Mitsubishi Electronics Mitsubishi Digital Electronics Car Amplifier MR J2M P8A User Manual

General-Purpose AC Servo  
J2M Series  
General-Purpose Interface Compatible  
MODEL  
MR-J2M-P8A  
MR-J2M- DU  
MR-J2M-BU  
SERVO AMPLIFIER  
INSTRUCTION MANUAL  
E
1. To prevent electric shock, note the following:  
WARNING  
Before wiring or inspection, switch power off and wait for more than 15 minutes. Then, confirm the voltage  
is safe with voltage tester. Otherwise, you may get an electric shock.  
Connect the base unit and servo motor to ground.  
Any person who is involved in wiring and inspection should be fully competent to do the work.  
Do not attempt to wire for each unit and the servo motor until they are installed. Otherwise, you can obtain  
the electric shock.  
Operate the switches with dry hand to prevent an electric shock.  
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, you may get an electric shock.  
During power-on or operation, do not open the front cover of the servo amplifier. You may get an electric  
shock.  
Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area  
are exposed and you may get an electric shock.  
Except for wiring or periodic inspection, do not remove the front cover even of the servo amplifier if the  
power is off. The servo amplifier is charged and you may get an electric shock.  
2. To prevent fire, note the following:  
CAUTION  
Do not install the base unit, servo motor and regenerative brake resistor on or near combustibles.  
Otherwise a fire may cause.  
When each unit has become faulty, switch off the main base unit power side. Continuous flow of a large  
current may cause a fire.  
When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a  
regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.  
3. To prevent injury, note the follow  
CAUTION  
Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst,  
damage, etc. may occur.  
Connect the terminals correctly to prevent a burst, damage, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.)  
with the servo amplifier heat sink, regenerative brake resistor, servo motor, etc.since they may be hot  
while power is on or for some time after power-off. Their temperatures may be high and you may get burnt  
or a parts may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can cause injury.  
A - 2  
4. Additional instructions  
The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric  
shock, etc.  
(1) Transportation and installation  
CAUTION  
Transport the products correctly according to their weights.  
Stacking in excess of the specified number of products is not allowed.  
Do not carry the servo motor by the cables, shaft or encoder.  
Do not hold the front cover to transport each unit. Each unit may drop.  
Install the each unit in a load-bearing place in accordance with the Instruction Manual.  
Do not climb or stand on servo equipment. Do not put heavy objects on equipment.  
The servo amplifier controller and servo motor must be installed in the specified direction.  
Leave specified clearances between the base unit and control enclosure walls or other equipment.  
Do not install or operate the unit and servo motor which has been damaged or has any parts missing.  
Provide adequate protection to prevent screws and other conductive matter, oil and other combustible  
matter from entering each unit and servo motor.  
Do not drop or strike each unit or servo motor. Isolate from all impact loads.  
When you keep or use it, please fulfill the following environmental conditions.  
Conditions  
Environment  
Each unit  
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
Servo motor  
0 to 40 (non-freezing)  
32 to 104 (non-freezing)  
15 to 70 (non-freezing)  
5 to 158 (non-freezing)  
[
[
[
[
]
]
]
]
During  
operation  
Ambient  
temperature  
In storage  
During operation 90%RH or less (non-condensing)  
In storage  
80%RH or less (non-condensing)  
90%RH or less (non-condensing)  
Ambient  
humidity  
Ambience  
Altitude  
Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
HC-KFS Series  
5.9 or less  
[m/s2]  
[ft/s2]  
HC-MFS Series  
HC-UFS13 to 43  
HC-KFS Series  
HC-MFS Series  
HC-UFS13 to 43  
X
X
Y : 49  
(Note) Vibration  
19.4 or less  
Y : 161  
Note. Except the servo motor with reduction gear.  
Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during  
operation.  
The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.  
Take safety measures, e.g. provide covers, to prevent accidental access to the rotating parts of the servo  
motor during operation.  
Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder  
may become faulty.  
Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.  
When the equipment has been stored for an extended period of time, consult Mitsubishi.  
A - 3  
(2) Wiring  
CAUTION  
Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.  
Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo  
motor and drive unit.  
Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.  
Connect the servo motor power terminal (U, V, W) to the servo motor power input terminal (U, V, W)  
directly. Do not let a magnetic contactor, etc. intervene.  
drive unit  
Servo Motor  
U
V
U
V
W
W
Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.  
The surge absorbing diode installed on the DC output signal relay of the servo amplifier must be wired in  
the specified direction. Otherwise, the forced stop and other protective circuits may not operate.  
