wiring  
connector on the converter unit.  
WARNING  
Connected state may cause an  
electric shock.  
MC2  
CNP1-2 Connect to the operation coil of the magnetic contactor. When the converter unit  
(Note) receives a start command from the drive unit, it is conducted with L21 inside, the  
control circuit power is supplied, and then the magnetic contactor is turned ON.  
Change parameter No.PA02 setting to “  
0” when controlling without  
magnetic contactor control connector (CNP1). (Refer to section 13.3.1.)  
13 - 35  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) I/O interfaces  
(a) Digital input interface (DI)  
Give a signal with a relay or open collector transistor. Refer to section 3.7.3 for the source input.  
Converter unit  
For transistor  
EM1 5.6k  
Approx. 5mA  
Switch  
TR  
DICOM  
VCES 1.0V  
ICEO 100  
24VDC 10  
150mA  
A
(b) Digital output interface (DO)  
A lamp, relay or photocoupler can be driven. Install a diode for an inductive load, or install an inrush  
current suppressing resistor for a lamp load. (Permissible current: 40mA or less, inrush current: 100mA  
or less) A maximum of 2.6V voltage drop occurs in the servo amplifier.  
Refer to section 3.7.3 for the source output.  
If polarity of diode is  
reversed, converter  
unit will fail.  
Converter unit  
ALM,  
etc.  
Load  
DOCOM  
(Note) 24VDC 10  
150mA  
Note. If the voltage drop (maximum of 2.6V) interferes with the relay operation, apply high  
voltage (up to 26.4V) from external source.  
13 - 36  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.7 Timing chart  
(1) Power circuit timing chart  
Power-on procedure  
(a) Always wire the power supply as shown in above section 13.3.2 using the magnetic contactor with the  
main circuit power supply (3-phase: L , L , L ). Configure up an external sequence to switch off the  
1
2
3
magnetic contactor as soon as an alarm occurs.  
(b) Switch on the control circuit power supply L , L simultaneously with the main circuit power supply or  
11 21  
before switching on the main circuit power supply. If the main circuit power supply is not on, the display  
shows the corresponding warning. However, by switching on the main circuit power supply, the warning  
disappears and the drive unit will operate properly.  
1) When control function of magnetic contactor is enabled and the status remains at ready on  
The main circuit power is not shut off with servo off.  
Coasting  
Servo motor speed  
0r/min  
ON  
Drive unit control  
power supply  
OFF  
ON  
Converter unit control  
power supply  
OFF  
ON  
Main circuit  
power supply  
OFF  
(Note 5)  
Tb  
(3s)  
ON  
Electromagnetic  
brake operation  
delay time  
Base circuit  
OFF  
(Note 1) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
(95ms)  
ON  
Servo on command  
(from controller)  
OFF  
(Note 3)  
Position command  
(Note 4)  
0r/min  
Release delay  
time and external  
relay (Note 2)  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
2. Electromagnetic brake is released after delaying for the release time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual  
(Vol.2).  
3. Make the controller execute the position command after the electromagnetic brake is released.  
4. In position control mode  
5. “Tb” refers to a delay time when the electromagnetic brake interlock (MBR) is turned off until when the base circuit is shut  
off at servo-off. Set Tb using parameter No.PC02.  
13 - 37  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) When control function of magnetic contactor is enabled and the status returns to ready off  
The magnetic contactor of the converter unit is turned off with servo off, and the main circuit magnetic  
contactor is shut off.  
Coasting  
Servo motor speed  
0r/min  
ON  
Drive unit control  
power supply  
OFF  
ON  
Converter unit control  
power supply  
OFF  
ON  
Main circuit  
power supply  
OFF  
(3s)  
ON  
Electromagnetic  
brake operation  
delay time  
Base circuit  
OFF  
(Note 1) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
(3s)  
ON  
Servo on command  
(from controller)  
OFF  
(Note 3)  
Position command  
(Note 4)  
0r/min  
Release delay  
time and external  
relay (Note 2)  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
2. Electromagnetic brake is released after delaying for the release time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual  
(Vol.2).  
3. Make the controller execute the position command after the electromagnetic brake is released.  
4. In position control mode  
13 - 38  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
3) When controlling magnetic contactor by external sequence  
When an alarm occurs, turn OFF the magnetic contactor by the external sequence and shut off the  
main circuit power supply.  
Coasting  
Servo motor speed  
0r/min  
ON  
Drive unit control  
power supply  
OFF  
ON  
Converter unit control  
power supply  
OFF  
ON  
Main circuit  
power supply  
OFF  
(Note 5, 6)  
Tb  
(3s)  
ON  
Electromagnetic  
brake operation  
delay time  
Base circuit  
OFF  
(Note 1) ON  
Electromagnetic  
brake interlock (MBR)  
OFF  
(95ms)  
ON  
Servo on command  
(from controller)  
OFF  
(Note 3)  
Position command  
(Note 4)  
0r/min  
Release delay  
time and external  
relay (Note 2)  
Release  
Activate  
Electromagnetic  
brake  
Release delay time and external relay (Note 2)  
Note 1. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
2. Electromagnetic brake is released after delaying for the release time of electromagnetic brake and operation time of  
external circuit relay. For the release delay time of electromagnetic brake, refer to the Servo Motor Instruction Manual  
(Vol.2).  
3. Make the controller execute the position command after the electromagnetic brake is released.  
4. In position control mode  
5. “Tb” refers to a delay time when the electromagnetic brake interlock (MBR) is turned off until when the base circuit is shut  
off at servo-off. Set Tb using parameter No.PC02.  
6. When turning OFF servo amplifiers, the base circuit remains ready on state. When the status is ready off, the base circuit  
and the servo-on command turns OFF at the same time. (Tb=0)  
13 - 39  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
(a) When control function of magnetic contactor is enabled  
1) Converter unit  
When an alarm occurs in the converter unit, the magnetic contactor is turned off and the main circuit  
magnetic contactor is shut off. The drive unit in operation stops. To deactivate the alarm, turn the  
control circuit power off, then on or request the operation from the driver unit. However, the alarm  
cannot be deactivated unless its cause is removed.  
b)  
ON  
Converter unit control  
power supply  
OFF  
ON  
Main circuit  
power supply  
OFF  
a)  
d)  
c)  
OFF  
ON  
OFF  
ON  
OFF  
Converter unit alarm  
Alarm occurrence  
Alarm occurrence  
ON  
Drive unit control  
power supply  
OFF  
ON  
Base circuit  
OFF  
(3s)  
(3s)  
ON  
Servo-on command  
(from controller)  
OFF  
OFF  
ON  
OFF  
Drive unit alarm  
1.5s  
ON  
Reset command  
(from controller)  
OFF  
50ms or more  
a) in Figure  
Even if an alarm occurs in the converter when the drive unit is at servo off, the  
drive unit does not detect the alarm.  
b) c) in Figure To deactivate the alarm of the converter unit, turn the power of the converter unit  
off, and then on (b)) or make the drive unit servo on (c)). (Refer to section 13.6.1.)  
d) in Figure  
If an alarm occurs in the converter when the drive unit is at servo on, the alarm  
also occurs in the drive unit and the drive unit becomes servo off.  
13 - 40  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) Drive unit  
When an alarm occurs on the drive unit, the base circuit is shut off and the servo motor coasts. When  
using a dynamic brake (option), the dynamic brake is activated to stop the servo motor. To deactivate  
the alarm, power the control circuit off, then on, turn the reset (RES) on or CPU reset command.  
However, the alarm cannot be deactivated unless its cause is removed.  
ON  
Converter unit control  
power supply  
OFF  
a)  
a)  
ON  
Main circuit  
power supply  
OFF  
OFF  
Converter unit alarm  
ON  
Drive unit control  
power supply  
OFF  
ON  
Base circuit  
OFF  
(3s)  
(3s)  
ON  
Servo-on command  
(from controller)  
OFF  
OFF  
ON  
OFF  
Drive unit alarm  
1.5s  
Alarm occurrence  
ON  
Reset command  
(from controller)  
OFF  
50ms or more  
a) in Figure  
After completing to start the drive unit, the main circuit power is supplied while the  
drive unit and the converter unit have no alarms.  
13 - 41  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) When controlling magnetic contactor by external sequence  
1) Converter unit  
When an alarm occurs on the converter unit, the servo-on turns OFF; however, the main circuit power  
supply is not shut off. Therefore, shut off the main circuit power supply by the external sequence.  
After cancelling the alarm on the converter unit (when an alarm is also occurring on the drive unit  
after cancelling the alarm on the drive unit as well), turning ON the reset command enables to  
operate again.  
b)  
ON  
Converter unit control  
power supply  
OFF  
e)  
ON  
Main circuit  
power supply  
OFF  
a)  
d)  
c)  
OFF  
ON  
OFF  
ON  
OFF  
Converter unit alarm  
Alarm occurrence  
Alarm occurrence  
ON  
Drive unit control  
power supply  
OFF  
ON  
Base circuit  
OFF  
(3s)  
(3s)  
ON  
Servo-on command  
(from controller)  
OFF  
OFF  
ON  
OFF  
Drive unit alarm  
1.5s  
ON  
Reset command  
(from controller)  
OFF  
50ms or more  
a) in Figure  
Even if an alarm occurs in the converter when the drive unit is at servo off, the  
drive unit does not detect the alarm.  
b) c) in Figure To deactivate the alarm of the converter unit, turn the power of the converter unit  
off, and then on (b)) or make the drive unit servo on (c)). (Refer to section 13.6.1.)  
d) in Figure  
e) in Figure  
If an alarm occurs in the converter unit when the drive unit is at servo on, the  
alarm also occurs in the drive unit and the drive unit becomes servo off.  
Shut off the main circuit power supply by the external sequence as soon as an  
alarm occurs.  
13 - 42  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) Drive unit  
When an alarm occurs in the drive unit, the drive unit turns into the servo off but the main circuit  
power supply is not shut off. Therefore, shut off the main circuit power supply using the external  
sequence. Operation can be resumed by turning the reset (RES) ON after the alarm is deactivated in  
the drive unit.  
ON  
Converter unit control  
power supply  
OFF  
a)  
b)  
ON  
Main circuit  
power supply  
OFF  
OFF  
Converter unit alarm  
ON  
Drive unit control  
power supply  
OFF  
ON  
Base circuit  
OFF  
(3s)  
(3s)  
ON  
Servo-on command  
(from controller)  
OFF  
OFF  
ON  
OFF  
Drive unit alarm  
1.5s  
Alarm occurrence  
ON  
Reset command  
(from controller)  
OFF  
50ms or more  
a) in Figure  
b) in Figure  
When an alarm occurs on the drive unit, shut off the main circuit power supply by  
the external sequence.  
Turn ON the main circuit power supply while an alarm of the drive unit is  
cancelled.  
13 - 43  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Forced stop (EM1) ON/OFF timing chart  
(a) When control function of magnetic controller is enabled  
1) Converter unit  
When the forced stop (EM1) is made valid in the converter unit, the magnetic contactor is turned off  
and the main circuit power supply is shut off. The drive unit in operation stops, and Main circuit off  
warning (E9) appears. When the forced stop (EM1) is deactivated in the converter unit, the magnetic  
contactor is turned on, the main circuit power is supplied, and then the drive unit automatically  
resumes the operation.  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake release  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(3s)  
(10ms)  
ON  
OFF  
Electromagnetic brake  
operation delay time  
(3s)  
(3s)  
(Note)  
ON  
Electromagnetic brake  
interlock (MBR)  
OFF  
ON  
Converter main circuit  
off warning  
OFF  
ON  
Main circuit  
power supply  
OFF  
Invalid (ON)  
Valid (OFF)  
Forced stop (EM1)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
13 - 44  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) When CNP1 is invalid  
When the forced stop (EM1) is input in the converter unit, the drive unit in operation stops and Main  
circuit off warning (E9) appears. When the forced stop (EM1) is deactivated in the converter unit, the  
drive unit automatically resumes the operation.  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake release  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(3s)  
(10ms)  
ON  
OFF  
Electromagnetic brake  
operation delay time  
(3s)  
(3s)  
(Note) ON  
OFF  
Electromagnetic brake  
interlock (MBR)  
ON  
Converter main circuit  
off warning  
OFF  
ON  
Main circuit  
power supply  
OFF  
Invalid (ON)  
Valid (OFF)  
Forced stop (EM1)  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
13 - 45  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) Forced stop in the drive unit  
When the forced stop (EM1) is made valid in the drive unit, the drive unit in operation stops, Main circuit  
off warning (E9) appears, and then the drive unit is forcedly stopped. Configure to activate the forced  
stop (EM1) of the drive unit as the forced stop (EM1) of the converter unit is activated, and to activate  
the forced stop (EM1) of the converter unit as the forced stop (EM1) of the drive unit is activated. Shut  
off the power supply by the external sequence as soon as the forced stop (EM1) is activated.  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake release  
(3s)  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(10ms)  
ON  
OFF  
Electromagnetic brake  
operation delay time  
(3s)  
(Note) ON  
OFF  
Electromagnetic brake  
interlock (MBR)  
Forced stop command  
(from controller) or  
forced stop (EM1)  
Invalid (ON)  
Valid (OFF)  
ON  
Main circuit  
power supply  
OFF  
Note. ON: Electromagnetic brake is not activated.  
OFF: Electromagnetic brake is activated  
13 - 46  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.3.8 Servo motor side details  
Encoder connector signal arrangement  
Terminal box  
Encoder connector  
CM10-R10P  
CM10-R10P  
Terminal  
No.  
Signal  
7
6
5
4
10  
9
3
2
1
1
2
MR  
MRR  
8
3
4
BAT  
LG  
5
6
7
8
P5  
9
10  
SHD  
HA-LP30K1  
HA-LP37K1  
HA-LP30K1M  
HA-LP37K1M  
HA-LP30K2  
HA-LP37K2  
HA-LP45K1M4  
HA-LP50K1M4  
HA-LP45K24  
HA-LP55K24  
HA-LP25K14  
HA-LP30K14  
HA-LP37K14  
HA-LP37K1M4  
HA-LP30K1M4 HA-LP30K24  
HA-LP37K24  
Motor power  
supply terminal  
block screw size  
Earth screw size  
M8  
M6  
M10  
M6  
Motor power supply  
Terminal block signal arrangement  
BU BV BW OHS1OHS2  
terminal block  
Encoder connector  
CM10-R10P  
(U V W) M8 screw  
U
V
W
U
W
V
Thermal sensor  
terminal block  
(OHS1 OHS2)  
M4 screw  
Cooling fan  
terminal block  
(BU BV BW)  
M4 screw  
Earth terminal M6 screw  
13 - 47  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Signal name  
Abbreviation  
Description  
Connect to the motor power terminals (U, V, W) of the drive unit. During power-on, do not  
open or close the motor power line.  
Servo motor  
power supply  
U
V
W
Otherwise, a malfunction or faulty may occur.  
Supply power which satisfies the following specifications.  
Power  
consumption  
[W]  
Rated  
current  
[A]  
Voltage  
division  
Voltage/  
Servo motor  
frequency  
HA-LP30K1M, 30K2,  
37K2  
200V 3-phase 200 to 230VAC  
class 50Hz/60Hz  
65(50Hz)  
85(60Hz)  
120(50Hz)  
175(60Hz)  
65(50Hz)  
85(60Hz)  
110(50Hz)  
150(60Hz)  
0.20(50Hz)  
0.22(60Hz)  
0.65(50Hz)  
0.80(60Hz)  
0.12(50Hz)  
0.14(60Hz)  
0.20(50Hz)  
0.22(60Hz)  
HA-LP30K1, 37K1,  
37K1M  
Cooling fan  
BU BV BW  
HA-LP30K1M4,  
30K24, 37K24  
HA-LP30K14, 37K14,  
37K1M4, 45K1M4,  
50K1M4, 45K24,  
55K24  
400V 3-phase 380 to 460VAC  
class 50Hz  
3-phase 380 to 480VAC  
60Hz  
OHS1-OHS2 are opened when heat is generated to an abnormal temperature.  
Motor thermal relay OHS1 OHS2 Maximum rating: 125V AC/DC, 3A or 250V AC/DC, 2A  
Minimum rating: 6V AC/DC, 0.15A  
Earth terminal  
For grounding, connect to the earth of the control box via the earth terminal of the drive unit.  
13 - 48  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.4 Display section and operation section of the converter unit  
13.4.1 Display flowchart  
Use the display (3-dight, 7-segment LED) on the front panel of the converter unit for status display, parameter  
setting, etc. Set the parameters before operation, diagnose an alarm, confirm external sequences, and/or  
confirm the operation status.  
Press the MODE, UP or DOWN button once to move the next screen.  
Button  
MODE  
Status display  
Diagnosis  
Alarm  
Basic parameters  
(Note)  
Status  
External I/O  
signal display  
Current alarm  
Parameter  
No.PA01  
(Note)  
Bus voltage  
[V]  
Output signal  
forced output  
First alarm in  
past  
Parameter  
No.PA02  
Effective load  
ratio [%]  
Software version  
low  
DOWN  
UP  
Peak load ratio  
[%]  
Software version  
high  
(Note)  
(Note)  
Regenerative load  
ratio [%]  
Sixth alarm in  
past  
Parameter  
No.PA18  
Parameter error  
No.  