Interface unit  
VIN  
Interface unit  
VIN  
SG  
SG  
Control output  
signal  
Control output  
signal  
RA  
RA  
(3) Test run adjustment  
CAUTION  
Before operation, check the parameter settings. Improper settings may cause some machines to perform  
unexpected operation.  
The parameter settings must not be changed excessively. Operation will be insatiable.  
A - 4  
(4) Usage  
CAUTION  
Provide an forced stop circuit to ensure that operation can be stopped and power switched off  
immediately.  
Any person who is involved in disassembly and repair should be fully competent to do the work.  
Before resetting an alarm, make sure that the run signal of the servo amplifier is off to prevent an  
accident. A sudden restart is made if an alarm is reset with the run signal on.  
Do not modify the equipment.  
Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by  
electronic equipment used near MELSERVO-J2M.  
Burning or breaking each unit may cause a toxic gas. Do not burn or break each unit.  
Use the drive unit with the specified servo motor.  
The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used  
for ordinary braking.  
For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor  
are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety,  
install a stopper on the machine side.  
(5) Corrective actions  
CAUTION  
When it is assumed that a hazardous condition may take place at the occur due to a power failure or a  
product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the  
purpose of prevention.  
Configure the electromagnetic brake circuit so that it is activated not only by the interface unit signals but  
also by a forced stop (EMG_  
.
)
Contacts must be open when  
servo-on (SON ) is off, when an  
trouble (ALM_ ) is present and  
when an electromagnetic brake  
interlock (MBR ).  
Circuit must be  
opened during  
forced stop  
(EMG_ ).  
Servo motor  
RA  
EMG_  
24VDC  
Electromagnetic brake  
When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before  
restarting operation.  
When power is restored after an instantaneous power failure, keep away from the machine because the  
machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).  
A - 5  
(6) Maintenance, inspection and parts replacement  
CAUTION  
With age, the electrolytic capacitor of the drive unit will deteriorate. To prevent a secondary accident due  
to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general  
environment.  
Please consult our sales representative.  
(7) General instruction  
To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn  
without covers and safety guards. When the equipment is operated, the covers and safety guards must  
be installed as specified. Operation must be performed in accordance with this Instruction Manual.  
About processing of waste  
When you discard servo amplifier, a battery (primary battery), and other option articles, please follow the law of  
each country (area).  
FOR MAXIMUM SAFETY  
These products have been manufactured as a general-purpose part for general industries, and have not  
been designed or manufactured to be incorporated in a device or system used in purposes related to  
human life.  
Before using the products for special purposes such as nuclear power, electric power, aerospace,  
medicine, passenger movement vehicles or under water relays, contact Mitsubishi.  
These products have been manufactured under strict quality control. However, when installing the product  
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe  
functions in the system.  
EEP-ROM life  
The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000. If  
the total number of the following operations exceeds 100,000, the servo amplifier and/or converter unit may  
fail when the EEP-ROM reaches the end of its useful life.  
Write to the EEP-ROM due to parameter setting changes  
Home position setting in the absolute position detection system  
Write to the EEP-ROM due to device changes  
Precautions for Choosing the Products  
Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi;  
machine damage or lost profits caused by faults in the Mitsubishi products; damage, secondary damage,  
accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other  
than Mitsubishi products; and to other duties.  
A - 6  
COMPLIANCE WITH EC DIRECTIVES  
1. WHAT ARE EC DIRECTIVES?  
The EC directives were issued to standardize the regulations of the EU countries and ensure smooth  
distribution of safety-guaranteed products. In the EU countries, the machinery directive (effective in  
January, 1995), EMC directive (effective in January, 1996) and low voltage directive (effective in January,  
1997) of the EC directives require that products to be sold should meet their fundamental safety  
requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment  
into which servo (MELSERVO-J2M is contained) have been installed.  
(1) EMC directive  
The EMC directive applies not to the servo units alone but to servo-incorporated machines and  
equipment. This requires the EMC filters to be used with the servo-incorporated machines and  
equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to  
the EMC Installation Guidelines (IB(NA)67310).  
(2) Low voltage directive  
The low voltage directive applies also to MELSERVO-J2M. Hence, they are designed to comply with  
the low voltage directive.  
MELSERVO-J2M is certified by TUV, third-party assessment organization, to comply with the low  
voltage directive.  
The MELSERVO-J2M complies with EN50178.  
(3) Machine directive  
Not being machines, MELSERVO-J2M need not comply with this directive.  
2. PRECAUTIONS FOR COMPLIANCE  
(1) Unit and servo motors used  
Use each units and servo motors which comply with the standard model.  