Parameter  
No.PA19  
Note. When parameter is selected, parameter group and parameter No. are displayed  
alternately. Refer to section 13.4.5 for details.  
13 - 49  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.4.2 Status display mode  
The servo status during operation is shown on the 3-digit, 7-segment LED display. Press the "UP" or "DOWN"  
button to change display data as desired.  
When the required data is selected, the corresponding symbol is displayed. Press the "SET" button to display  
that data.  
The converter unit display section can show four items of data such as the effective load factor.  
(1) Display examples  
The following table shows the display examples.  
Item  
Status  
Display  
Ready off  
Status  
Ready on  
Bus voltage  
300[V]  
67[%]  
95[%]  
90[%]  
Effective load ratio  
Peak load ratio  
Regenerative load ratio  
(2) Status display list  
The following table lists the converter unit statuses that may be displayed.  
Indication  
range  
Status display  
Ready  
Symbol  
Unit  
Description  
The ready off is displayed during initialization or alarm occurrence, in the  
forced stop status, or when the bus voltage is not established.  
The ready on is displayed when the servo was switched on after completion  
of initialization and the servo amplifier is ready to operate.  
The converter unit voltage is displayed.  
roF  
off  
Status  
Ready  
on  
ron  
Bus voltage  
d
J
V
0 to 999  
Continuous effective load torque is displayed. (Note)  
The effective value in the past 15 seconds is displayed relative to the rated  
current of 100%.  
Effective load  
ratio  
%
0 to 300  
The peak output is displayed. (Note)  
Peak load ratio  
b
L
%
%
The peak value in the past 15 seconds is displayed relative to the rated  
torque of 100%.  
0 to 400  
0 to 300  
Regenerative  
load ratio  
The percentage of regenerative power to the permissible regenerative value  
is displayed.  
Note. Output = converter unit bus voltage  
output current  
13 - 50  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.4.3 Diagnostic mode  
(1) Diagnostic list  
Name  
Display  
Unit  
Not ready.  
Initializing.  
An alarm occurred.  
External forced stop status.  
Sequence  
Bus voltage is not established.  
Ready  
Indicates that the servo was switched on after completion of  
initialization and the drive unit is ready to operate.  
Indicates the ON/OFF status of external I/O signal.  
Lit  
: ON  
External I/O signal display  
Extinguished: OFF  
For details, refer to (2) of this section.  
Allows external I/O signal to be switched on/off forcibly. For  
details, refer to (3) of this section.  
Output signal forced output  
Software version low  
Indicates the version of the software.  
Software version high  
Indicates the system number of the software.  
(2) External I/O signal display  
The ON/OFF states of the digital I/O signals connected to the converter unit can be confirmed.  
(a) Operation  
Call the display screen shown after power-on. Using the "MODE" button, show the diagnostic screen.  
Press MODE once.  
External I/O signal display screen  
13 - 51  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) Display definition  
The 7-segment LED segments and CN1 connector pins correspond as shown below.  
CN1-7: Forced stop (EM1)  
Input signals  
Output signals  
CN1-8:  
CN-2:  
Warning (WNG) Trouble (ALM)  
Lit: ON  
Extinguished: OFF  
The LED segment corresponding to the pin is lit to indicate ON, and is extinguished to indicate OFF.  
(3) Output signal forced output  
You can force the output signal to be switched on/off, independently of the converter status.  
This function is used for wiring check of output signal.  
When turning CN1-8 on and off  
Press MODE once.  
External I/O signal display screen  
Press UP once.  
Press SET for more than 2 seconds.  
The signal under the lit LED is switched on/off.  
Indicates ON/OFF of the trouble (ALM) signal. (Lit: ON, extinguished: OFF)  
CN1-8 CN1-2  
Press MODE once.  
The lit LED moves to the upper LED of CN1-8.  
Press UP once.  
CN1-8 switches on. (WNG-DOCOM are connected.)  
CN1-8  
Press DOWN once.  
CN1-8 switches off.  
Press SET for more than 2 seconds.  
Call the display screen shown after power-on.  
13 - 52  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.4.4 Alarm mode  
The current alarm, parameter error and point table error are displayed.  
The lower 2 digits on the display indicate the alarm number that has occurred or the parameter number in error.  
Display example are shown below.  
Name  
Display  
Description  
Indicates on occurrence of an alarm.  
Current alarm  
Indicates that overvoltage (A.33) occurred.  
Flickers at alarm occurrence.  
Indicates that the last alarm is overload (A.50).  
Indicates that the second alarm in the past is overvoltage  
(A.33).  
Indicates that the third alarm in the past is undervoltage (A.10).  
Alarm history  
Indicates that the fourth alarm in the past is undervoltage  
(A.10).  
Indicates that the fifth alarm in the past is undervoltage (A.10).  
Indicates that the sixth alarm in the past is overload (A.50).  
Indicates no occurrence of parameter error (A.37).  
Parameter error No.  
Displayed  
alternately  
Indicates that the data of parameter No.PA01 is faulty.  
13 - 53  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the third digit  
flickers.  
(3) To clear any alarm, switch power off, then on or press the "SET" button on the current alarm screen. Note  
that this should be done after removing the case of the alarm.  
13.4.5 Parameter mode  
POINT  
The display section of the converter unit has three digits. When a parameter  
No. is displayed, parameter group and parameter No. are displayed  
alternately.  
When, for example, "PA01" is displayed,  
alternately.  
and  
are displayed  
The following example gives the operation procedure after power-on for use of the regenerative options (MR-  
RB137).  
Press MODE three time  
Displayed  
The parameter number is displayed.  
alternately  
For parameter No.PA01, “PA” and “01” are displayed alternately.  
Press UP or DOWN to change the number.  
Press MODE twice  
The set value of the specified parameter number flickers.  
In this case, the lower three digits “0000” of the set value “0000” are  
displayed.  
(Note)  
Press MODE once  
During flickering, the set value can be change.  
Use UP or DOWN .  
(
2: MR-RB137 (3 pcs.) are used.)  
Press SET to enter.  
Note. If the "MODE" button is pressed when the lower three digits of the four digits "0000" are displayed, the fourth digit "0000" is  
displayed as  
. However, do not change the setting of the fourth digit. Press the "MODE" button again to reset the display  
.
to the lower three digits  
To shift to the next parameter, press the "UP"/"DOWN" button.  
When changing the parameter No.PA01 setting, change its set value, then switch power off once and switch it  
on again to make the new value valid.  
13 - 54  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.5. Parameters for converter unit  
Never adjust or change the parameter values extremely as it will make operation  
CAUTION  
instable.  
POINT  
Refer to chapter 5 for parameters for drive unit.  
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
Never change parameters for manufacturer setting.  
13.5.1 Parameter list  
No. Symbol  
Name  
Initial value  
0000h  
0001h  
0001h  
0
Unit  
PA01 *REG Regenerative option  
PA02 *MCC Magnetic contactor drive output selection  
PA03  
PA04  
PA05  
PA06  
PA07  
For manufacturer setting  
100  
0
100  
PA08 *DMD Status display selection  
PA09 *BPS Alarm history clear  
0000h  
0000h  
0
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
For manufacturer setting  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
*DIF  
Input filter setting  
For manufacturer setting  
13 - 55  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.5.2 List of details  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PA01 *REG Regenerative option  
0000h  
Refer to  
Name  
Used to select the regenerative option.  
and  
0 0  
function  
column.  
Select the regenerative option.  
00: No used  
01: MR-RB139  
02: MR-RB137(3 pcs.)  
11: MR-RB136-4  
Only for MR-J3-CR55K  
Only for MR-J3-CR55K4  
12: MR-RB138-4(3 pcs.)  
"01" and "02" are the set values for the MR-J3-CR55K only, and "11"  
and "12" are those for the MR-J3-CR55K4 only.  
Wrong setting will result in parameter alarm (A.37).  
PA02 *MCC Magnetic contactor drive output selection  
Used to select the output of the magnetic contactor drive power supply.  
0001h  
Refer to  
Name  
and  
0 0 0  
function  
column.  
Used to select the output of the magnetic contactor drive power  
supply.  
0: No used  
1: Used  
PA03  
PA04  
PA05  
PA06  
PA07  
For manufacturer setting  
0001h  
0
Do not change this value by any means.  
100  
0
100  
0000h  
PA08 *DMD Status display selection  
Used to select the status display shown at power-on.  
Refer to  
Name  
and  
0 0 0  
function  
column.  
Status display of converter unit display section at power-on.  
0: Status  
1: Bus voltage  
2: Effective load ratio  
3: Peak load ratio  
4: Regenerative load ratio  
PA09 *BPS Alarm history clear  
0000h  
Refer to  
Name  
Used to clear the alarm history.  
and  
0 0 0  
function  
column.  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid, the alarm history is cleared  
at next power-on.  
After the alarm history is cleared, the setting is automatically made  
invalid (reset to 0).  
PA10  
PA11  
For manufacturer setting  
0
Do not change this value by any means.  
0000h  
13 - 56  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Initial  
value  
Setting  
range  
No. Symbol  
Name and function  
Unit  
PA12 *DIF Input filter setting  
Select the input filter.  
0002h  
Refer to  
Name  
and  
0 0 0  
function  
column.  
Input signal filter  
If external input signal causes chattering due to noise, etc., input  
filter is used to suppress it.  
0: None  
1: 1.777[ms]  
2: 3.555[ms]  
3: 5.333[ms]  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
For manufacturer setting  
Do not change this value by any means.  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
13.6 Troubleshooting  
13.6.1 Converter unit  
(1) Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to (2) or (3) of this section and take the appropriate action.  
Switch power off, then on to deactivate the alarm. The alarms marked " " in the alarm deactivation column  
of the table can be deactivated by pressing the "RES" key of the converter unit side parameter unit or  
switching on the reset signal (RES).  
Alarm deactivation  
Display  
A.91  
Name  
Overheat warning  
Display  
Name  
Power  
Error  
reset  
OFF ON  
Excessive regenerative load  
warning  
A.E0  
A.10 Undervoltage  
A.12 Memory error1 (RAM)  
A.15 Memory error2 (EEP-ROM)  
A.17 Board error  
A.E1 Over load warning  
A.E6 Converter forced stop warning  
Cooling fan speed reduction  
A.E8  
A.19 Memory error3 (Flash-ROM)  
A.30 Regenerative error  
A.33 Over voltage  
warning  
(Note)  
(Note)  
A.37 Parameter error  
A.38 MC drive circuit error  
A.39 Open phase  
Inrush current suppressor circuit  
A.3A  
error  
A.45 Main circuit device overheat  
A.47 Cooling fan error  
A.50 Over load 1  
(Note)  
(Note)  
(Note)  
(Note)  
(Note)  
(Note)  
A.51 Over load 2  
888  
Watchdog  
Note. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
13 - 57  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
CAUTION  
alarm, and restart operation. Otherwise, injury may occur.  
POINT  
When any of the following alarms has occurred, always remove its cause and  
allow about 30 minutes for cooling before resuming operation. If operation is  
resumed by switching control circuit power off, then on to reset the alarm, the  
converter unit and regenerative option may become faulty.  
Regenerative error (A.30)  
Over load 1 (A.50)  
Over load 2 (A.51)  
Main circuit device overheat (A.45)  
The alarm can be deactivated by switching the power off, then on or by the  
error reset command from the host controller. Refer to (1) in this section for  
details.  
When an alarm occurs, the trouble (ALM) signal switches off and the display section shows the alarm number.  
Remove the cause of the alarm in accordance with this section.  
Display  
Name  
Definition  
Cause  
Action  
A.10 Undervoltage  
Power supply voltage  
dropped.  
1. Instantaneous control power failure  
occurred for more than 60ms.  
2. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
Review the power supply.  
3. Failure of the part in the converter  
Change the Converter unit.  
unit.  
Checking method  
Alarm (A.10) occurs if power is  
switched on after connectors  
disconnected.  
A.12 Memory error 1 RAM memory fault  
(RAM)  
Failure of the part in the converter unit. Change the converter unit.  
Checking method  
Alarm (A.12) occurs if power is  
switched on after connectors  
disconnected.  
A.15 Memory error 2 EEP-ROM fault  
(EEP-ROM)  
1. Failure of the part in the converter  
Change the converter unit.  
unit.  
Checking method  
Alarm (A.15) occurs if power is  
switched on after connectors  
disconnected.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
A.17 Board error  
CPU/parts fault  
Failure of the part in the converter unit. Change the converter unit.  
Checking method  
A.19 Memory error 3 ROM memory fault  
(Flash-ROM)  
Alarm (A.17/A.19) occurs if power is  
switched on after connectors  
disconnected.  
13 - 58  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Display  
Name  
Definition  
Cause  
Action  
A.30 Regenerative  
error  
Permissible regenerative  
power of regenerative  
option is exceeded.  
1. Wrong setting of parameter No.PA01 Set correctly.  
2. Regenerative option is not  
connected.  
Connect correctly.  
3. High-duty operation or continuous  
regenerative operation caused the  
permissible regenerative power of  
the regenerative option to be  
exceeded.  
1. Reduce the frequency of  
positioning.  
2. Use the regenerative option of  
larger capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check the  
regenerative load ratio.  
4. Power supply voltage is abnormal.  
MR-J3-CR55K: 260VAC or more  
MR-J3-CR55K4: 520VAC or more  
5. Regenerative option faulty.  
Review power supply  
Change converter unit or  
regenerative option.  
6. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
Regenerative transistor fault 7. Regenerative transistor faulty.  
Checking method  
Change the converter unit.  
1) The regenerative option has  
overheated abnormally.  
2)  
The alarm occurs even after  
removal of the built-in  
regenerative resistor or  
regenerative option.  
A.33 Over voltage  
Converter bus voltage  
exceeded to following  
voltage.  
1. Regenerative option is not used.  
2. Though the regenerative option is  
used, the parameter No.PA01 setting  
Use the regenerative option.  
Set correctly.  
MR-J3-CR55K: 400VDC  
MR-J3-CR55K4: 800VDC  
is "  
00 (not used)".  
3. Lead of regenerative option is open  
or disconnected.  
1. Change lead.  
2. Connect correctly.  
4. Regenerative transistor faulty.  
5. Wire breakage of regenerative  
option.  
Change the converter unit.  
Change the regenerative option.  
6. Capacity of regenerative option is  
insufficient.  
Add regenerative option or  
increase capacity.  
7. Power supply voltage high.  
Review the power supply.  
8. Ground fault occurred in servo motor Correct the wiring.  
power (U, V, W).  
A.37 Parameter  
error  
Parameter setting is wrong. 1. Converter unit fault caused the  
parameter setting to be rewritten.  
2. Regenerative option not used with  
converter unit was selected in  
Change the converter unit.  
Set parameter No.PA01 correctly.  
parameter No.PA02.  
3. The number of write times to  
EEP-ROM exceeded 100,000 due to  
parameter write, etc.  
Change the converter unit.  
13 - 59  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Display  
Name  
Definition  
Cause  
Action  
Review the wiring.  
A.38 MC drive circuit Magnetic contactor drive  
1. Wrong connection of the magnetic  
contactor.  
error  
circuit error  
(When the magnetic  
contactor is turned on: the  
main circuit power supply is  
not turned on within two  
seconds after the servo-on  
of the drive unit.  
2. Parameters specifying whether to  
use/not use the magnetic contactor  
do not match the configuration.  
3. Magnetic contactor failed.  
4. Magnetic contactor drive circuit  
Set parameter No.PA02 correctly.  
Change the magnetic contactor.  
Change the converter unit.  
faulty.  
When the magnetic  
contactor is opened: the  
main circuit power supply is  
turned on although the  
magnetic contactor is  
opened.)  
Checking method  
Check the output of magnetic  
contactor control connector (CNP1) .  
Power supply voltage is applied to  
this connector. Take care to avoid an  
electric shock at connecting.  
5. Mismatch of an external sequence.  
Review the power-on sequence.  
(Refer to section 3.3.2.)  
A.39 Open phase  
Power supply error  
1. Any of L1, L2 and L3 is disconnected. Review the wiring.  
Or, open.  
2. Failure of the part in the converter  
Change the converter unit.  
unit.  
A.3A Inrush current  
suppressor  
Inrush current suppressor  
circuit error  
1. Power-on/off was repeated with high Review operation pattern.  
frequency.  
circuit error  
2. Inrush current suppressor resistance Change the converter unit.  
overheated.  
3. Inrush current suppressor circuit  
faulty.  
A.45 Main circuit  
device  
Main circuit device  
overheat.  
1. The power supply was turned on and Review operation pattern.  
off continuously by overloaded  
status.  
overheat  
2. Ambient temperature of converter  
unit is over 55  
Review environment so that  
ambient temperature is 0 to 55  
Change the converter unit.  
Change the cooling fan of the  
converter unit.  
.
.
3. Converter unit faulty.  
1. Cooling fan life expiration. (Refer to  
section 2.6.)  
A.47 Cooling fan  
alarm  
The cooling fan of the  
converter unit stopped, or its  
speed decreased to or  
below the alarm level.  
2. Foreign matter caught in the cooling Remove the foreign matter.  
fan stopped rotation.  
3. The power supply of the cooling fan  
failed.  
Change the converter unit.  
A.50 Overload 1  
A.51 Overload 2  
Load exceeded overload  
protection characteristic of  
converter unit.  
Converter unit is used in excess of its  
continuous output current.  
1. Reduce load.  
2. Review operation pattern.  
Load exceeded overload  
protection characteristic of  
converter unit.  
Converter unit is used in excess of its  
output current for a short time.  
Review operation pattern of a  
drive unit.  
(Note) Watchdog  
888  
CPU/parts fault  
Failure of the part in the converter unit. Change the converter unit.  
Checking method  
Alarm (888) occurs if power is  
switched on after connectors  
disconnected.  
Note. At power-on, "888" appears instantaneously, but it is not an error.  
13 - 60  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Remedies for warnings  
Continuing operation in an alarm occurrence status may result in an alarm or disable proper operation.  
Eliminate the cause of the warning according to this section. The warning displayed will disappear when the  
cause of its occurrence is resolved.  
Display  
Name  
Definition  
Cause  
Action  
A.91 Overheat  
warning  
The temperature of the fin  
exceeded the warning level.  
1. Operated in the overloaded status.  
2. Ambient temperature of converter  
Review operation pattern.  
Review environment so that  
ambient temperature is 0 to 55  
Use within the range of  
specifications.  
unit is over 55  
.
.
3. Used beyond the specifications of  
close mounting.  
4. Converter unit faulty.  
Change the converter unit.  
A.E0 Excessive  
regenerative  
There is a possibility that  
regenerative power may  
exceed permissible  
Regenerative power increased to 85% 1. Reduce frequency of  
or more of permissible regenerative  
power of regenerative option.  
Checking method  
positioning.  
load warning  
2. Change regenerative option for  
the one with larger capacity.  
3. Reduce load.  
regenerative power of  
regenerative option.  
Call the status display and check the  
regenerative load ratio.  
A.E1 Overload  
warning  
There is a possibility that  
overload alarm 1 or 2 may  
occur.  
Load increased to 85% or more of  
Refer to A.50, A.51.  
overload alarm 1 or 2 occurrence level.  
Cause, checking method  
Refer to A.50, 51.  
A.E6 Converter  
forced stop  
warning  
EM1 is off.  
External forced stop was made valid.  
(EM1 was turned off.)  
Ensure safety and deactivate  
forced stop.  
A.E8 Cooling fan  
speed  
The speed of the converter  
unit cooling fan decreased  
to or below the warning  
level.  
1. Cooling fan life expiration. (Refer to  
section 2.6.)  
Change the cooling fan of the  
converter unit.  
reduction  
2. The power supply of the cooling fan  
failed.  
Change the converter unit.  
warning  
(4) Clearing the alarm history  
You can clear the alarm numbers stored in the alarm history of the alarm mode. To ensure that you can  
control the alarms that will occur after regular operation, make this setting before starting regular operation  
to clear the alarm history.  
After setting "0001" in parameter No.PA09, switch power off once. Switching it on again clears the alarm  
history. At this time, the parameter No.PA09 setting returns to "0000".  
13 - 61  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.6.2 Drive unit  
POINT  
Explanation made in this section is exclusively for the driver unit.  
Other troubleshooting is the same as that for servo amplifiers with 22kW or  
less. Refer to chapter 8.  
As soon as an alarm occurs, make the Servo off status and interrupt the main  
circuit power.  
(1) Alarms and warning list  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to (2) or (3) of this section and take the appropriate action. When an alarm  
occurs, the ALM turns OFF.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked in the alarm  
deactivation column. The alarm is automatically canceled after removing the cause of occurrence.  
Alarm deactivation  
Error reset  
Display  
9C  
Name  
Display  
1B  
Name  
Power  
OFF ON  
Converter  
warning  
CPU reset  
Alarms  
Converter  
alarm  
Main circuit off  
warning  
Alarms  
E9  
(2) Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
CAUTION  
As soon as an alarm occurs, mark servo-off and power off the main circuit and  
control circuit.  
POINT  
The alarm can be deactivated by switching power off, then on or by the error  
reset command CPU reset from the servo system controller. For details, refer  
to (1) of this section.  
When an alarm occurs, the trouble (ALM) switches off and the dynamic brake is operated to stop the servo  
motor. At this time, the display indicates the alarm No.  
The servo motor comes to a stop. Remove the cause of the alarm in accordance with this section. MR  
Configurator may be used to refer to the cause.  
Display  
1B  
Name  
Definition  
Cause  
Action  
Converter  
alarm  
An alarm occurred in the  
converter unit during servo  
on.  
1. An alarm occurred in the converter  
unit during servo on.  
Check the alarm of the converter  
unit, and take the action following  
the remedies for alarms of the  
converter unit. (Refer to section  
13.6.1 (2).)  
2. The protection coordination cable or Connect correctly.  
terminal connector is not correctly  
connected.  
13 - 62  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Remedies for warnings  
Continuing operation in an alarm occurrence status may result in an alarm or disable proper operation.  
Eliminate the cause of the warning according to this section. The warning displayed will disappear when the  
cause of its occurrence is resolved.  
Indication  
9C  
Name  
Definition  
Cause  
Action  
Converter  
warning  
A warning occurred in the  
converter unit during the  
servo-on command.  
Check the warning of the  
converter unit, and take the action  
following the remedies for  
warnings of the converter unit.  
(Refer to section 13.6.1 (3).)  
E9  
Main circuit  
off warning  
The forced stop of the  
converter unit is made valid  
during the servo-on  
command.  
1. The forced stop of the converter unit Deactivate the forced stop of the  
is made valid. converter unit.  
2. The protection coordination cable or Connect correctly.  
terminal connector is not correctly  
connected.  
13 - 63  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.7 Outline drawings  
POINT  
Refer to section 13.2.1 for outline dimension drawing.  
13.7.1 Converter unit (MR-J3-CR55K(4))  
[Unit: mm]  
Cooling fan  
wind direction  
2- 7 Installation hole  
328  
Approx. 20  
300  
260  
128  
Approx. 200  
180  
Terminal block layout  
(Terminal cover removed)  
Approx. 80  
20  
CHARGE  
TE2-2  
TE2-2  
TE3  
TE3  
PE  
TE1-1  
TE1-2  
TE1-1  
TE1-2  
7
277  
Mass: 25[kg] (55.2[lb])  
Terminal block signal layout  
TE2-2  
L
Terminal block screw: M6  
Tightening torque: 3.0 [N m]  
Mounting screw  
Screw size: M6  
Tightening torque: 5.4 [N m]  
(47.8 [lb in])  
L
(26.6 [lb in])  
TE3  
Terminal block screw: M4  
Tightening torque: 1.2 [N m]  
L11  
L21  
(10.6 [lb in])  
TE1-1  
L1  
Terminal block screw: M10  
Tightening torque: 10.0 [N m]  
(88.5 [lb in])  
L2  
L3  
TE1-2  
C
Terminal block screw: M10  
Tightening torque: 10.0 [N m]  
(88.5 [lb in])  
P2 P1  
PE  
Terminal block screw: M10  
Tightening torque: 10.0 [N m]  
(88.5 [lb in])  
13 - 64  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.7.2 Drive unit  
(1) MR-J3-DU30KB MR-J3-DU37KB  
MR-J3-DU45KB4 MR-J3-DU55KB4  
[Unit: mm]  
2- 7 Installation hole  
Approx. 20  
300  
260  
Approx. 200  
180  
Cooling fan  
wind direction  
Approx. 80  
20  
Terminal block layout  
(Terminal cover removed)  
For mounting  
MR-J3BAT  
TE2-1  
TE2-1  
TE3  
TE1  
TE3  
TE1  
PE  
Approx. 200  
128  
7
328  
277  
Mass: 26[kg] (57.3[lb])  
Terminal block signal layout  
TE2-1  
L
Terminal block screw: M6  
Tightening torque: 3.0 [N m]  
(26.6 [lb in])  
Mounting screw  
Screw size: M6  
Tightening torque: 5.4 [N m]  
(47.8 [lb in])  
L
TE3  
Terminal block screw: M4  
Tightening torque: 1.2 [N m]  
L11  
L21  
(10.6 [lb in])  
TE1  
U
Terminal block screw: M10  
Tightening torque: 10.0 [N m]  
(88.5 [lb in])  
V
W
PE  
Terminal block screw: M10  
Tightening torque: 10.0 [N m]  
(88.5 [lb in])  
13 - 65  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) MR-J3-DU30KB4 MR-J3-DU37KB4  
[Unit: mm]  
2- 6 Installation hole  
Approx. 60  
240  
120  
Approx. 200  
180  
Cooling fan  
wind direction  
Approx. 80  
Terminal block layout  
(Terminal cover removed)  
60  
For mounting  
MR-J3BAT  
TE2  
TE3  
TE1  
Approx. 200  
128  
6
328  
219.2  
Mass: 18[kg] (39.7[lb])  
Terminal block signal layout  
TE2  
Terminal block screw: M6  
Tightening torque: 3.0 [N m]  
Mounting screw  
Screw size: M5  
Tightening torque: 3.2 [N m]  
(28.3 [lb in])  
L
L
(26.6 [lb in])  
TE3  
Terminal block screw: M4  
Tightening torque: 1.2 [N m]  
L11  
L21  
(10.6 [lb in])  
TE1  
U
Terminal block screw: M8  
Tightening torque: 6.0 [N m]  
V
W
(53.1 [lb in])  
PE  
Terminal block screw: M8  
Tightening torque: 6.0 [N m]  
(53.1 [lb in])  
13 - 66  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.8 Characteristics  
13.8.1 Overload protection characteristics  
An electronic thermal relay is built in the converter unit and drive unit to protect the servo motor, converter unit  
and drive unit from overloads.  
Overload 1 alarm (50) occurs if overload operation performed is above the electronic thermal relay protection  
curve shown below. Overload 2 alarm (51) occurs if the maximum current flew continuously for several  
seconds due to machine collision, etc. Use the equipment on the left-hand side area of the continuous or  
broken line in the graph.  
It is recommended to use the machine which generates unbalanced torque, e.g. a vertical lift application, so  
that the unbalanced torque is not more than 70% of the rated torque.  
10000  
1000  
100  
10000  
1000  
100  
During rotation  
During rotation  
During servo lock  
10  
1
10  
1
(Note 2)  
(Note 2)  
0
100  
200  
250  
0
100  
200  
250  
Load ratio [%]  
Converter unit  
(Note 1) Load ratio [%]  
Drive unit  
Note 1. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor  
stop status (servo lock status) or in a 30r/min or less low-speed operation status, the drive unit may fail even when the electronic  
thermal relay protection is not activated.  
2. Load ratio 100% indicates the rated output of each converter unit and drive unit. Refer to section 13.1.4 for rated output.  
Fig. 13.1 Overload protection characteristics  
13 - 67  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.8.2 Power supply equipment capacity and generated loss  
POINT  
The calculation method of heat dissipation area for enclosed control panel is  
the same as that for servo amplifiers with 22kW or less. Refer to section 10.2  
(2).  
Table 13.1 indicates the generated loss and power supply capacity under rated load per combination of the  
converter unit and drive unit. When the servo motors is run at less than the maximum speed, the power supply  
equipment capacity is lower than the value in the table but the heat generated does not change.  
Since the servo motor requires 2 to 2.5 times greater instantaneous power for acceleration, use the power  
supply which ensures that the voltage lies within the permissible voltage fluctuation at the main circuit power  
supply terminals (L1, L2, L3) of the converter unit. The power supply equipment capacity changes with the power  
supply impedance.  
The actually generated heat falls within the ranges at rated torque and at zero torque according to the  
frequencies of use during operation. When designing an enclosed control box, use the values in the table,  
considering the worst operating conditions. The generated heat in Table 13.1 does not include heat produced  
during regeneration.  
Table 13.1 Power supply capacity and generated heat per servo amplifier at rated output  
Power supply  
capacity [kVA]  
(Note)  
Area required  
for heat  
Drive unit-generated heart[W]  
Power factor  
Converter unit  
MR-J3-CR55K  
Drive unit  
Servo motor  
Power factor  
dissipation  
[m2]  
improving DC  
reactor is not  
used  
improving DC At rated torque At zero torque  
reactor is used  
HA-LP30K1  
MR-J3-DU30KB HA-LP30K1M  
HA-LP30K2  
48  
40  
1550(1100+450)  
31.0  
HA-LP37K1  
MR-J3-DU37KB HA-LP37K1M  
HA-LP37K2  
59  
40  
48  
49  
35  
40  
1830(1280+550)  
1080(850+230)  
1290(1010+280)  
36.6  
21.6  
25.8  
HA-LP25K14  
MR-J3-  
HA-LP30K14  
HA-LP30K1M4  
HA-LP30K24  
HA-LP37K14  
HA-LP37K1M4  
HA-LP37K24  
HA-LP45K1M4  
HA-LP45K24  
HA-LP50K1M4  
HA-LP55K24  
DU30KB4  
60(30+30)  
MR-J3-  
MR-J3-CR55K4  
59  
71  
49  
59  
1542(1200+342)  
1810(1370+440)  
30.8  
36.2  
DU37KB4  
MR-J3-  
DU45KB4  
MR-J3-  
80  
87  
67  
72  
2120(1650+470)  
2150(1650+500)  
42.4  
43.0  
DU55KB4  
Note. The heat generated by the drive unit is indicated in the left term within the parentheses, and the heat generated by the converter  
unit in the right term.  
13 - 68  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.8.3 Dynamic brake characteristics  
(1) Dynamic brake operation  
(a) Calculation of coasting distance  
Fig. 13.2 shows the pattern in which the servo motor comes to a stop when the dynamic brake is  
operated. Use Equation 13.1 to calculate an approximate coasting distance to a stop. The dynamic  
brake time constant varies with the servo motor and machine operation speeds. (Refer to (b). Please  
contact us for the servo motor not indicated.)  
ON  
Forced stop (EM1)  
OFF  
Time constant  
V0  
Machine speed  
Time  
te  
Fig 13.2 Dynamic Brake Operation Diagram  
Vo  
60  
JL  
JM  
te  
1
Lmax  
·················································································································· (13.1)  
Lmax  
V0  
JM  
JL  
: Maximum coasting distance ·········································································································· [mm]  
: Machine rapid feed rate ······························································································ [mm/min][in/min]  
: Servo motor inertial moment ······················································································ [kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft ·············· [kg cm2][oz in2]  
: Brake time constant ·························································································································· [s]  
: Delay time of control section ············································································································ [s]  
For 7kW or less servo, there is internal relay delay time of about 30ms. For 11k to 22kW servo, there  
is delay time of about 100ms caused by a delay of the external relay and a delay of the magnetic  
contactor built in the external dynamic brake.  
te  
13 - 69  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) Dynamic brake time constant  
The following shows necessary dynamic brake time constant  
for the equations (13.1).  
40  
40  
HA-LP25K14  
HA-LP30K14  
35  
30  
35  
HA-LP30K1  
HA-LP37K1  
30  
HA-LP37K14  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
200 400 600 800 1000 1200  
Speed [r/min]  
0
200 400 600 800 1000 1200  
Speed [r/min]  
HA-LP1000r/min series  
60  
50  
40  
30  
20  
10  
0
60  
HA-LP37K1M  
HA-LP37K1M4  
HA-LP45K1M4  
HA-LP50K1M4  
50  
HA-LP30K1M  
40  
HA-LP30K1M4  
30  
20  
10  
0
0
0
500  
1000  
1500  
2000  
500  
1000  
1500  
2000  
Speed [r/min]  
Speed [r/min]  
HA-LP1500r/min series  
13 - 70  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
HA-LP45K24  
HA-LP30K2  
HA-LP37K2  
HA-LP55K24  
HA-LP37K24  
HA-LP30K24  
0
0
0
500  
1000  
1500  
0
500  
1000  
1500  
2000  
2000  
Speed [r/min]  
Speed [r/min]  
HA-LP2000r/min series  
(2) The dynamic brake at the load inertia moment  
Use the dynamic brake under the load inertia moment ratio indicated in the following table. If the load inertia  
moment is higher than this value, the external dynamic brake may burn. If there is a possibility that the load  
inertia moment may exceed the value, contact Mitsubishi.  
The values of the load inertia moment ratio in the table are the values at the maximum rotation speed of the  
servo motor.  
Load inertia moment ratio  
Drive unit  
[Multiplier ( 1)]  
MR-J3-DU30KB(4)  
MR-J3-DU37KB(4)  
10  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
13 - 71  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.8.4 Inrush currents at power-on of main circuit and control circuit  
The following table indicates the inrush currents (reference data) that will flow when the maximum permissible  
voltage (200V class: 253VAC, 400V class: 528VAC) is applied at the power supply capacity of 2500kVA and  
the wiring length of 1m.  
Inrush currents (A0-p)  
Converter unit  
MR-J3-CR55K  
Drive unit  
Main circuit power supply (L1, L2, L3)  
163A  
Control circuit power supply (L11, L21)  
18A  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
(Attenuated to approx. 20A in 180ms) (Attenuated to approx. 0A in 100ms)  
339A  
19A  
MR-J3-CR55K4  
(Attenuated to approx. 20A in 70ms)  
(Attenuated to approx. 0A in 60ms)  
Since large inrush currents flow in the power supplies, always use no-fuse breakers and magnetic contactors.  