Interface unit  
Drive unit  
Base unit  
:MR-J2M-P8A  
:MR-J2M- DU  
:MR-J2M-BU  
:HC-KFS  
Servo motor  
HC-MFS  
HC-UFS  
(2) Configuration  
Control box  
Reinforced  
insulating type  
24VDC  
power  
supply  
Reinforced  
insulating  
transformer  
No-fuse  
breaker  
Magnetic  
contactor  
Servo  
motor  
MELSERVO-  
J2M  
M
MC  
NFB  
A - 7  
(3) Environment  
Operate MELSERVO-J2M at or above the contamination level 2 set forth in IEC60664-1 For this  
purpose, install MELSERVO-J2M in a control box which is protected against water, oil, carbon, dust,  
dirt, etc. (IP54).  
(4) Power supply  
(a) Operate MELSERVO-J2M to meet the requirements of the overvoltage category II set forth in  
IEC60664-1 For this purpose, a reinforced insulating transformer conforming to the IEC or EN  
standard should be used in the power input section.  
(b) When supplying interface power from external, use a 24VDC power supply which has been  
insulation-reinforced in I/O.  
(5) Grounding  
(a) To prevent an electric shock, always connect the protective earth (PE) terminals (marked ) of the  
base unit to the protective earth (PE) of the control box.  
(b) Do not connect two ground cables to the same protective earth (PE) terminal. Always connect the  
cables to the terminals one-to-one.  
(c) If a leakage current breaker is used to prevent an electric shock, the protective earth (PE) terminals  
of the base unit must be connected to the corresponding earth terminals.  
(d) The protective earth (PE) of the servo motor is connected to the protective earth of the base unit via  
the screw which fastens the drive unit to the base unit. When fixing the drive unit to the base unit,  
therefore, tighten the accessory screw securely.  
(6) Auxiliary equipment and options  
(a) The no-fuse breaker and magnetic contactor used should be the EN or IEC standard-compliant  
products of the models described in Section 12.2.2.  
(b) The sizes of the cables described in Section 12.2.1 meet the following requirements. To meet the  
other requirements, follow Table 5 and Appendix C in EN60204-1.  
Ambient temperature: 40 (104) [ ( )]  
Sheath: PVC (polyvinyl chloride)  
Installed on wall surface or open table tray  
(c) Use the EMC filter for noise reduction.  
(7) Performing EMC tests  
When EMC tests are run on a machine/device into which MELSERVO-J2M has been installed, it must  
conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the  
operating environment/electrical equipment specifications.  
For the other EMC directive guidelines on MELSERVO-J2M, refer to the EMC Installation  
Guidelines(IB(NA)67310).  
A - 8  
CONFORMANCE WITH UL/C-UL STANDARD  
The MELSERVO-J2M complies with UL508C.  
(1) Unit and servo motors used  
Use the each units and servo motors which comply with the standard model.  
Interface unit  
Drive unit  
Base unit  
:MR-J2M-P8A  
:MR-J2M- DU  
:MR-J2M-BU  
:HC-KFS  
Servo motor  
HC-MFS  
HC-UFS  
(2) Installation  
Install a fan of 100CFM (2.8m3/min) air flow 4 [in] (10.16 [cm]) above the servo amplifier or provide  
cooling of at least equivalent capability.  
(3) Short circuit rating  
MELSERVO-J2M conforms to the circuit whose peak current is limited to 5000A or less. Having been  
subjected to the short-circuit tests of the UL in the alternating-current circuit, MELSERVO-J2M  
conforms to the above circuit.  
(4) Capacitor discharge time  
The capacitor discharge time is as listed below. To ensure safety, do not touch the charging section for  
15 minutes after power-off.  
Base unit  
Discharge time [min]  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
1
1
1
(5) Options and auxiliary equipment  
Use UL/C-UL standard-compliant products.  
(6) Attachment of a servo motor  
For the flange size of the machine side where the servo motor is installed, refer to “CONFORMANCE  
WITH UL/C-UL STANDARD” in the Servo Motor Instruction Manual.  
(7) About wiring protection  
For installation in United States, branch circuit protection must be provided, in accordance with the  
National Electrical Code and any applicable local codes.  
For installation in Canada, branch circuit protection must be provided, in accordance with the Canada  
Electrical Code and any applicable provincial codes.  
A - 9  
<<About the manuals>>  
This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use  
MELSERVO-J2M for the first time. Always purchase them and use the MELSERVO-J2M safely.  
Also read the manual of the servo system controller.  
Relevant manuals  
Manual name  
Manual No.  