(Refer to section 13.9.5.)  
When circuit protectors are used, it is recommended to use the inertia delay type that will not be tripped by an  
inrush current.  
13.9 Options  
Before connecting any option or peripheral equipment, turn off the power and wait  
for 20 minutes or more until the charge lamp turns off. Then, confirm that the  
voltage between L and L is safe with a voltage tester and others. Otherwise,  
WARNING  
an electric shock may occur. In addition, always confirm from the front of the  
converter unit whether the charge lamp is off or not.  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
CAUTION  
fault or fire.  
POINT  
Explanations on the following item are the same as those for servo amplifiers  
with 22kW or less. Refer to the section below for details.  
Cable/connector sets Refer to section 11.1.  
Junction terminal block Refer to section 11.7.  
MR Configurator Refer to section 11.8.  
Battery Refer to section 11.9.  
Relays Refer to section 11.15.  
Surge absorbers Refer to section 11.16.  
Radio noise filter (FR-BIF(-H)) Refer to section 11.17 (2) (e).  
13.9.1 Cables and connectors  
POINT  
Other connectors are the same as those for servo amplifiers with 22kW or  
less. Refer to section 11.1.  
13 - 72  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(1) Makeup of cables and like  
The following shows the cable makeup for connection with the servo motor and other model.  
Converter unit  
Drive unit  
7)  
8)  
CNP1  
CN40  
CN1  
CN40A  
1)  
CN2  
CN40B  
2)  
6)  
3)  
4) 5)  
Servo motor  
HA-LP  
Terminal  
box  
No.  
Product  
Protection  
Model  
Description  
Application  
1)  
MR-J3CDL M  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: PCR-S20FS+  
Case: PCR-LS20LA1  
coordination  
cable  
Refer to (2) of this  
section.  
(Honda Tsushin Kogyo)  
2)  
Connector set  
MR-J2CN1-A  
Refer to (2) of this  
section.  
Connector: 10120-3000PE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Connector: PCR-S20FS+  
Shell kit: PCR-LS20LA1  
(Honda Tsushin Kogyo)  
3)  
4)  
Termination  
connector  
MR-J3-TM  
Encoder cable MR-J3ENSCBL M-L  
Cable length:  
IP67  
Standard  
life  
2
5
10 20 30m  
Encoder cable MR-J3ENSCBL M-H For HA-LP series  
Cable length: Refer to section 11.1.2 (4) for details.  
10 20 30  
5)  
IP67  
Long flex  
life  
2
5
40 50m  
6)  
7)  
Encoder  
MR-J3SCNS  
IP67  
connector set  
For HA-LP series  
Refer to section 11.1.2 (4) for details.  
Converter unit side connector  
(Phoenix Contact)  
Magnetic  
contactor  
wiring  
Supplied  
with  
Socket: GFKC 2.5/2-STF-7.62  
converter  
unit  
connector  
Digital  
8)  
Converter unit side connector  
(DDK)  
I/O connector  
Connector: 17JE23090-02(D8A)K11-CG  
13 - 73  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) MR-J3CDL05M(0.5m) Protection coordination cable  
Connect protection coordination cables correctly if they are fabricated.  
CAUTION  
Otherwise, the system may perform unexpected operation.  
When fabricating a protection coordination cable, use the recommended wires given in section 13.9.4, and  
fabricate a protection coordination cable as shown in the wiring diagram in this section.  
MR-J3CDL05M  
10120-3000PE (Connector)  
10320-52F0-008 (Shell kit)  
PCR-S20FS (Connector)  
PCR-LS20LA1 (Case)  
9
1
ACD2  
11 ACD2*  
ACD3  
12 ACD3*  
PAL  
13 PAL*  
ACD1  
14 ACD1*  
LG  
15 LG  
19  
10  
20  
7
2
3
17  
8
4
18  
5
5
15  
6
16  
3
6
GOF  
Converter unit side  
Drive unit side  
16 GOF*  
7
PMC  
17 PMC*  
PSD  
18 PSD*  
LG  
13  
4
8
14  
1
9
11  
2
19 LG  
10 PRD  
20 PRD*  
12  
SD  
Plate  
Plate  
Table 13.2 Recommended wire  
Characteristics of one core  
(Note 2)  
Length  
[m(ft)]  
Core size Number  
Finishing  
OD  
[mm]  
Conductor Insulation coating  
Model  
Wire model  
Structure  
[Wires/mm]  
[mm2]  
of cores  
resistance  
[ /mm]  
OD d[mm]  
(Note 1)  
0.5 to 5  
(1.64 to 16.4)  
20  
(10 pairs)  
UL20276 AWG#28  
10pair (CREAM)  
MR-J3CDL05M  
0.08  
7/0.127  
222  
0.38  
6.1  
Note 1. d is as shown below.  
d
Conductor Insulation sheath  
2. Standard OD. Max. OD is about 10% greater.  
13 - 74  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.2 Regenerative option  
The specified combinations of regenerative options, converter unit and drive unit  
CAUTION  
may only be used. Otherwise, a fire may occur.  
POINT  
The calculation method of regenerative energy is the same as that for servo  
amplifiers with 22kW or less. Refer to section 11.2 (2).  
(1) Combination and regenerative power  
The regenerative power values in the table are the regenerative power of the resistor and are not the rated  
power.  
Regenerative Power [W]  
(Note 1) Three  
MR-RB137  
(Note 2) Three  
MR-RB138-4  
(5 ) in parallel  
Converter unit  
MR-J3-CR55K  
MR-J3-CR55K4  
Drive unit  
MR-RB139  
MR-RB136-4  
(5 )  
(1.3  
)
(1.3 ) in parallel  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
1300  
3900  
1300  
3900  
Note. 1. The composite resistor value of three options is 1.3 . The resistor value of one option is 4 .  
2. The composite resistor value of three options is 5 . The resistor value of one option is 15 .  
(2) Parameter setting  
POINT  
Always set parameter No.PA02 of the drive unit to “  
00”(Not used) since  
the regenerative option cannot be connected to the drive unit.  
When using the regenerative option, set the parameter of the converter unit. Match parameter No.PA01 to  
the regenerative option used.  
Parameter No.PA01  
0 0  
Regenerative option selection  
00: Not used  
01: MR-RB139  
02: MR-RB137 (3 pcs.)  
11: MR-RB136-4  
12: MR-RB138-4 (3 pcs.)  
(3) Regenerative loss of drive unit and servo motor  
Drive unit  
Inverse efficiency [%]  
C charge [J]  
450  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
90  
13 - 75  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(4) Connection of the regenerative option  
Always supply 1-phase 200V and 400V respectively to the cooling fan. The cooling fan specifications are as  
follows.  
Table 13.3 Cooling fan  
Item  
200V class  
400V class  
Model  
MR-RB137 MR-RB139  
MR-RB136-4 MR-RB138-4  
Voltage Frequency  
Power consumption [W]  
1-phase 198 to 242VAC, 50/60Hz 1-phase 380 to 480VAC, 50/60Hz  
20 (50Hz)/18 (60Hz) 20 (50Hz)/18 (60Hz)  
The regenerative option generates heat of 100 higher than the ambient temperature. Fully consider heat  
dissipation, installation position, used wires, etc. to place the option. For wiring, use flame-resistant wires or  
make the wires flame-resistant and keep them away from the regenerative option. The G3 and G4 terminals act  
as a thermal sensor. G3-G4 are opened when the regenerative option overheats abnormally.  
Always twist the wires for connection with the converter unit and connect the wires within the overall distance of  
5m.  
(a) MR-RB139 MR-RB136-4  
Converter unit  
Power factor improving  
DC reactor (Option)  
P1  
(Note 1)  
Servo motor  
P2  
C
C
5m or less  
OHS1  
RA  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
P
(Note 2)  
G3  
G4  
Regenerative  
option  
Cooling fan  
(Note 4)  
R
S
(Note 3)  
Power supply  
Note 1. When using the Power factor improving DC reactor, remove the short bar across P1-P2.  
2. G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5V/4.8VDC  
Maximum capacity: 2.4VA  
3. For specifications of cooling fan power supply, refer to Table 13.3.  
4. For MR-RB136-4, “R” is “R400” and “S” is “S400”.  
13 - 76  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) MR-RB137 MR-RB138-4  
POINT  
Three of MR-RB137 or MR-RB138-4 are required per converter unit. Please  
purchase three of MR-RB137 or MR-RB138-4.  
Converter unit  
Power factor improving  
DC reactor (Option)  
P1  
(Note 1)  
Servo motor  
P2  
C
C
5m or less  
OHS1  
RA  
OHS2  
Servo motor  
thermal relay  
24VDC  
power supply  
P
C
P
P
C
(Note 2)  
G3  
G4  
G3  
G4  
G3  
G4  
Regenerative  
Regenerative  
Regenerative  
option  
option  
option  
Cooling fan  
(Note 4)  
Cooling fan  
(Note 4)  
Cooling fan  
(Note 4)  
R
S
R
S
R
S
(Note 3)  
Power supply  
Note 1. When using the Power factor improving DC reactor, remove the short bar across P1-P2.  
2. G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5V/4.8VDC  
Maximum capacity: 2.4VA  
3. For specifications of cooling fan power supply, refer to Table 13.3.  
4. For MR-RB138-4, “R” is “R400” and “S” is “S400”.  
13 - 77  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(5) Outline dimension drawings  
[Unit:mm]  
2- 10 hole  
TE1  
10  
2.3  
230  
260  
197  
215  
15  
15  
15  
Mass  
[kg(lb)]  
Regenerative option  
MR-RB139 MR-RB136-4 10(22.05)  
MR-RB137 MR-RB138-4 11(24.25)  
Cooling fan (Note 1)  
Terminal block signal layout  
TE1  
R
S
G4 G3  
C
P
(Note 2) (Note 2)  
Terminal screw: M5  
Tightening torque: 2.0 [N m] (17.7 [lb in])  
Mounting screw  
Screw size: M8  
Tightening torque: 13.2 [N m] (117 [lb in])  
Note 1. One cooling fan for MR-RB136-4, MR-RB138-4.  
2. For MR-RB138-4, “R” is “R400” and “S” is “S400”.  
13 - 78  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.3 External dynamic brake  
POINT  
Configure up a sequence which switches off the contact of the brake unit after  
(or as soon as) it has turned off the servo on (signal) at a power failure or  
failure.  
For the braking time taken when the dynamic brake is operated, refer to  
section 13.8.3.  
The brake unit is rated for a short duration. Do not use it for high duty.  
The specifications of the input power supply for external dynamic brake are  
the same as those of the converter unit control circuit power supply.  
Operation timing is the same as that for servo amplifiers with 22kW or less.  
Refer to section 11.6.  
(1) Selection of dynamic brake  
The dynamic brake is designed to bring the servo motor to a sudden stop when a power failure occurs or  
the protective circuit is activated. When using the external dynamic brake, assign the dynamic brake  
interlock (DB) to any of CN3-9, CN3-13, and CN3-15 pins in parameter No.PD07 to PD09.  
Converter unit  
MR-J3-CR55K  
Drive unit  
Dynamic brake  
DBU-37K  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
MR-J3-CR55K4  
DBU-55K-4  
(2) Connection example  
Use the following wires to connect the dynamic brake.  
Dynamic  
brake  
Wire[mm2] (Note)  
a
b
U
V
W
DBU-37K  
2
14  
DBU-55K-4  
Note. Selection condition of wire size is as follows.  
Wire type: 600V Polyvinyl chloride insulated wire (IV wire)  
Construction condition: One wire is constructed in the air  
13 - 79  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Converter unit  
Drive unit  
L
L
L
L
Servo motor  
M
NFB  
MC  
(Note 4)  
Power  
supply  
U
V
L1  
L2  
U
V
CN1  
W
L3  
W
DICOM  
1
L11  
DOCOM  
DICOM  
5
6
2
7
9
CN3  
15 ALM  
L21  
CNP1  
1
RA1  
RA4  
(Note 3)  
RA2  
MC1  
MC2  
ALM  
DB  
DICOM  
2
EM1  
10  
5
(Note 3)  
DOCOM  
DICOM  
DOCOM  
3
L11  
L21  
20 EM1  
Plate SD  
Forced stop  
(Note 5)  
(Note 2)  
Drive  
unit  
Controller (Note 5) Operation  
forced stop Forced stop -ready  
(Note 1)  
EM1  
OFF/ON  
RA1 RA2 RA3  
MC  
SK  
14  
13 W  
V
U
Converter  
unit  
a
b
RA4  
Dynamic brake  
Note 1 Terminals 13, 14 are N/O contact outputs. When the dynamic brake has stuck, terminals 13, 14 are opened. Therefore, configure  
up the circuit to prevent servo-on in the external sequence.  
2. For converter unit and servo amplifier 400 V class, stepdown transformer is required for coil voltage of magnetic contactor more  
than 200 V class.  
3. Assign the dynamic brake interlock (DB) in parameter No.PD07 to PD09.  
4. Refer to section 13.1.3 for the power supply specifications.  
5. Make up a sequence that turns off the drive unit forced stop (EM1) and the converter unit forced stop (EM1) at the same time.  
13 - 80  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Outline dimension drawing  
[Unit:mm]  
2- 10 installation hole  
Terminal block  
TE1  
U
V
W
Terminal screw: M5  
Tightening torque: 2.0 [N m] (17.7 [lb in])  
TE2  
a
b
13 14  
Terminal screw: M5  
Tightening torque: 0.8 [N m] (7.1 [lb in])  
a b1314  
U
V
W
Mounting screw  
Screw size: M8  
TE2  
TE1  
Tightening torque: 13.2 [N m] (117 [lb in])  
2.3  
15  
10  
15  
15  
15  
15  
220  
235  
230  
260  
230  
Mass  
Dynamic brake  
[kg(lb)]  
8(17.64)  
11(24.25)  
DBU-37K  
DBU-55K-4  
13 - 81  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.4 Selection example of wires  
POINT  
Wires indicated in this section are separated wires. When using a cable for  
power line (U, V, and W) between the servo amplifier and servo motor, use a  
600V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT).  
For selection of cables, refer to appendix 6.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper  
wires rated at 60 (140 ) or more for wiring. To comply with other  
standards, use a wire that is complied with each standard  
Selection condition of wire size is as follows.  
Construction condition: One wire is constructed in the air  
Wire length: 30m or less  
The following diagram shows the wires used for wiring. Use the wires given in this paragraph or equivalent.  
Converter unit  
Drive unit  
Servo motor  
3) Motor power supply lead  
3)  
Power factor  
improving  
DC reactor  
U
U
P1  
P2  
V
V
Motor  
1)  
W
W
4) Regenerative option lead  
Regenerative option  
C
Encoder cable  
1) Main circuit power  
supply lead  
Power supply  
Encoder  
L1  
L2  
L3  
6) Thermal relay  
Thermal  
relay  
OHS1  
OHS2  
L11  
L11  
Power supply  
5) Cooling fan  
lead  
Cooling fan  
L21  
L21  
BU  
BV  
BW  
2) Control power supply lead  
13 - 82  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(1) When using the 600V Polyvinyl chloride insulated wire (IV wire)  
Selection example of wire size when using IV wires is indicated below.  
Table 13.4 Wire size selection example 1 (IV wire)  
Wires[mm2] (Note 1, 3)  
3) U 4)  
P1 P2 P2  
(Note 2)  
Converter unit  
MR-J3-CR55K  
1)  
2)  
V
W
5)  
6)  
Drive unit  
L1 L2 L3  
L11 L21  
C
BU BV BW OHS1 OHS2  
MR-J3-DU30KB  
MR-J3-DU37KB  
50(AWG1/0): d  
60(AWG2/0): d  
60(AWG2/0): d  
(Note 4)  
2(AWG14)  
MR-J3-DU30KB4 22(AWG4): b  
MR-J3-DU37KB4 30(AWG2): c  
MR-J3-DU45KB4 38(AWG2): c  
MR-J3-DU55KB4 50(AWG1/0): d  
30(AWG2): c  
38(AWG2): c  
50(AWG1/0): d  
60(AWG2/0): d  
2(AWG14)  
5.5(AWG10): a  
1.25(AWG16)  
1.25(AWG16)  
MR-J3-CR55K4  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (3) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
4. Wires are selected based on the highest rated current among combining servo motors.  
(2) When using the 600V Grade heat-resistant polyvinyl chloride insulated wire (HIV wire)  
Selection example of wire size when using HIV wires is indicated below.  
Table 13.5 Wire size selection example 2 (HIV wire)  
Wires[mm2] (Note 1, 3)  
3) U 4)  
P1 P2 P2  
(Note 2)  
Converter unit  
MR-J3-CR55K  
1)  
2)  
V
W
5)  
6)  
Drive unit  
L1 L2 L3  
L11 L21  
C
BU BV BW OHS1 OHS2  
MR-J3-DU30KB  
MR-J3-DU37KB  
38(AWG2): c  
60(AWG2/0): d  
60(AWG2/0): d  
22(AWG4): e  
22(AWG4): e  
38(AWG2): c  
38(AWG2): c  
2(AWG14)  
60(AWG2/0): d  
MR-J3-DU30KB4 22(AWG4): b  
MR-J3-DU37KB4 22(AWG4): b  
MR-J3-DU45KB4 38(AWG2): c  
MR-J3-DU55KB4 38(AWG2): c  
2(AWG14)  
5.5(AWG10): a  
1.25(AWG16)  
1.25(AWG16)  
MR-J3-CR55K4  
Note 1. Alphabets in the table indicate crimping tools. For crimping terminals and applicable tools, refer to (3) in this section.  
2. When connecting to the terminal block, be sure to use the screws which are provided with the terminal block.  
3. For the servo motor with a cooling fan.  
(3) Selection example of crimping terminals  
The table below shows a selection example of crimping terminals for the servo amplifier terminal block  
when using the wires mentioned in (1) and (2) in this section.  
Servo amplifier side crimping terminals  
Symbol  
(Note 2)  
Applicable tool  
Head  
Manufacturer  
Crimping terminal  
Body  
YNT-1210S  
YF-1 E-4  
YPT-60-21  
YF-1 E-4  
YPT-60-21  
YF-1 E-4  
YF-1 E-4  
Dice  
a
b
FVD5.5-10  
FVD22-10  
YNE-38  
DH-123 DH113  
(Note 1) R38-8  
TD-124 TD112 Japan Solderless  
Terminal  
c
R38-10  
R60-10  
FVD22-8  
YET-60-1  
(Note 1)  
d
TD-125 TD113  
YET-60-1  
YNE-38  
e
DH-123 DH-113  
Note 1. Coat the part of crimping with the insulation tube.  
2. Make sure to use recommended crimping terminals or equivalent since some crimping terminals  
cannot be installed depending on the size.  
13 - 83  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.5 No-fuse breakers, fuses, magnetic contactors.  
Always use one no-fuse breakers and one magnetic contactor with one drive unit.  
No-fuse breaker  
Fuse  
Magnetic  
contactor  
Power factor  
improving DC  
Power factor  
improving DC  
Converter unit  
Drive unit  
Current  
[A]  
Voltage  
AC [V]  
Class  
reactor is not used reactor is used  
400A frame 250A 225A frame 225A  
400A frame 300A 400A frame 300A  
225A frame 150A 225A frame 125A  
225A frame 175A 225A frame 150A  
225A frame 225A 225A frame 175A  
400A frame 250A 225A frame 225A  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
450  
500  
225  
250  
350  
400  
S-N150  
S-N180  
S-N95  
MR-J3-CR55K  
250  
600  
T
S-N125  
S-N150  
S-N180  
MR-J3-CR55K4  
13.9.6 Power factor improving DC reactor  
The input power factor is improved to about 95%.  
[Unit: mm]  
Power factor improving  
DC reactor  
Terminal  
Mass  
Converter unit  
MR-J3-CR55K  
Drive unit  
W
D
H
W1  
80  
X
screw  
[kg (lb)]  
MR-J3-DU30KB  
MR-J3-DU37KB  
MR-DCL30K  
MR-DCL37K  
9.5  
255  
205  
225  
240  
260  
215  
232  
175  
197  
212  
232  
M12  
(20.94)  
6.5  
(14.33)  
7
MR-J3-DU30KB4  
MR-J3-DU37KB4  
MR-J3-DU45KB4  
MR-J3-DU55KB4  
MR-DCL30K-4  
MR-DCL37K-4  
MR-DCL45K-4  
MR-DCL55K-4  
75  
135  
200  
215  
(15.43)  
7.5  
MR-J3-CR55K4  
M8  
80  
(16.54)  
9.5  
(20.94)  
Terminal block (M3.5 screw)  
For thermal sensor  
Terminal screw  
Terminal cover  
P1  
P2  
1.5  
Approx. W1  
W or less  
X
1.5  
Mounting hole  
for M8  
D or less  
13 - 84  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.7 Line noise filter (FR-BLF)  
POINT  
This section explains how to use the line noise filter unique to servo amplifiers  
with a large capacity. Other noise reduction products are the same as those  
for servo amplifiers with 22kW or less. Refer to section 11.17.  
This filter is effective in suppressing noises radiated from the power supply side and output side of the  
converter unit, drive unit and also in suppressing high-frequency leakage current (zero-phase current)  
especially within 0.5MHz to 5MHz band. The filters are used with the converter power supply wires (L1 L2 L3)  
and drive unit power wires (U V W).  
(1) Usage  
Pass the 3-phase wires through four line noise filters. When using the line noise filters with the power wires,  
passing the power wires together with the ground wire will reduce the filter effect. Run the ground wire  
separately from the power wires.  
Use four FR-BLFs.  
(2) Outline drawing  
[Unit: mm]  
7
130  
85  
160  
180  
13 - 85  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.8 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the drive unit, servo motor,  
etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga  
K
(Ig2 Igm)} [mA] ··········································· (13.2)  
K: Constant considering the harmonic contents  
Leakage current breaker  
Cable  
K
Noise filter  
NV  
Mitsubishi  
Type  
Cable  
Converter  
unit  
Drive  
unit  
products  
M
NV-SP  
Models provided with  
harmonic and surge  
reduction techniques  
NV-SW  
NV-CP  
NV-CW  
NV-HW  
BV-C1  
NFB  
1
3
Ig1 Ign  
Ig2  
Igm  
Iga  
General models  
NV-L  
Ig1: Leakage current on the electric channel from the leakage current breaker to the input terminals of the drive  
unit (Found from Fig. 13.3.)  
Ig2: Leakage current on the electric channel from the output terminals of the servo amplifier to the servo  
motor (Found from Fig. 13.3.)  
Ign: Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF or FR-BIF-H)  
Iga: Leakage current of the drive unit (Found from Table 13.7.)  
Igm: Leakage current of the servo motor (Found from Table 13.6.)  
Table 13.6 Servo motor’s leakage current  
example (lgm)  
Table 13.7 Converter unit  
drive unit's leakage  
current Example (Iga)  
Servo motor power  
[kW]  
Leakage current  
Converter unit  
Leakage current  
[mA]  
[mA]  
2.5  
Drive unit  
All series  
30 to 55  
5
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
2
5.5 14 38100  
3.5 8 22 60150  
30 80  
2
5.5  
3.5 8 22 60150  
30  
14  
38  
100  
80  
Cable size [mm2]  
Cable size [mm2]  
a) 200V class  
b) 400V class  
Fig.13.3 Leakage current example (lg1, lg2) for CV cable run in metal conduit  
13 - 86  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Selection example  
Indicated below is an example of selecting a leakage current breaker under the following conditions.  
30mm2 5mm  
22mm2 5mm  
NV  
Converter  
unit  
Drive  
unit  
M
Servo motor  
Ig1  
Ig2  
Igm  
Iga  
Use a leakage current breaker designed for suppressing harmonics/surges.  
Find the terms of Equation (13.2) from the diagram.  
5
1000  
Ig1 = 95  
= 0.475 [mA]  
5
1000  
Ig2 = 105  
= 0.525 [mA]  
Ign = 0(not used)  
Iga = 5 [mA]  
Igm = 2.5 [mA]  
Insert these values in Equation (13.2).  
Ig 10 {0.475+0+5+1 (0.525+2.5)}  
85 [mA]  
According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig)  
of 85[mA] or more. A leakage current breaker having Ig of 200[mA] is used with the NV-SP/SW/CP/CW/HW  
series.  
13 - 87  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.9 EMC filter (recommended)  
For compliance with the EMC directive of the EN Standard, it is recommended to use the following filter. Some  
EMC filters are large in leakage current.  
(1) Converter unit Drive unit  
Recommended filter  
(Soshin Electric)  
Converter unit  
Drive unit  
Mass [kg]  
Leakage current  
[mA]  
Model  
MR-J3-CR55K  
MR-J3-CR55K4  
MR-J3-DU30KB MR-J3-DU37KB  
MR-J3-DU30KB4 to MR-J3-DU55KB4  
HF3200A-UN  
TF3150C-TX  
9
18  
31  
5.5  
(2) Connection example  
EMC filter  
NFB  
Converter unit  
MC  
1
2
3
4
5
6
E
L1  
L2  
L3  
(Note)  
Power supply  
L11  
L21  
Drive unit  
L11  
L21  
Note. For power supply specifications, refer to section 13.1.3.  
13 - 88  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(3) Outline drawing  
HF3200A-UN  
[Unit: mm]  
3- 6.5 Length: 8  
3- 6.5 3-M10  
480  
500  
1
5
M8  
TF3150C-TX  
[Unit: mm]  
8-R 4.25 Length: 12  
(for M8)  
M8  
3-M8  
3-M8  
M4  
M4  
110  
2
2
210  
150  
1
150  
452  
500  
1
5
3
150  
1
M4  
(227)  
260  
3
13 - 89  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
13.9.10 FR-BU2-(H) Brake Unit  
POINT  
Use a 200V class brake unit and a resistor unit with a 200V class converter  
unit, and a 400V class brake unit and a resistor unit with a 400V class  
converter unit. Combination of different voltage class units cannot be used.  
Install a brake unit and a resistor unit on a flat surface vertically. When the  
unit is installed horizontally or diagonally, the heat dissipation effect  
diminishes.  
Temperature of the resistor unit case rises to higher than 100 . Keep cables  
and flammable materials away from the case.  
Ambient temperature condition of the brake unit is between 10 to 50  
Note that the condition is different from the ambient temperature condition of  
the converter unit (between 0 to 55 ).  
.
Configure the circuit to shut down the power-supply with the alarm output of  
the brake unit and the resistor unit under abnormal condition.  
Use the brake unit with a combination indicated in (1) of this section.  
For executing a continuous regenerative operation, use FR-RC-(H) power  
regeneration converter or FR-CV-(H) power regeneration common converter.  
Connect the brake unit to the bus of the converter unit (L and L of TE2-1) for use. As compared to the MR-  
RB regenerative brake option, the brake unit can return larger power. Use the brake unit when the regenerative  
brake option cannot provide sufficient regenerative brake capability.  
When using the brake unit, set the parameter No.PA02 of the converter unit to “  
01”.  
When using the brake unit, always refer to the FR-BU2-(H) Brake Unit Instruction Manual.  
(1) Selection  
Use a combination of converter unit, brake unit and resistor unit listed below.  
Number of  
connected  
units  
Permissible  
continuous  
power [kW]  
Total  
Applicable converter  
unit  
Brake unit  
Resistor unit  
resistance  
[
]
200V FR-BU2-55K  
class  
FR-BR-55K  
2 (parallel)  
2 (parallel)  
2 (parallel)  
2 (parallel)  
7.82  
11.0  
7.82  
15.0  
1
1
4
MR-J3-CR55K  
MR-J3-CR55K  
MR-J3-CR55K4  
MR-J3-CR55K4  
MT-BR5-55K  
FR-BR-H55K  
MT-BR5-H75K  
400V FR-BU2-H55K  
class  
FR-BU2-H75K  
3.25  
13 - 90  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(2) Brake unit parameter setting  
Normally, changing parameters of the FR-BU2-(H) is not necessary. Whether a parameter can be changed  
or not is listed below.  
Parameter  
Name  
Change  
possible/  
impossible  
Remarks  
No.  
0
1
Brake mode switchover  
Impossible  
Possible  
Do not change the parameter.  
Refer to FR-BU2-(H) Brake Unit  
Instruction Manual.  
Monitor display data selection  
2
3
Input terminal function selection 1  
Input terminal function selection 2  
Parameter write selection  
Impossible  
Do not change the parameter  
77  
78  
Cumulative energization time  
carrying-over times  
CLr Parameter clear  
ECL Alarm history clear  
C1  
For manufacturer setting  
(3) Connection example  
POINT  
Connecting PR terminal of the brake unit to L terminal of the converter unit  
results in a brake unit malfunction. Always connect the PR terminal of the  
brake unit to the PR terminal of the resistor unit.  
(a) Combination with FR-BR-(H) resistor unit  
POINT  
To use brake units with a parallel connection, use two sets of FR-BU2-(H)  
brake unit. Combination with other brake unit results in alarm occurrence or  
malfunction.  
Always connect the master and slave terminals (MSG and SD) of the two  
brake units.  
Do not connect as shown below.  
Converter unit  
Brake unit  
Converter unit  
Brake unit  
L
L
P/  
N/  
L
L
P/  
N/  
Brake unit  
Brake unit  
P/  
N/  
P/  
N/  
Connecting two cables to  
P and N terminals  
Passing wiring  
13 - 91  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Converter unit  
Drive unit  
L
L
L
L
NFB  
MC  
L1  
(Note 1)  
P1  
(Note 3)  
L2  
Power supply  
P2  
L3  
CN1  
DICOM  
1
L11  
L21  
24VDC  
DOCOM  
DICOM  
5
6
2
7
9
CN3  
15 ALM  
RA1  
CNP1  
1
DICOM  
DICOM  
DOCOM  
MC1  
MC2  
ALM  
RA2  
10  
5
24VDC  
2
EM1  
(Note 2)  
DOCOM  
3
L
(Note 9)  
20 EM1  
Plate SD  
L
Forced stop  
(Note 2)  
L11  
L21  
(Note 5)  
(Note 2)  
Drive  
unit  
RA1  
Controller  
Forced stop  
forced stop  
EM1  
RA3 RA4  
RA2  
MC  
SK  
Converter  
unit  
Operation  
ready  
OFF/ON  
Servo motor  
thermal relay  
(Note 8)  
FR-BR-(H)  
(Note 6)  
TH1  
TH2  
P
PR  
FR-BU2-(H)  
(Note 12)  
PR  
P/  
MSG  
(Note 11)  
(Note 4)  
SD  
A
N/  
B
C
BUE  
(Note 7)  
(Note 10)  
SD  
Terminal  
block  
FR-BR-(H)  
(Note 6)  
TH1  
TH2  
P
PR  
FR-BU2-(H)  
PR  
P/  
MSG  
(Note 11)  
(Note 4)  
SD  
A
N/  
B
C
BUE  
SD  
(Note 10)  
(Note 7)  
13 - 92  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Note 1. For power supply specifications, refer to section 13.1.3.  
2. Configure the circuit to turn OFF the forced stop (EM1) of the drive unit and the converter unit at the same time.  
3. Always connect P1 and P2 terminals (Factory-wired). When using the power factor improving DC reactor, refer to section 13.9.6.  
4. Connect P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in the converter unit and  
brake unit malfunction.  
5. For the converter unit and the drive unit of 400V class, a stepdown transformer is required.  
6. Contact rating: 1b contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
7. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
8. Connect the thermal relay censor of the servo motor.  
9. Do not connect more than one cable to each L and L terminals of TE2-1 of the converter unit.  
10. Always connect BUE and SD terminals (Factory-wired).  
11. Connect MSG and SD terminals of the brake unit to a correct destination. Wrong connection results in the converter unit and  
brake unit malfunction.  
12. For connecting L and L - terminals of TE2-1 of the converter unit to the terminal block, use the cable indicated in (3) (d) of  
this section.  
13 - 93  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(b) Combination with MT-BR5-(H) resistor unit  
1) When connecting a brake unit to a converter unit  
Converter unit  
Drive unit  
L
L
L
L
NFB  
MC  
L1  
(Note 1)  
Power supply  
P1  
(Note 3)  
L2  
P2  
L3  
CN1  
DICOM  
1
L11  
L21  
24VDC  
DOCOM  
DICOM  
5
6
2
7
9
CN3  
15 ALM  
RA1  
CNP1  
1
DICOM  
DICOM  
DOCOM  
MC1  
MC2  
ALM  
RA2  
10  
5
24VDC  
2
EM1  
(Note 2)  
DOCOM  
3
L
(Note 9)  
20 EM1  
Plate SD  
L
Forced stop  
(Note 2)  
L11  
L21  
(Note 5)  
(Note 2)  
Forced stop  
EM1  
Drive  
unit  
Controller  
forced stop  
RA1 RA2 RA3 RA4 RA5  
MC  
SK  
Servo motor  
thermal relay  
(Note 8)  
Operation  
ready  
OFF/ON  
Converter  
unit  
SK  
MT-BR5-(H)  
(Note 6)  
TH1  
TH2  
P
RA5  
PR  
FR-BU2-(H)  
PR  
P/  
MSG  
SD  
A
(Note 4)  
N/  
B
C
BUE  
SD  
(Note 7)  
(Note 10)  
Note 1. For power supply specifications, refer to section 13.1.3.  
2. Configure the circuit to turn OFF the forced stop (EM1) of the drive unit and the converter unit at the same time.  
3. Always connect P1 and P2 terminals (Factory-wired). When using the power factor improving DC reactor, refer to section 13.9.6.  
4. Connect P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in the converter unit and  
brake unit malfunction.  
5. For the converter unit and the drive unit of 400V class, a stepdown transformer is required.  
6. Contact rating: 1a contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is not conducting. Abnormal condition: TH1-TH2 is conducting.  
7. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
8. Connect the thermal relay censor of the servo motor.  
9. Do not connect more than one cable to each L and L terminals of TE2-1 of the converter unit.  
10. Always connect BUE and SD terminals (Factory-wired).  
13 - 94  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
2) When connecting two brake units to a converter unit  
POINT  
To use brake units with a parallel connection, use two sets of FR-BU2-(H)  
brake unit. Combination with other brake unit results in alarm occurrence or  
malfunction.  
Always connect the master and slave terminals (MSG and SD) of the two  
brake units.  