MELSERVO-J2M Series To Use the AC Servo Safely  
(Packed with the MR-J2M-P8A, MR-J2M- DU and MR-J2M-BU  
MELSERVO Servo Motor Instruction Manual  
EMC Installation Guidelines  
IB(NA)0300027  
)
SH(NA)3181  
IB(NA)67310  
In this Instruction Manual, the drive unit, interface unit and base unit may be referred to as follows:  
Drive unit : DRU  
Interface unit : IFU  
Base unit : BU  
A - 10  
CONTENTS  
1. FUNCTIONS AND CONFIGURATION  
1- 1 to 1-10  
1.1 Overview................................................................................................................................................... 1- 1  
1.2 Function block diagram .......................................................................................................................... 1- 2  
1.3 Unit standard specifications................................................................................................................... 1- 3  
1.4 Function list ............................................................................................................................................. 1- 4  
1.5 Model code definition .............................................................................................................................. 1- 5  
1.6 Combination with servo motor............................................................................................................... 1- 6  
1.7 Parts identification.................................................................................................................................. 1- 7  
1.8 Servo system with auxiliary equipment................................................................................................ 1- 9  
2. INSTALLATION AND START UP  
2- 1 to 2-10  
2.1 Environmental conditions....................................................................................................................... 2- 1  
2.2 Installation direction and clearances .................................................................................................... 2- 2  
2.3 Keep out foreign materials ..................................................................................................................... 2- 3  
2.4 Cable stress.............................................................................................................................................. 2- 3  
2.5 Mounting method .................................................................................................................................... 2- 4  
2.6 When switching power on for the first time.......................................................................................... 2- 6  
2.7 Start up..................................................................................................................................................... 2- 7  
3. SIGNALS AND WIRING  
3- 1 to 3-48  
3.1 Control signal line connection example................................................................................................. 3- 2  
3.2 I/O signals of interface unit.................................................................................................................... 3- 5  
3.2.1 Connectors and signal arrangements............................................................................................. 3- 5  
3.2.2 Signal explanations .......................................................................................................................... 3- 6  
3.2.3 Detailed description of the signals.................................................................................................3-11  
3.2.4 Internal connection diagram ..........................................................................................................3-15  
3.2.5 Interface............................................................................................................................................3-16  
3.3 Signal and wiring for extension IO unit...............................................................................................3-20  
3.3.1 Connection example ........................................................................................................................3-20  
3.3.2 Connectors and signal configurations ...........................................................................................3-22  
3.3.3 Signal explanations .........................................................................................................................3-23  
3.3.4 Device explanations.........................................................................................................................3-26  
3.3.5 Detailed description of the device ..................................................................................................3-30  
3.3.6 Device assignment method.............................................................................................................3-31  
3.4 Signals and wiring for base unit...........................................................................................................3-35  
3.4.1 Connection example for power line circuit....................................................................................3-35  
3.4.2 Connectors and signal configurations ...........................................................................................3-37  
3.4.3 Terminals..........................................................................................................................................3-38  
3.4.4 Power-on sequence...........................................................................................................................3-38  
3.5 Connection of drive unit and servo motor............................................................................................3-39  
3.5.1 Connection instructions ..................................................................................................................3-39  
3.5.2 Connection diagram ........................................................................................................................3-40  
3.5.3 I/O terminals ....................................................................................................................................3-41  
3.6 Alarm occurrence timing chart .............................................................................................................3-42  
1
3.7 Servo motor with electromagnetic brake .............................................................................................3-43  
3.8 Grounding................................................................................................................................................3-46  
3.9 Instructions for the 3M connector.........................................................................................................3-47  
4. OPERATION AND DISPLAY  
4- 1 to 4-18  
4.1 Display flowchart..................................................................................................................................... 4- 1  
4.1.1 Normal indication............................................................................................................................. 4- 2  
4.1.2 If alarm/warning occurs................................................................................................................... 4- 3  
4.1.3 If test operation................................................................................................................................. 4- 4  
4.2 Interface unit display.............................................................................................................................. 4- 5  
4.2.1 Display flowchart of interface unit ................................................................................................. 4- 5  
4.2.2 Status display of interface unit....................................................................................................... 4- 6  
4.2.3 Diagnostic mode of interface unit ................................................................................................... 4- 7  
4.2.4 Alarm mode of interface unit........................................................................................................... 4- 8  
4.2.5 Interface unit parameter mode ....................................................................................................... 4- 9  
4.2.6 Interface unit output signal (DO) forced output...........................................................................4-10  
4.3 Drive unit display...................................................................................................................................4-11  
4.3.1 Drive unit display sequence............................................................................................................4-11  
4.3.2 Status display of drive unit.............................................................................................................4-12  
4.3.3 Diagnostic mode of drive unit.........................................................................................................4-14  
4.3.4 Alarm mode of drive unit................................................................................................................4-15  
4.3.5 Drive unit parameter mode ............................................................................................................4-16  
4.3.6 Drive unit external input signal display .......................................................................................4-16  
4.3.7 Drive unit external output signal display.....................................................................................4-17  
4.3.8 Drive unit output signal (DO) forced output.................................................................................4-18  
5. PARAMETERS  
5- 1 to 5-30  
5.1 DRU parameter list................................................................................................................................. 5- 1  
5.1.1 DRU parameter write inhibit.......................................................................................................... 5- 1  
5.1.2 Lists.................................................................................................................................................... 5- 2  
5.2 Interface unit ..........................................................................................................................................5-14  
5.2.1 IFU parameter write inhibit...........................................................................................................5-14  
5.2.2 Lists...................................................................................................................................................5-14  
5.3 Detailed description ...............................................................................................................................5-21  
5.3.1 Electronic gear .................................................................................................................................5-21  
5.3.2 Analog monitor.................................................................................................................................5-25  
5.3.3 Using forward rotation stroke end (LSP ) reverse rotation stroke end (LSN ) to change the  
stopping pattern..............................................................................................................................5-28  
5.3.4 Alarm history clear..........................................................................................................................5-28  
5.3.5 Position smoothing ..........................................................................................................................5-29  
6. GENERAL GAIN ADJUSTMENT  
6- 1 to 6-10  
6.1 Different adjustment methods ............................................................................................................... 6- 1  
6.1.1 Adjustment on a MELSERVO-J2M................................................................................................ 6- 1  
6.1.2 Adjustment using MR Configurator (servo configuration software)........................................... 6- 2  
6.2 Auto tuning .............................................................................................................................................. 6- 3  
6.2.1 Auto tuning mode ............................................................................................................................. 6- 3  
2
6.2.2 Auto tuning mode operation............................................................................................................ 6- 4  
6.2.3 Adjustment procedure by auto tuning............................................................................................ 6- 5  
6.2.4 Response level setting in auto tuning mode .................................................................................. 6- 6  
6.3 Manual mode 1 (simple manual adjustment)....................................................................................... 6- 7  
6.3.1 Operation of manual mode 1 ........................................................................................................... 6- 7  
6.3.2 Adjustment by manual mode 1 ....................................................................................................... 6- 7  
6.4 Interpolation mode .................................................................................................................................. 6- 9  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7- 1 to 7-10  
7.1 Function block diagram .......................................................................................................................... 7- 1  
7.2 Machine resonance suppression filter................................................................................................... 7- 1  
7.3 Adaptive vibration suppression control................................................................................................. 7- 3  
7.4 Low-pass filter ......................................................................................................................................... 7- 4  
7.5 Gain changing function........................................................................................................................... 7- 5  
7.5.1 Applications....................................................................................................................................... 7- 5  
7.5.2 Function block diagram ................................................................................................................... 7- 5  
7.5.3 Parameters........................................................................................................................................ 7- 6  
7.5.4 Gain changing operation.................................................................................................................. 7- 8  
8. INSPECTION  
8- 1 to 8- 2  
9- 1 to 9-14  
9. TROUBLESHOOTING  
9.1 Trouble at start-up .................................................................................................................................. 9- 1  
9.2 Alarms and warning list ......................................................................................................................... 9- 4  
9.3 Remedies for alarms................................................................................................................................ 9- 6  
9.4 Remedies for warnings...........................................................................................................................9-13  
10. OUTLINE DRAWINGS  
10- 1 to 10-10  
10.1 MELSERVO-J2M configuration example.........................................................................................10- 1  
10.2 Unit outline drawings .........................................................................................................................10- 2  
10.2.1 Base unit (MR-J2M-BU ) ...........................................................................................................10- 2  
10.2.2 Interface unit (MR-J2M-P8A) .....................................................................................................10- 2  
10.2.3 Drive unit (MR-J2M- DU).........................................................................................................10- 3  
10.2.4 Extension IO unit (MR-J2M-D01) ..............................................................................................10- 4  
10.2.5 Battery unit (MR-J2M-BT)..........................................................................................................10- 4  
10.3 Connectors............................................................................................................................................10- 5  
11. CHARACTERISTICS  
11- 1 to 11- 6  
11.1 Overload protection characteristics...................................................................................................11- 1  
11.2 Power supply equipment capacity and generated loss ....................................................................11- 2  
11.3 Dynamic brake characteristics...........................................................................................................11- 4  
11.4 Encoder cable flexing life....................................................................................................................11- 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12- 1 to 12-36  
12.1 Options..................................................................................................................................................12- 1  