Do not connect the converter unit and brake units as below. Connect the  
cables with a terminal block to distribute as indicated in this section.  
Converter unit  
Brake unit  
Converter unit  
Brake unit  
L
L
P/  
N/  
L
L
P/  
N/  
Brake unit  
Brake unit  
P/  
N/  
P/  
N/  
Connecting two cables to  
P and N terminals  
Passing wiring  
13 - 95  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Converter unit  
Drive unit  
L
L
L
L
NFB  
MC  
(Note 1)  
Power  
supply  
L1  
P1  
(Note 3)  
L2  
P2  
L3  
CN1  
DICOM  
1
L11  
L21  
24VDC  
DOCOM  
DICOM  
5
6
2
7
9
CN3  
15 ALM  
RA1  
CNP1  
1
DICOM  
DICOM  
DOCOM  
MC1  
MC2  
ALM  
RA2  
10  
5
24VDC  
2
EM1  
(Note 2)  
DOCOM  
3
L
(Note 9)  
20 EM1  
Plate SD  
L
Forced stop  
(Note 2)  
L11  
L21  
(Note 5)  
(Note 2)  
Forced stop  
EM1  
Controller  
forced stop  
RA1 RA2 RA3 RA4 RA5 RA6  
Drive  
unit  
MC  
SK  
Operation  
ready  
OFF/ON  
Converter Servo motor  
unit  
thermal relay  
(Note 8)  
SK  
MT-BR5-(H)  
(Note 6)  
TH1  
TH2  
P
RA3  
PR  
FR-BU2-(H)  
(Note 12)  
PR  
P/  
MSG  
(Note 11)  
(Note 4)  
SD  
A
N/  
B
C
BUE  
(Note 7)  
SD(Note 10)  
Terminal  
block  
SK  
MT-BR5-(H)  
(Note 6)  
TH1  
TH2  
P
RA4  
PR  
FR-BU2-(H)  
MSG  
PR  
P/  
(Note 11)  
SD  
A
(Note 4)  
N/  
B
C
BUE  
SD  
(Note 7)  
(Note 10)  
13 - 96  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
Note 1. For power supply specifications, refer to section 13.1.3.  
2. Configure the circuit to turn OFF the forced stop (EM1) of the drive unit and the converter unit at the same time.  
3. Always connect P1 and P2 terminals (Factory-wired). When using the power factor improving DC reactor, refer to section 13.9.6.  
4. Connect P/ and N/ terminals of the brake unit to a correct destination. Wrong connection results in the converter unit and  
brake unit malfunction.  
5. For the converter unit and the drive unit of 400V class, a stepdown transformer is required.  
6. Contact rating: 1a contact, 110VAC_5A/220VAC_3A  
Normal condition: TH1-TH2 is conducting. Abnormal condition: TH1-TH2 is not conducting.  
7. Contact rating: 230VAC_0.3A/30VDC_0.3A  
Normal condition: B-C is conducting/A-C is not conducting. Abnormal condition: B-C is not conducting/A-C is conducting.  
8. Connect the thermal relay censor of the servo motor.  
9. Do not connect more than one cable to each L and L terminals of TE2-1 of the converter unit.  
10. Always connect BUE and SD terminals (Factory-wired).  
11. Connect MSG and SD terminals of the brake unit to a correct destination. Wrong connection results in the converter unit and  
brake unit malfunction.  
12. For connecting L and L - terminals of TE2-1 of the converter unit to the terminal block, use the cable indicated in (3) (d) of  
this section.  
(c) Precautions for wiring  
The cables between the converter unit and the brake unit, and between the resistor unit and the brake  
unit should be as short as possible. Always twist the cable longer than 5m (twist five times or more per  
one meter). Even when the cable is twisted, the cable should be less than 10m. Using cables longer  
than 5m without twisting or twisted cables longer than 10m, may result in the brake unit malfunction.  
Converter unit  
Converter unit  
Brake unit  
Resistor unit  
Brake unit  
Resistor unit  
Twist  
Twist  
P
N
P
PR  
P
PR  
P
N
P
N
P
PR  
P
PR  
P
N
5m or less  
5m or less  
10m or less  
10m or less  
(d) Cables  
1) Cables for the brake unit  
For the brake unit, HIV cable (600V grade heat-resistant PVC insulated wire) is recommended.  
a) Main circuit terminal  
Main  
circuit  
terminal  
screw  
size  
Crimping  
terminal  
Wire size  
Tightening  
torque  
N/ , P/ , PR,  
Brake unit  
N/ , P/  
PR,  
,
HIV wire  
[N m]  
AWG  
[mm2]  
N/  
P/  
PR  
200V  
class  
FR-BU2-55K  
M6  
14-6  
4.4  
14  
6
Terminal block  
400V FR-BU2-H55K  
class FR-BU2-H75K  
M5  
M6  
5.5-5  
14-6  
2.5  
4.4  
5.5  
14  
10  
6
13 - 97  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
b) Control circuit terminal  
POINT  
Under tightening can cause a cable disconnection or malfunction. Over  
tightening can cause a short circuit or malfunction due to damage to the  
screw or the brake unit.  
Sheath  
RES  
MSG MSG  
SD  
SD SD  
Core  
BUE  
PC  
SD  
Jumper  
A
B
C
6mm  
Terminal block  
Wire the stripped cable after twisting to prevent the cable  
from becoming loose. In addition, do not solder it.  
Screw size: M3  
Tightening torque: 0.5N m to 0.6N  
m
Wire size: 0.3mm2 to 0.75 mm2  
Screw driver: Small flat-blade screwdriver  
(Tip thickness: 0.4mm/Tip width 2.5mm)  
2) Cables for connecting the servo amplifier and a distribution terminal block when connecting two sets  
of the brake unit  
Wire size  
Brake unit  
HIV wire  
[mm2]  
AWG  
2
200V  
class  
FR-BU2-55K  
38  
400V FR-BU2-H55K  
class FR-BU2-H75K  
14  
38  
6
2
13 - 98  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(e) Crimping terminals for L and L terminals of TE2-1 of servo amplifier  
1) Recommended crimping terminals  
POINT  
Always use recommended crimping terminals or equivalent since some  
crimping terminals cannot be installed depending on the size.  
Number of  
(Note 1)  
Applicable  
tool  
Converter unit  
Brake unit  
connected  
units  
Crimping terminal (Manufacturer)  
200V MR-J3-CR55K  
FR-BU2-55K  
2
38-S6(Japan Solderless Terminal)  
(Note 2)  
a
class  
R38-6S (NICHIFU) (Note 2)  
400V MR-J3-CR55K4  
class  
FR-BU2-H55K  
FR-BU2-H75K  
2
2
FVD14-6(Japan Solderless Terminal)  
b
a
38-S6(Japan Solderless Terminal)  
(Note 2)  
R38-6S (NICHIFU) (Note 2)  
Note 1. Symbols in the applicable tool field indicate the following applicable tools.  
Servo amplifier side crimping terminals  
Symbol  
Crimping  
terminal  
Crimping terminal  
Head  
Manufacturer  
Body  
Dice  
YPT-60-21  
Japan Solderless  
Terminal  
38-S6  
TD-124 TD-112  
YF-1 E-4  
NOP60  
YET-60-1  
YNE-38  
a
b
R38-6S  
NICHIFU  
NOM60  
Japan Solderless  
Terminal  
FDV14-6  
YF-1 E-4  
DH-112 DH-122  
2. Coat the crimping part with an insulation tube.  
13 - 99  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(4) Outline dimension drawings  
(a) FR-BU2- (H) brake unit  
[Unit: mm]  
FR-BU2-55K  
FR-BU2-H55K, H75K  
2- 5hole  
(Screw size: M4)  
Rating  
plate  
5
5
18.5  
6
158  
170  
6
52  
72  
142.5  
(b) FR-BR- (H) resistor unit  
[Unit: mm]  
2-  
C
(Note)  
Control circuit  
terminal  
(Note)  
Main circuit  
terminal  
C
C
Approx. 35  
Approx. 35  
W1  
1
A hanging bolt is placed on two locations  
(Indicated below).  
Hanging bolt  
204  
W
5
Note. Ventilation ports are provided on both sides and the top. The bottom is open.  
Approximate  
mass [kg]  
Resistor unit  
FR-BR-55K  
FR-BR-H55K  
W
W1  
H
H1  
H2  
H3  
D
D1  
C
200V  
class  
400V  
class  
480 410 700 620 40 670 450 3.2  
480 410 700 620 20 670 450 3.2  
12  
12  
70  
70  
13 - 100  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
(c) MT-BR5- (H) resistor unit  
[Unit: mm]  
Resistance Approximate  
Resistor unit  
200V  
value  
mass [kg]  
MT-BR5-55K  
2.0  
50  
NP  
class  
400V  
class  
MT-BR5-H75K  
6.5  
70  
M4  
M6  
193  
189  
37  
60 10 21  
480  
510  
75  
300  
450  
75  
4
15 mounting hole  
7.5  
7.5  
13 - 101  
13. SERVO AMPLIFIERS WITH A LARGE CAPACITY (30k TO 55kW)  
MEMO  
13 - 102  
APPENDIX  
App. 1 Parameter list  
POINT  
Parameter whose symbol is preceded by * is made valid with the following  
conditions.  
* : Set the parameter value, switch power off once after setting, and then  
switch it on again, or perform the controller reset.  
**: Set the parameter value, switch power off once, and then switch it on  
again.  
App. 1.1 Servo amplifier (drive unit)  
Basic setting parameters (PA  
)
Gain/filter parameters (PB  
Name  
)
No. Symbol  
PA01  
Name  
No. Symbol  
PB01 FILT  
For manufacturer setting  
Adaptive tuning mode (Adaptive filter  
)
PA02 **REG Regenerative option  
PA03 *ABS Absolute position detection system  
PA04 *AOP1 Function selection A-1  
Vibration suppression control filter tuning mode  
(advanced vibration suppression control)  
PB02 VRFT  
PB03  
For manufacturer setting  
PA05  
to  
For manufacturer setting  
PB04 FFC  
PB05  
Feed forward gain  
For manufacturer setting  
PA07  
For manufacturer setting Ratio of load inertia  
moment to servo motor inertia moment  
PB06 GD2  
PA08  
ATU  
Auto tuning mode  
PA09 RSP  
Auto tuning response  
In-position range  
PB07 PG1  
PB08 PG2  
PB09 VG2  
Model loop gain  
PA10  
PA11  
to  
INP  
Position loop gain  
For manufacturer setting  
Speed loop gain  
PB10  
VIC  
Speed integral compensation  
Speed differential compensation  
For manufacturer setting  
Machine resonance suppression filter 1  
PA13  
PB11 VDC  
PB12  
PA14 *POL  
PA15 *ENR  
PA16  
Rotation direction selection  
Encoder output pulses  
PB13 NH1  
For manufacturer setting  
PB14 NHQ1 Notch form selection 1  
to  
PB15 NH2  
Machine resonance suppression filter 2  
PA18  
PB16 NHQ2 Notch form selection 2  
PA19 *BLK  
Parameter write inhibit  
PB17  
PB18  
Automatic setting parameter  
LPF  
Low-pass filter  
Vibration suppression control vibration frequency  
setting  
PB19 VRF1  
PB20 VRF2  
Vibration suppression control resonance frequency  
setting  
PB21  
For manufacturer setting  
PB22  
PB23 VFBF  
PB24 *MVS  
PB25  
Low-pass filter selection  
Slight vibration suppression control selection  
For manufacturer setting  
PB26 *CDP  
PB27 CDL  
PB28 CDT  
Gain changing selection  
Gain changing condition  
Gain changing time constant  
Gain changing ratio of load inertia moment to servo  
motor inertia moment  
PB29 GD2B  
PB30 PG2B Gain changing position loop gain  
PB31 VG2B Gain changing speed loop gain  
PB32 VICB  
Gain changing speed integral compensation  
Gain changing vibration suppression control  
vibration frequency setting  
PB33 VRF1B  
Gain changing vibration suppression control  
resonance frequency setting  
PB34 VRF2B  
PB35  
to  
For manufacturer setting  
PB45  
App. - 1  
APPENDIX  
Extension setting parameters (PC  
)
I/O setting parameters (PD  
Name  
)
No. Symbol  
PC01 *ERZ  
PC02 MBR  
Name  
No. Symbol  
Error excessive alarm level  
PD01  
to  
For manufacturer setting  
Electromagnetic brake sequence output  
PD06  
PC03 *ENRS Encoder output pulses selection  
PC04 **COP1 Function selection C-1  
PC05 **COP2 Function selection C-2  
PC06 *COP3 Function selection C-3  
PD07 *DO1  
PD08 *DO2  
PD09 *DO3  
PD10  
Output signal device selection 1 (CN3-13)  
Output signal device selection 2 (CN3-9)  
Output signal device selection 3 (CN3-15)  
For manufacturer setting  
PC07 ZSP  
PC08  
Zero speed  
to  
For manufacturer setting  
PD13  
PC09 MOD1 Analog monitor 1 output  
PC10 MOD2 Analog monitor 2 output  
PD14 *DOP3 Function selection D-3  
PC11 MO1  
PC12 MO2  
Analog monitor 1 offset  
Analog monitor 2 offset  
PD15  
to  
For manufacturer setting  
PD32  
PC13 MOSDL Analog monitor feedback position output  
standard data Low  
PC14 MOSDH Analog monitor feedback position output  
standard data High  
PC15  
to  
For manufacturer setting  
PC16  
PC17 **COP4 Function selection C-4  
PC18  
to  
For manufacturer setting  
PC20  
PC21 *BPS  
PC22  
Alarm history clear  
For manufacturer setting  
to  
PC32  
App. 1.2 Converter unit  
No. Symbol  
Name  
Regenerative selection  
PA02 *MCC Magnetic contactor drive output selection  
PA01 *REG  
PA03  
to  
For manufacturer setting  
PA07  
PA08 *DMD Auto tuning mode  
PA09 *BPS  
PA10  
Alarm history clear  
For manufacturer setting  
PA11  
PA12 *DIF  
PA13  
Input filter setting  
For manufacture setting  
to  
PA19  
App. - 2  
APPENDIX  
App. 2 Signal layout recording paper  
1
11  
LG  
13  
2
DI1  
4
12  
DI2  
14  
LG  
3
DOCOM  
MO1  
6
MO2  
16  
5
15  
DICOM  
LA  
8
LAR  
18  
7
LB  
9
17  
LBR  
19  
LZ  
LZR  
20  
10  
DI3  
DICOM  
EM1  
App. 3 Twin type connector : Outline drawing for 721-2105/026-000(WAGO)  
[Unit: mm]  
Latch Coding finger  
Size [mm]  
Model  
A
5
B
C
5
D
721-2105/026-000  
721-2205/026-000  
20  
30  
5.25  
7.75  
7.5  
7.5  
Detecting hole  
4
A( B)  
26.45  
15.1  
25  
2.75  
A
2.9  
D
C
4.75  
2.7  
Driver slot  
Wire inserting hole  
App. - 3  
APPENDIX  
App. 4 Change of connector sets to the RoHS compatible products  
The following connector sets have been changed to RoHS compliant since September 2006.  
RoHS compliant and non-RoHS compliant connector sets may be mixed based on availability.  
Only the components of the connector set that have changed are listed below.  
Model  
MR-J3SCNS Amplifier connector (3M or equivalent of 3M)  
MR-ECNM 36210-0100JL (Receptacle) (Note)  
MR-PWCNS4 Power supply connector (DDK)  
Current Product  
RoHS Compatible Product  
Amplifier connector (3M or equivalent of 3M)  
36210-0100PL (Receptacle)  
Power supply connector (DDK)  
CE05-6A18-10SD-B-BSS (Connector and Back shell) CE05-6A18-10SD-D-BSS (Connector and Back shell)  
CE3057-10A-1 (D265) (Cable clump)  
CE3057-10A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS5 Power supply connector (DDK)  
CE05-6A22-22SD-B-BSS (Connector and Back shell) CE05-6A22-22SD-D-BSS (Connector and Back shell)  
CE3057-12A-1 (D265) (Cable clump)  
CE3057-12A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS3 Power supply connector (DDK)  
CE05-6A32-17SD-B-BSS (Connector and Back shell) CE05-6A32-17SD-D-BSS (Connector and Back shell)  
CE3057-20A-1 (D265) (Cable clump)  
CE3057-20A-1-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS1 Power supply connector (DDK)  
CE05-6A22-23SD-B-BSS (Connector and Back shell) CE05-6A22-23SD-D-BSS (Connector and Back shell)  
CE3057-12A-2 (D265) (Cable clump)  
CE3057-12A-2-D (Cable clump)  
Power supply connector (DDK)  
MR-PWCNS2 Power supply connector (DDK)  
CE05-6A24-10SD-B-BSS (Connector and Back shell) CE05-6A24-10SD-D-BSS (Connector and Back shell)  
CE3057-16A-2 (D265) (Cable clump)  
Electromagnetic brake connector  
MS3106A10SL-4S(D190) (Plug, DDK)  
Amplifier connector (3M or equivalent of 3M)  
10120-3000VE (connector)  
CE3057-16A-2-D (Cable clump)  
MR-BKCN  
MR-CCN1  
Electromagnetic brake connector  
D/MS3106A10SL-4S(D190) (Plug, DDK)  
Amplifier connector (3M or equivalent of 3M)  
10120-3000PE (connector)  
Note. RoHS compatible 36210-0100FD may be packed with current connector sets.  