3
12.1.1 Regenerative brake options .........................................................................................................12- 1  
12.1.2 Cables and connectors..................................................................................................................12- 8  
12.1.3 Junction terminal block (MR-TB50)..........................................................................................12-17  
12.1.4 Junction terminal block (MR-TB20)..........................................................................................12-19  
12.1.5 Maintenance junction card (MR-J2CN3TM) ............................................................................12-21  
12.1.6 MR Configurator (servo configurations software)....................................................................12-23  
12.2 Auxiliary equipment ..........................................................................................................................12-24  
12.2.1 Recommended wires....................................................................................................................12-24  
12.2.2 No-fuse breakers, fuses, magnetic contactors...........................................................................12-26  
12.2.3 Power factor improving reactors................................................................................................12-27  
12.2.4 Relays............................................................................................................................................12-28  
12.2.5 Surge absorbers ...........................................................................................................................12-28  
12.2.6 Noise reduction techniques.........................................................................................................12-28  
12.2.7 Leakage current breaker ............................................................................................................12-34  
12.2.8 EMC filter.....................................................................................................................................12-35  
13. COMMUNICATION FUNCTIONS  
13- 1 to 13-32  
13.1 Configuration.......................................................................................................................................13- 1  
13.1.1 RS-422 configuration....................................................................................................................13- 1  
13.1.2 RS-232C configuration.................................................................................................................13- 3  
13.2 Communication specifications............................................................................................................13- 4  
13.2.1 Communication overview ............................................................................................................13- 4  
13.2.2 Parameter setting.........................................................................................................................13- 5  
13.3 Protocol.................................................................................................................................................13- 6  
13.4 Character codes ...................................................................................................................................13- 7  
13.5 Error codes ...........................................................................................................................................13- 8  
13.6 Checksum.............................................................................................................................................13- 8  
13.7 Time-out operation..............................................................................................................................13- 9  
13.8 Retry operation....................................................................................................................................13- 9  
13.9 Initialization........................................................................................................................................13-10  
13.10 Communication procedure example...............................................................................................13-10  
13.11 Command and data No. list.............................................................................................................13-11  
13.11.1 Read commands.........................................................................................................................13-11  
13.11.2 Write commands........................................................................................................................13-13  
13.12 Detailed explanations of commands...............................................................................................13-15  
13.12.1 Data processing..........................................................................................................................13-15  
13.12.2 Status display ............................................................................................................................13-17  
13.12.3 Parameter...................................................................................................................................13-18  
13.12.4 External I/O pin statuses (DIO diagnosis)..............................................................................13-20  
13.12.5 Disable/enable of external I/O signals (DIO) ..........................................................................13-23  
13.12.6 External input signal ON/OFF (test operation) .....................................................................13-24  
13.12.7 Test operation mode..................................................................................................................13-25  
13.12.8 Output signal pin ON/OFF (output signal (DO) forced output) ...........................................13-28  
13.12.9 Alarm history.............................................................................................................................13-29  
13.12.10 Current alarm..........................................................................................................................13-30  
13.12.11 Other commands......................................................................................................................13-31  
4
14. ABSOLUTE POSITION DETECTION SYSTEM  
14- 1 to 14-12  
14.1 Outline..................................................................................................................................................14- 1  
14.1.1 Features.........................................................................................................................................14- 1  
14.1.2 Restrictions....................................................................................................................................14- 1  
14.2 Specifications .......................................................................................................................................14- 2  
14.3 Signal explanation...............................................................................................................................14- 3  
14.4 Serial communication command........................................................................................................14- 3  
14.5 Startup procedure................................................................................................................................14- 4  
14.6 Absolute position data transfer protocol...........................................................................................14- 5  
14.6.1 Data transfer procedure...............................................................................................................14- 5  
14.6.2 Transfer method ...........................................................................................................................14- 6  
14.6.3 Home position setting ..................................................................................................................14- 9  
14.6.4 How to process the absolute position data at detection of stroke end....................................14-10  
14.7 Confirmation of absolute position detection data............................................................................14-11  
APPENDIX  
App- 1 to App- 2  
App 1. Status indication block diagram ................................................................................................. App- 1  
5
Optional Servo Motor Instruction Manual CONTENTS  
The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced  
here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in  
this Instruction Manual.  
1. INTRODUCTION  
2. INSTALLATION  
3. CONNECTORS USED FOR SERVO MOTOR WIRING  
4. INSPECTION  
5. SPECIFICATIONS  
6. CHARACTERISTICS  
7. OUTLINE DIMENSION DRAWINGS  
8. CALCULATION METHODS FOR DESIGNING  
6
1. FUNCTIONS AND CONFIGURATION  
1. FUNCTIONS AND CONFIGURATION  
1.1 Overview  
The Mitsubishi general-purpose AC servo MELSERVO-J2M series is an AC servo which has realized  
wiring-saving, energy-saving and space-saving in addition to the high performance and high functions of  
the MELSERVO-J2-Super series.  
The MELSERVO-J2M series consists of an interface unit (abbreviated to the IFU) to be connected with a  
positioning unit, drive units (abbreviated to the DRU) for driving and controlling servo motors, and a base  
unit (abbreviated to the BU) where these units are installed.  
A torque limit is applied to the drive unit by the clamp circuit to protect the main circuit power  
transistors from overcurrent caused by abrupt acceleration/deceleration or overload. In addition, the  
torque limit value can be changed as desired using the parameter.  
The interface unit has an RS-232C or RS-422 serial communication function to allow the parameter  
setting, test operation, status indication monitoring, gain adjustment and others of all units to be  
performed using a personal computer or like where the MR Configurator (servo configuration software) is  
installed. By choosing the station number of the drive unit using the MR Configurator (servo  
configuration software), you can select the unit to communicate with, without changing the cabling.  
The real-time auto tuning function automatically adjusts the servo gains according to a machine.  
A maximum 500kpps high-speed pulse train is used to control the speed and direction of a motor and  
execute accurate positioning of 131072 pulses/rev resolution.  
The position smoothing function has two different systems to allow you to select the appropriate system  
for a machine, achieving a smoother start/stop in response to an abrupt position command.  
The MELSERVO-J2M series supports as standard the absolute position encoders which have 131072  
pulses/rev resolution, ensuring control as accurate as that of the MELSERVO-J2-Super series. Simply  
adding the optional battery unit configures an absolute position detection system. Hence, merely setting a  
home position once makes it unnecessary to perform a home position return at power-on, alarm  
occurrence or like.  
The MELSERVO-J2M series has a control circuit power supply in the interface unit and main circuit  
converter and regenerative functions in the base unit to batch-wire the main circuit power input,  
regenerative brake connection and control circuit power supply input, achieving wiring-saving.  
In the MELSERVO-J2M series, main circuit converter sharing has improved the capacitor regeneration  
capability dramatically. Except for the operation pattern where all axes slow down simultaneously, the  
capacitor can be used for regeneration. You can save the energy which used to be consumed by the  
regenerative brake resistor.  
Input signal (Axes 5 to 8)  
Extension IO unit  
MR-J2M-D01  
Input signal (Axes 1 to 4)  
Regenerative  
brake option  
Encoder pulse output  
extension DIO (Axes 1 to 4)  
Control circuit power  
supply input  
Encoder pulse output  
extension DIO (Axes 5 to 8)  
Encoder cable  
Servo motor power cable  
Main circuit power input  
Personal computer connection  
Monitor output  
Forced stop input  
Forward rotation stroke end  
Reverse rotation stroke end  
Forced stop input  
Electromagnetic brake interlock output  
1 - 1  
1. FUNCTIONS AND CONFIGURATION  
1.2 Function block diagram  
Base unit  
CNP1B  
Interface unit  
Input signal  
Stroke end  
Forced stop  
Control circuit  
power suppy  
L11  
Power  
supply  
L21  
I/O signals  
for slots 1 to 4,  
e.g. servo-on  
FR-BAL CNP3  
MC  
3-phase  
200 to  
NFB  
Pulse train position command  
Pulse train position command  
I/O signals  
for slots 5 to 8,  
e.g. servo-on  
230VAC  
(Note)  
L1  
L2  
L3  
1-phase  
200 to  
230VAC  
Personal computer  
or  
other servo amplifier  
RS-232C  
RS-422  
D/A  
CNP1A  
Regenerative brake option  
P
N
C
Analog monitor  
(3 channels)  
Drive unit  
Servo motor  
Dynamic  
brake  
(Earth)  
U
Current  
detector  
V
M
W
Overcurrent  
protection  
Current  
detection  
Base amplifier  