App. - 4  
APPENDIX  
App. 5 MR-J3-200B-RT servo amplifier  
Connectors (CNP1, CNP2, and CNP3) and appearance of MR-J3-200B servo amplifier have been changed  
from January 2008 production. Model name of the existing servo amplifier is changed to MR-J3-200B-RT. The  
difference between new MR-J3-200B servo amplifier and existing MR-J3-200B-RT servo amplifier is described  
in this appendix. Sections within parentheses in the following sections indicate corresponding sections of the  
instruction manual.  
App. 5.1 Parts identification (1.7.1 Parts identification)  
Detailed  
Name/Application  
explanation  
Display  
The 3-digit, seven-segment LED shows the servo  
status and alarm number.  
Chapter 4  
Rotary axis setting switch (SW1)  
SW1  
8
Used to set the axis No. of servo amplifier.  
Section 3.13  
8
0
0
ON 4F  
SW1  
TEST  
SW2  
Test operation select switch (SW2-1)  
Used to perform the test operation  
mode by using MR Configurator.  
1
2
SW2  
Section 3.13  
Spare (Be sure to set to the "Down"  
position).  
1
2
Main circuit power supply connector (CNP1)  
Connect the input power supply.  
Section 3.1  
Section 3.3  
USB communication connector (CN5)  
Connect the personal computer.  
Section 11.8  
I/O signal connector (CN3)  
Used to connect digital I/O signals.  
More over an analog monitor is output.  
Section 3.2  
Section 3.4  
Servo motor power connector (CNP3)  
Connect the servo motor.  
Section 3.1  
Section 3.3  
SSCNET cable connector (CN1A)  
Used to connect the servo system controller or the front  
axis servo amplifier.  
Section 3.2  
Section 3.4  
SSCNET cable connector (CN1B)  
Used to connect the rear axis servo amplifier. For the final  
axis, puts a cap.  
Section 3.2  
Section 3.4  
Encoder connector (CN2)  
Used to connect the servo motor encoder.  
Section 3.4  
Section 11.1  
Battery connector (CN4)  
Used to connect the battery for absolute position data  
backup.  
Section 11.9  
Chapter 12  
Control circuit connector (CNP2)  
Connect the control circuit power supply/regenerative  
option.  
Section 3.1  
Section 3.3  
Battery holder  
Contains the battery for absolute position data backup.  
Section 12.3  
Charge lamp  
Lit to indicate that the main circuit is charged. While  
this lamp is lit, do not reconnect the cables.  
Protective earth (PE) terminal (  
Ground terminal.  
)
Section 3.1  
Section 3.3  
Cooling fan  
Rating plate  
Fixed part  
(3 places)  
Section 1.5  
App. - 5  
APPENDIX  
App. 5.2 Configuration including auxiliary equipment (1.8 Configuration including auxiliary equipment)  
R S T  
(Note 3)  
Power supply  
No-fuse breaker  
(NFB) or fuse  
Magnetic  
contactor  
(MC)  
Personal  
computer  
MR Configurator  
CN5  
CN3  
(Note 2)  
Line noise filter  
(FR-BLF)  
Servo amplifier  
Junction  
terminal  
block  
L1  
L2  
L3  
P1  
P2  
Servo system  
controller or Front axis  
servo amplifier CN1B  
CN1A  
CN1B  
(Note 2)  
Power factor  
improving DC  
reactor  
Regenerative  
option  
(FR-BEL)  
L11  
P
C
Rear servo amplifier  
CN1A or Cap  
L21  
CN2  
CN4  
(Note 1)  
Battery  
MR-J3BAT  
W
U V  
Servo motor  
Note 1. The battery (option) is used for the absolute position detection system in the position control mode.  
2. The AC reactor can also be used. In this case, the DC reactor cannot be used. When not using DC reactor, short P1-P2.  
3. Refer to section 1.3 for the power supply specification.  
App. - 6  
APPENDIX  
App. 5.3 CNP1, CNP2, CNP3 wiring method (3.3.3 CNP1, CNP2, CNP3 wiring method)  
(a) Servo amplifier power supply connectors  
Servo amplifier power supply connectors  
Connector for CNP1  
PC4/6-STF-7.62-CRWH  
(Phoenix Contact)  
Servo amplifier  
<Applicable cable example>  
Cable finish OD: 5mm or less  
CNP1  
Connector for CNP3  
PC4/3-STF-7.62-CRWH  
(Phoenix Contact)  
CNP3  
CNP2  
Connector for CNP2(Note)  
54928-0520 (Molex)  
<Applicable cable example>  
Cable finish OD: 3.8mm or less  
Note. As twin type connector for CNP2 (L11, L21) is the same as MR-J3-100B or smaller. Refer to section (1) (c).  
(b) Termination of the cables  
1) CNP1 CNP3  
Solid wire: After the sheath has been stripped, the cable can be used as it is.  
Sheath  
Core  
7mm  
Twisted wire: Use the cable after stripping the sheath and twisting the core. At this time, take care to  
avoid a short caused by the loose wires of the core and the adjacent pole. Do not  
solder the core as it may cause a contact fault. Alternatively, a bar terminal may be  
used to put the wires together.  
Cable size  
Bar terminal type  
For 1 cable For 2 cables  
AI1.5-8BK  
Crimping tool  
Manufacturer  
2
[mm ]  
AWG  
16  
1.25/1.5  
2.0/2.5  
3.5  
AI-TWIN2 1.5-8BK  
AI-TWIN2 2.5-10BU  
14  
AI2.5-8BU  
AI4-10Y  
CRIMPFOX-ZA3  
Phoenix Contact  
12  
2) CNP2  
CNP2 is the same as MR-J3-100B or smaller capacities. Refer to section 3.3.3 (1) (b).  
App. - 7  
APPENDIX  
App. 5.4 OUTLINE DRAWINGS (Chapter 9 OUTLINE DRAWINGS)  
[Unit: mm]  
6 mounting hole  
90  
85  
6
Approx.80  
45  
195  
21.4  
6
Cooling fan  
wind direction  
Approx.  
25.5  
6
Approx.68  
78  
With MR-J3BAT  
6
Mass: 2.3 [kg] (5.07 [lb])  
Terminal signal layout  
PE terminal  
Mounting screw  
Screw size: M5  
Tightening torque: 3.24 [N m] (28.7 [lb in])  
L1  
L2  
L3  
N
Approx. 90  
CNP1  
P1  
P2  
Screw size: M4  
Tightening torque:  
1.2 [N m] (10.6 [lb in])  
U
V
CNP3  
CNP2  
W
3-M5 screw  
P
C
D
L11  
L21  
Approx. 6  
Mounting hole process drawing  
Approx. 6  
78 0.3  
App. - 8  
APPENDIX  
App. 6 Selection example of servo motor power cable  
POINT  
Selection condition of wire size is as follows.  
Wire length: 30m or less  
Depending on the cable selected, there may be cases that the cable does not  
fit into the Mitsubishi optional or recommended cable clamp. Select a cable  
clamp according to the cable diameter.  
Selection example when using the 600V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT)  
for servo motor power (U, V, and W) is indicated below.  
Servo motor  
HF-SP52  
Wire size [mm2]  
Servo motor  
HC-LP152  
Wire size [mm2]  
Servo motor  
HA-LP30K2  
Wire size [mm2]  
1.25  
1.25  
2
2
3.5  
5.5  
1.25  
2
60  
60  
5.5  
5.5  
8
HF-SP102  
HF-SP152  
HF-SP202  
HF-SP352  
HF-SP502  
HF-SP702  
HF-SP51  
HC-LP202  
HA-LP37K2  
HC-LP302  
HA-LP6014  
2
HC-UP72  
HA-LP8014  
3.5  
5.5  
8
HC-UP152  
HC-UP202  
HC-UP352  
HC-UP502  
HA-LP601  
HA-LP12K14  
HA-LP15K14  
HA-LP20K14  
HA-LP25K14  
HA-LP30K14  
HA-LP37K14  
HA-LP701M4  
HA-LP11K1M4  
HA-LP15K1M4  
HA-LP22K1M4  
HA-LP30K1M4  
HA-LP37K1M4  
HA-LP45K1M4  
HA-LP50K1M4  
HA-LP11K24  
HA-LP15K24  
HA-LP22K24  
HA-LP30K24  
HA-LP37K24  
HA-LP45K24  
HA-LP55K24  
3.5  
5.5  
5.5  
8
14  
14  
22  
22  
22  
5.5  
8
1.25  
1.25  
2
HF-SP81  
HF-SP121  
HF-SP201  
HF-SP301  
HF-SP421  
HF-SP524  
HF-SP1024  
HF-SP1524  
HF-SP2024  
HF-SP3524  
HF-SP5024  
HF-SP7024  
HC-RP103  
HC-RP153  
HC-RP203 (Note)  
HC-RP353 (Note)  
HC-RP503 (Note)  
HC-LP52  
HA-LP801  
14  
14  
22  
38  
38  
38  
60  
8
2
HA-LP12K1  
HA-LP15K1  
HA-LP20K1  
HA-LP25K1  
HA-LP30K1  
HA-LP37K1  
HA-LP701M  
HA-LP11K1M  
HA-LP15K1M  
HA-LP22K1M  
HA-LP30K1M  
HA-LP37K1M  
HA-LP502  
3.5  
5.5  
1.25  
1.25  
2
14  
14  
22  
22  
38  
38  
8
2
2
14  
22  
38  
60  
60  
5.5  
8
3.5  
5.5  
2
14  
14  
22  
22  
38  
38  
2
3.5  
5.5  
5.5  
1.25  
1.25  
HA-LP702  
HA-LP11K2  
HA-LP15K2  
HA-LP22K2  
14  
22  
22  
HC-LP102  
Note. Use a composite cable and others when combining with wiring of the electromagnetic brake power in the same cable.  
App. - 9  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Revision  
Print Data  
May, 2005  
Jan., 2006  
*Manual Number  
SH(NA)030051-A First edition  
SH(NA)030051-B Addition of servo amplifier MR-J3-11KB(4), 15KB(4) and 22KB(4)  
Addition of servo motor HC-RP, HC-UP, HC-LP and HA-LP4 series  
Section 1.5 (2)  
Section 1.7.2  
: Addition of regeneration brake resistor-less specification  
: Addition of removal and reinstallation of front cover for  
11KB(4) or more  
Section 2.1  
: (1) Addition of 7kW or less  
(2) Addition of 11kW or more  
Section 3.7.1  
: Error correction of differential line driver output as 35mA  
: Addition of "For CN2 connector"  
Section 3.8 (2)  
Section 3.11.2 (4) : Addition of time from invalid to valid of electromagnetic brake  
interlock  
Section 5.1.3  
: Addition of sentence when using with 11KB or more for  
parameter No.PA02 00 Addition of FA  
: PC13 PC14 description change  
Section 5.3.1  
Section 5.3.2  
Section 5.3.3 (2)  
Section 5.3.3 (3)  
Section 5.4.2  
Section 8.2  
: PC13 PC14 description change  
: Addition of Note3  
: Partial figure change of analog monitor block  
: Partial sentence addition of parameter No.PD07  
: Addition of "IGBT" to Cause 2. of alarm No. 32 indicated as  
Display in the remedies list for alarms  
: Addition of POINT  
Section 8.3  
Section 11.1.1  
Section 11.2 (3)  
: Partial figure addition  
: Addition of sentence when using with 11KB or more for  
parameter No.PA02 00 Addition of FA  
Section 11.2 (5) (d) : Addition  
Section 11.5  
Section 11.6  
Section 11.7  
Section 11.10  
Section 11.11  
: Addition  
: Addition  
: Error correction  
: Addition  
: Addition of cooling fan thermal  
Addition of Table 11.2, Note. 2  
: Addition of EMC filter HF3100A-UN  
Section 11.19  
Jul., 2007  
SH(NA)030051-C Addition of servo amplifier MR-J3-60B4 to 350B4  
Addition of servo amplifier MR-J3-500B4 and 700B4  
Addition of servo motor HF-SP524 / 1024 / 1524 / 2024 / 3524  
Addition of drive units MR-J3-DU30KB(4), 37KB(4), 45KB4 and 55KB4  
Addition of converter unit MR-J3-CR55K(4)  
Deletion of setup software notation  
Compliance with RoHS  
Safety instructions 1.: To prevent electric shock: Addition of Note for 30kW or more  
Safety instructions 4.: Additional instructions (2): Correction of the connection  
diagram  
Conformance with UL/C-UL standard (4): Addition of the capacitor discharge time  
for 30kW or more  
Conformance with UL/C-UL standard (5): Addition of the fuse for 30kW or more  
About the manuals  
Section 1.2  
: Addition of description about MR-J3-DU B(4)  
: Power supply description change  
Print Data  
Jul., 2007  
*Manual Number  
Revision  
SH(NA)030051-C Section 1.2(1)  
Section 1.3  
: Unification of Note 3 to Note 2, addition of new Note 3  
: Addition of MR-J3-500B4 and 700B4  
: Addition of MR-J3-60B4 to 350B4  
: Addition of MR-J3-60B4 to 350B4  
: Addition of MR-J3-500B4 and 700B4  
Addition of combination: MR-J3-60B4 to 350B4 and  
servo motor  
Section 1.3(2)  
Section 1.5(2)  
Section 1.6  
Section 1.7  
: Addition of MR-J3-60B4 to 350B4 as (2) and (4)  
: Change of description for "servo motor power supply  
connector" to "servo motor power connector"  
: Change CAUTION to WARNING  
: Power supply description change  
: Unification of Note 4 to Note 3, addition of explanation  
to Note 2  
Section 1.7.1(1) (3)  
Section 1.7.2  
Section 1.8  
Section 1.8(1) (a)  
Section 1.8(2) to (7)  
Section 2.1(b)  
: Addition of explanation to Note 2  
: Change of description to "Mounting closely is available  
for a combination of servo amplifiers of 200V, 3.5kW or  
less"  
Chapter 3  
: Addition of CAUTION  
Section 3.1  
: Addition of MR-J3-500B4 and 700B4  
: Addition of MR-J3-60B4 to 350B4  
: Addition of Note 7  
Section 3.1(4)  
Section 3.1(6)  
Section 3.1(7)  
Section 3.1(8)  
Section 3.3.1  
: Change of description for Note 7  
: Change of description for Note 7, addition of Note 9  
: Addition of sentence to UVW Description  
Addition of MR-J3-60B4 to 350B4 notation to L1, L2, L3,  
L11 and L21  
Section 3.3.3(1) (b)  
Section 3.3.3(2) (b)  
Section 3.3.3(3)  
: Table content change  
: Table content change  
: Addition of POINT  
Addition of cable handling procedures for MR-J3-200B4  
and 350B4  
Section 3.3.3(4)  
Section 3.3.3(5)  
Section 3.4  
: Addition and change of description  
: Change of description  
: Change of CN2 connection diagram to RoHS compliant  
parts  
Section 3.5(2)  
: Addition of sentence to the dynamic brake interlock  
description  
Change of the zero speed diagram  
: Change of description for Function/Application of Digital  
I/F common from "DOG EMG" to "EM1"  
: Addition of supplementary explanation to the output  
pulse  
Section 3.5(2) (d)  
Section 3.7.2(3) (b)  
Section 3.10  
: Addition of CAUTION  
Section 3.10.1  
: Change of description for "motor power supply" to  
"servo motor power"  
Section 3.10.2(2)  
: Addition of POINT for contactor connection, Change of  
Note1, Change of “servo alarm” switch to “trouble  
(ALM)” in (a) Wiring diagrams  
Print Data  
Jul., 2007  
*Manual Number  
Revision  
SH(NA)030051-C Section 3.10.2(3)  
: Change of Note1 and 3 in (a) 1) and 2), Addition and  
change of (b) Terminal box inside diagrams, Addition  
and change of corresponding motor models in the  
cooling fan power supply list  
Section 3.10.2(3) (b)  
Section 3.11.3(1)  
Section 3.12  
: Change of servo motor diagram  
: Change of Note1  
: Deletion of power specification notation, addition of  
Note  
Section 4.3(2)  
: Correction of indication “Ab.” To “Ab .”, Change of  
description for “AC”  
Chapter 5  
: Change of Basic setting parameters description  
: Addition of setting available options  
Addition of parameter setting due to addition of  
regenerative option  
Section 5.1.3  
Section 5.1.8  
Section 5.2.1  
Section 5.3.1  
Section 5.3.2  
: Deletion of POINT "This parameter cannot be used in  
the speed control mode"  
: Change of parameter No.PB17 from “for manufacturer  
setting” to “Automatic setting parameter”  
: Change of parameter No.PC06 from “for manufacturer  
setting” to “function selection C-3”  
: Addition of Note for parameter No.PC01, Change of  
parameter No.PC06 from “for manufacturer setting” to  
“function selection C-3”, Addition of Note4 for  
parameter No.PC09, Change of setting description for  
parameter No.PC10  
Section 5.3.3(2)  
Section 6.3(1) (a)  
Section 6.4(2)  
Section 8.2  
: Addition of Note4  
: Addition of parameter No.PB07  
: Change of description for Adjustment procedure Step5  
: Addition of Note to the Definition for alarm (32),  
Correction of the Cause4 for alarm (52)  
: Addition of MR-J3-60B4 to 350B4  
Section 9.1  
Section 9.1(1) to (7)  
Section 9.2(3)  
Section 10.1  
: Addition of mounting hole dimension diagram  
: Description method change  
: Change of graph from servo motor standards to servo  
amplifier standards  
Addition of MR-J3-60B4 to 350B4  
Section 10.2  
: Addition of MR-J3-60B4 to 350B4 and corresponding  
servo motor  
Section 10.2(1)  
Section 10.3  
: Addition of MR-J3-500B4 and 700B4  
: Addition of MR-J3-500B4 and 700B4  
Paragraphing of section 10.3.1 and section 10.3.2  
Addition of dynamic brake time constant for servo motor  
HF-SP524 / 1024 / 1524 / 2024 / 3524  
Addition of section 10.3.2: Permissible inertia load  
moment for MR-J3-60B4 to 350B4  
Section 10.5  
: Addition of MR-J3-500B4 and 700B4  
Addition of inrush current for MR-J3-60B4 to 350B4  
Print Data  
Jul., 2007  
*Manual Number  
Revision  
SH(NA)030051-C Section 11.1.1  
: Change of Application description for No.34 from  
“outside panel long distance cable” to “long distance  
cable”  
Change of connector model  
Addition of 2) Connector for 2kW and 3.5kW (400V)  
: Deletion of 0.3m from table  
Section 11.1.2(1)  
Section 11.1.2(1) (a)  
: Change of CN2 connection diagram to RoHS compliant  
parts  
Section 11.1.2(1) (a) (c) : Addition and change of connector description  
Section 11.1.2(2)  
: Deletion of 0.3m from table  
Section 11.1.2(2) (a)  
: Addition and change of connector description  
Change of CN2 connection diagram to RoHS compliant  
parts  
Section 11.1.2(3) (a) (c) : Addition and change of connector description  
Section 11.1.2(4) (a)  
: Change of CN2 connection diagram to RoHS compliant  
parts  
Section 11.1.2(5) (a)  
Section 11.1.4  
Section 11.2  
: Addition of connector set  
: Deletion of 20 to 30m from table  
: Addition of regenerative brake options for MR-J3-500B4  
and 700B4  
Section 11.2(1)  
Section 11.2(2) (b)  
Section 11.2(3)  
: Addition of regenerative option capable for MR-J3-60B4  
to 350B4  
: Addition of inverse efficiency and capacitor charging for  
MR-J3-350B4  
: Addition of parameter setting due to addition of  
regenerative option  
Section 11.2(4)  
: Addition of regenerative option MR-RB5G-4  
: Addition of regenerative option MR-RB3M-4, MR-  
RB3G-4  
Section 11.2(5) (b)  
Section 11.2(5) (c)  
Section 11.2(5) (f)  
Section 11.3  
: Addition of regenerative option MR-RB5G-4  
: Addition of regenerative option MR-RB1H-4  
: Addition of brake unit for MR-J3-500B4 and 700B4  
: Change of description  
Section 11.3(3) (b)  
Section 11.4  
: Addition of power regeneration converter for MR-J3-  
500B4 and 700B4  
Section 11.4(2)  
: Deletion of notation for power supply specification,  
change of description in Note 5, addition of Note 6  
: Addition of Note 6 to disconnect the wiring of  
regenerative brake register in servo amplifier of 7kW or  
less  
Section 11.4(3) (b)  
Section 11.5(3) (b)  
Section 11.5(4) (b) 2)  
Section 11.5(6)  
: Addition of Note 8  
: Revision of cable diameter for 400V, deletion of Note  
: For item: Altitude, vibration, deletion of description  
"compliant with JIS"  
Section 11.6(1)  
Section 11.6(2)  
Section 11.8(1)  
Section 11.11  
: Addition of Note 5  
: Change of CN3 description Deletion of Note 1  
: Addition of MR Configurator compatible version  
: Addition of recommended wires for MR-J3-500B4 and  
700B4  
Print Data  
Jul., 2007  
*Manual Number  
Revision  
SH(NA)030051-C Section 11.11(1)  
: Addition of cable diameter for MR-J3-60B4 to 350B4,  
addition of Note 3: Cable 5) to 7) of MR-J3-700B(4)  
: Addition of MR-J3-60B4 to 350B4 compliant products  
Addition of no-fuse breakers, fuses and magnetic  
contactors for MR-J3-500B4 and 700B4  
: Addition of MR-J3-60B4 to 350B4 compliant products,  
unification of (1) and (2)  
Section 11.12  
Section 11.13  
Addition of power factor improving DC reactors for MR-  
J3-500B4 and 700B4 Change of (2) Note2 Addition of  
Note3  
Section 11.14  
Section 11.18  
: Addition of MR-J3-60B4 to 350B4 compliant products  
Addition of power factor improving AC reactors for MR-  
J3-500B4 and 700B4  
: Addition of MR-J3-60B4 to 350B4 as earth leakage  
circuit breaker selection example  
Section 11.19  
: Addition of EMC filter for MR-J3-500B4 and 700B4  
: Addition of MR-J3-60B4 to 350B4 compliant products,  
deletion of Note from TX series  
Section 11.19(1)  
Section 11.19(3)  
Section 12.3(1)  
: Addition of TF3005C-TX  
: Addition of description for 30kW or more in  
“WARNING”, Addition of POINT  
Chapter 13  
: New addition of the details for 30kW or more  
Change of notation "magnet contactor" to "magnetic  
contactor"  
Section 13.1.6(1)  
: Change of description "I/O signal connector" to "Digital  
I/O connector", addition of rating plate  
Change in description of CN3 and CN6  
: Change of rating plate designated position  
: Enlargement of diagram for removing and reinstalling  
terminal block cover  
Section 13.1.6(2) (3)  
Section 13.1.7  
Section 13.3  
: Addition of POINT: reference "Signal (device)  
explanations, section 3.5"  
Section 13.3.1(1) (a)  
Section 13.3.1(1) (b)  
Section 13.3.1(2) (a)  
: Revision of magnetic contactor sequence, addition of  
Note 3  
: Revision of magnetic contactor sequence, addition of  
Note 3 and 4  
: Revision of magnetic contactor sequence, addition of  
Note 3 and 4, addition of magnetic contactor control  
(CNP1)  
13.3.1(2) (b)  
13.3.2(1), (2)  
: Revision of magnetic contactor sequence, addition of  
Note 3 to 5, addition of magnetic contactor control  
(CNP1)  
: Change of description in Note for "servo motor output"  
and "servo motor power supply" to "servo motor power"  
: Correction of reference for CN2 and CN3  
: Raise of section 13.3.5 (3) to section 13.3.6  
: Raise from section 13.3.6, Change of description in  
chart: "servo motor power" to "servo motor power  
supply"  
Section 13.3.4(2)  
Section 13.3.6  
Section 13.3.7  
Section 13.4.3(2) (b)  
Section 13.4.3(3)  
: Change of display  
: Deletion  
Print Data  
Jul., 2007  
*Manual Number  
Revision  
SH(NA)030051-C Section 13.5.2  
Section 13.6.1(3)  
: Deletion of parameter No.PA08 name and initial value  
: Deletion of "built-in regenerative register" from  
excessive regenerative load warning (A.E0) definition  
and cause  
Section 13.8.1  
Section 13.9.1  
: Division of Load ratio graph for MR-J3- B(4) and MR-  
J3-CR55K(4)  
: Addition of notation "supplied with converter unit" for  
7) and 8)  
Section 13.9.2(5)  
Section 13.9.3(2)  
: Addition of Note  
: Revision of connection diagram, change of Note 2,  
addition of Note 5  
Section 13.9.3(3)  
Section 13.9.4  
Section 13.9.5  
Section 13.9.7  
Section 13.9.8(1) (2)  
Appendix 1  
: Addition of mass table  
: Deletion of notation for UL/C-UL from body paragraph  
: Deletion of Note  
: Change of body paragraph  
: Change of Iga display range in the diagram  
: Change of parameter No.PB17 from “for manufacturer  
setting” to “Automatic setting parameter”  
Change of parameter No.PC06 from “for manufacturer  
setting” to “function selection C-3”  
Appendix 5  
: Update of the “combination of servo amplifier and  
servo motor” table  
Jun, 2008  
SH(NA)030051-D (2)Wiring  
: Change of description for “the servo motor will operate  
improperly” to “the servo motor will not operate  
properly” for the item of connection between the servo  
amplifier and the servo motor  
Conformance with UL/C-UL standard (3): Change of description  
Conformance with UL/C-UL standard (5): Deletion of list of combination with fuse  
About the wires used for wiring: Addition of the selected standard temperature  
Section 1.2 (1) to (3)  
Section 1.3 (1)  
: Change of switch numbers  
: Change of description for the mass “2.3” to “2.1”of  
MR-J3-200B, Change of pound notation for mass to  
three significant digits  
Section 1.5 (2)  
Section 1.6  
: Change of appearance of MR-J3-200B to the same as  
MR-J3-200B4  
: Addition of models with reduction gear to body  
paragraph  
Section 1.7.1 (3) (4)  
: Switch between (3) and (4), Change of the description  
for MR-J3-200B to the same as MR-J3-200B4,  
Addition of Note 4 to (3).  
Section 1.8 (3) (4)  
Section 2.1 (1) (b)  
: Switch between (3) and (4), Change of the description  
for MR-J3-200B to the same as MR-J3-200B4,  
Addition of Note 4 to (3). Deletion of Note 3 from (4)  
Addition of description for FR-BEL to (3)  
: Change of description for “Mounting closely is  
available for a combination of servo amplifiers of  
3.5kW or less in 200V or 100V class.” to “Mounting  
closely is available for a combination of servo  
amplifiers of 3.5kW or less in 200V or 400W or less in  
100V class.”  
Section 2.3 (2)  
: Change of description  
Section 3.1 (5) to (8)  
: Addition of NFB for the fan power cables of the servo  
motor’s cooling fan  
Print Data  
Jun, 2008  
*Manual Number  
Revision  
SH(NA)030051-D Section 3.2  
: Change of Note 15  
Section 3.3.3 (1) (a)  
: Change of CNP2 connector model from “54927-0520”  
to “54928-0520”  
Section 3.3.3 (2) (3)  
Section 3.7.2 (2)  
: Switch between (2) and (3), Change of the description  
for MR-J3-200B to the same as MR-J3-200B4  
: Addition of description for the condition “Maximum  
current: 50mA or less” to body paragraph  
Section 3.10.2 (3) (a) 1) to : Addition of NFB for fan power cable of servo motor’s  
2)  
cooling fan, Change of description for Note 1  
: Change of servo motor’s terminal diagram  
: Change of timing chart  
Section 3.10.2 (3) (b)  
Section 3.11.2  
Section 4.1.2 (1) (c) 2) to : Change of description for “D terminal” to “C terminal”  
3)  
Section 5.2.1  
: Change of PB06 and PB29 unit for “times” to  
“Multiplier(×1)”  
Section 7.4  
: Change of description  
Section 7.6.3  
: Change of PB06 and PB29 unit for “times” to  
“Multiplier(×1)”  
Section 7.6.4 (1) (a)  
Section 7.6.4 (2) (a)  
Section 10.1 (5) (6)  
: Change of PB06 and PB29 unit for “times” to  
“Multiplier(×1)”  
: Change of PB06 and PB29 unit for “times” to  
“Multiplier(×1)”  
: Switch between (5) and (6), Change of the description  
for MR-J3-200B to the same as MR-J3-200B4,  
Addition of POINT to (5)  
Section 10.3.1 (2)  
: Addition of dynamic brake characteristics of HA-SP,  
HA-LP, HC-RP, HC-UP, and HC-LP  
Section 11.1  
: Addition of POINT for protective structure  
: Deletion of 2kW from Application, upper stand of 2) in  
Table, Change of description for “2kW or less in 400V  
class” to “2kW in 200V and 400V class”, Change of  
corresponding model from “HF-SP121
٠
201” to “HF-  
SP121 to 301” for 29) in Table, Change of  
corresponding model for 30) in Table, Deletion of IP65  
from Application, Change of corresponding model for  
38) and 40) in Table, Deletion of IP67 from  
Application, Deletion of IP67 from Application for 39)  
in Table  
Section 11.1.1  
Section 11.1.2 (2) (b)  
Section 11.1.2 (3) (a)  
Section 11.1.2 (4)  
: Correction of Note position for connecting diagrams  
such as MR-EKCBL30M-H  
: Addition of description “Crimping tool: 91529-1” in the  
list of Junction Connector  
: Change of corresponding model of “HF-SP” to “HF-  
SP HA-LP HC-RP HC-UP HC-LP”  
: Addition of corresponding model of “HA-LP HC-  
RP HC-UP HC-LP”  
Section 11.1.2 (5)  
Section 11.1.2 (5) (a)  
: Change of junction connector of “36110-3000PL” to  
“36110-3000FD", Battery connector from “DF3-  
EP2428PCFA” to “DF3-EP2428PCA”  
: Addition of Note  
Section 11.1.3 (2)  
Section 11.1.4 (2)  
Section 11.2 (1)  
: Addition of Note  
: Change of built-in regenerative register value of MR-  
J3-60B4 100B4 from “15” to “20”, Addition of Note 1  
Print Data  
Jun, 2008  
*Manual Number  
Revision  
SH(NA)030051-D Section 11.2 (4)  
Section 11.2 (5) (a)  
: Change of description  
: Change of tightening torque size from “3.2” to “3.24”  
: Change of description  
Section 11.3.3 (4) (a)  
Section 11.3.4 (2)  
: Correction of C dimension  
Section 11.5 (4) (a) 1)  
: Addition of POINT for selection condition of wire sizes,  
Deletion of “The used wires are based on the 600V  
vinyl wires.” from the sentence  
Section 11.5 (4) (b) 1)  
Section 11.5 (4) (b) 2)  
: Change of wiring length of servo amplifier (3.5kW) in  
connection diagram from “5.5mm2” to “3.5mm2”  
: Change of wiring length between the servo amplifier  
(2kW) and the one (15kW) in connecting diagram  
: Addition of Note to Table  
Section 11.6 (3) (a)  
Section 11.6 (3) (b)  
Section 11.8 (2) (a)  
: Addition of Note to Table  
: Table content change, Change of position for  
Windows Vista, Deletion of RS-422/232C conversion  
cable  
Section 11.11  
: Change of description for “Recommended wires” to  
“Wires selection example”, Addition of three POINTs  
: Deletion of body paragraph, Change of description for  
IV wires selection example, Addition of HIV wires  
selection example, Change of crimping terminal  
selection example  
Section 11.11 (1)  
Section 11.12  
: Change of Table  
Section 11.13  
: Addition of table for dynamic brake wire size  
: Deletion of AC electromagnetic brake from body  
paragraph  
Section 11.17 (2) (b)  
Chapter 12  
: Change of description for Note, Addition of POINT  
: Partial deletion of body paragraph  
Section 13.1.5  
Section 13.3  
: Change of description for Note  
Section 13.3.7 (1) (b)  
: Change of timing chart  
Section 13.3.7 (3) (a) 1) to : Addition of Note  
3)  
Section 13.7.1  
: Change of pound notation for mass to three significant  
digits  
Section 13.7.2  
Section 13.8.3  
: Change of pound notation for mass to three significant  
digits  
: Change of description form, Change of dynamic brake  
of HA-LP2000r/min series characteristics, Change of  
body paragraph  
Section 13.9.1 (2)  
Section 13.9.3 (2)  
Section 13.9.4  
: Change of Note  
: Addition of Note to Table  
: Change of description for "Recommended wires” to  
“Wires selection examples”, Addition of three POINTs  
: Deletion of body paragraph, Change of description for  
IV wires selection example, Addition of HIV wires  
selection example, Change of crimping terminal  
selection example  
Section 13.9.4 (1)  
Section 13.9.5  
Section 13.9.9 (2)  
Section 13.9.10 (4) (b)  
Appendix 4  
: Deletion of Note  
: Deletion of surge protectors from wiring diagram  
: Correction of C dimension  
: Change of body paragraph  
: New addition for explanation of servo amplifier MR-J3-  
200B-RT  
Appendix 5  
Print Data  
Jun, 2008  
*Manual Number  
SH(NA)030051-D  
Revision  
Appendix 6  
: New addition of servo motor power cables selection  
example  
SH(NA)030051-D  
MR-J3-B INSTRUCTIONMANUAL  
MODEL  
MODEL  
CODE  
1CW202  
HEAD OFFICE : TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030051-D (0806) MEE  
Printed in Japan  

Pioneer Car Stereo System DEH 8018ZT User Manual
Panasonic High Definition Video Camcorder HDC SDT750K User Manual
Oster Blender blender User Manual
Metra Electronics 99 8219 User Manual
Kenwood KMR 330 User Manual
Kenwood KDC 1032 User Manual
Kenwood DUAL DIN SIZED CD RECEIVER DPX MP3110 User Manual
JVC KS U15K User Manual
JVC KS FX280 User Manual
JVC JCV High Definition Digital Camcorder GZE10BUS User Manual