Encoder  
Current  
control  
Actual position  
control  
Actual speed  
control  
Model  
position  
Model  
speed  
Model  
torque  
Pulse  
counter  
Model position  
control  
Model speed  
control  
Virtual  
Virtual  
servo  
motor  
encoder  
Pulse train position command  
Drive unit  
Servo motor  
Dynamic  
brake  
(Earth)  
U
Current  
detection  
V
M
W
Encoder  
Drive unit  
Servo motor  
Dynamic  
brake  
(Earth)  
U
V
M
W
Current  
detection  
Encoder  
Note. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
1 - 2  
1. FUNCTIONS AND CONFIGURATION  
1.3 Unit standard specifications  
(1) Base unit  
Model  
MR-J2M-BU4  
4 slots  
MR-J2M-BU6  
MR-J2M-BU8  
Number of slots  
6 slots  
8 slots  
(Note)  
Control  
circuit  
power  
supply  
Voltage/frequency  
3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
1-phase 170 to 253VAC  
Within 5%  
Inrush current  
20A (5ms)  
Voltage/frequency  
3-phase 200 to 230VAC or 1-phase 200 to 230VAC, 50/60Hz  
3-phase 170 to 253VAC or 1-phase 170 to 253VAC, 50/60 Hz  
Within 5%  
Permissible voltage fluctuation  
Permissible frequency fluctuation  
Maximum servo motor connection  
capacity [W]  
Main  
circuit  
power  
supply  
1600  
1280  
2400  
3200  
2560  
Continuous capacity [W]  
Inrush current  
1920  
62.5A (15ms)  
Function  
Converter function, regenerative control, rushing into current control function  
Regenerative overvoltage shut-off, regenerative fault protection,  
undervoltage /instantaneous power failure protection  
Protective functions  
Mass  
[kg]  
[lb]  
1.1  
2.4  
1.3  
2.9  
1.5  
3.3  
Note. The control circuit power supply is recorded to the interface unit.  
(2) Drive unit  
Model  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
Voltage/frequency  
270 to 311VDC  
230 to 342VDC  
Power  
supply  
Permissible voltage fluctuation  
Control system  
Dynamic brake  
Sine-wave PWM control, current control system  
Built-in  
Overcurrent shut-off, functions overload shut-off (electronic thermal relay), servo  
motor overheat protection, encoder fault protection, overspeed protection,  
excessive error protection  
Protective functions  
Structure  
Open (IP00)  
Cooling method  
Self-cooled  
0.4  
Force-cooling (With built-in fan unit)  
[kg]  
[lb]  
0.4  
0.4  
0.7  
Mass  
0.89  
0.89  
0.89  
1.54  
(3) Interface unit  
Model  
MR-J2M-P8A  
Control circuit power supply  
Power supply circuit for each unit(8 slots or less)  
Pulse train interface 8 channels  
RS-232C interface 1 channel  
Interface  
RS-422 interface 1 channel  
Forced stop input (2 points), alarm output (2 points), input signal (40 points),  
DIO  
output signal (16 points)  
AIO  
Analog monitor 3channels  
Structure  
Open (IP00)  
0.5  
[kg]  
Mass  
[lb]  
1.10  
1 - 3  
1. FUNCTIONS AND CONFIGURATION  
1.4 Function list  
The following table lists the functions of this servo. For details of the functions, refer to the Reference  
field.  
(1) Drive unit (Abbreviation DRU)  
Function  
Description  
Reference  
High-resolution encoder  
High-resolution encoder of 131072 pulses/rev is used as a servo motor encoder.  
Automatically adjusts the gain to optimum value if load applied to the servo motor  
shaft varies.  
Auto tuning  
Chapter 7  
Section 7.5.4  
Section 7.3  
Section 7.4  
You can switch between gains during rotation and gains during stop or use an  
external signal to change gains during operation.  
Gain changing function  
Adaptive vibration  
suppression control  
MELSERVO-J2M detects mechanical resonance and sets filter characteristics  
automatically to suppress mechanical vibration.  
Suppresses high-frequency resonance which occurs as servo system response is  
increased.  
Low-pass filter  
DRU parameter  
No. 7  
Position smoothing  
Speed can be increased smoothly in response to input pulse.  
Suppresses vibration of 1 pulse produced at a servo motor stop.  
Slight vibration  
suppression control  
DRU parameter  
No.20  
DRU parameters  
No. 3, 4, 69 to 71  
Section 5.3.1  
DRU parameters  
No.28  
Electronic gear  
Torque limit  
Input pulses can be multiplied by 1/50 to 50.  
Servo motor torque can be limited to any value.  
DRU parameter  
No. 21  
Command pulse selection Command pulse train form can be selected from among four different types.  
(2) Interface unit (Abbreviation IFU)  
Function  
Description  
Reference  
Section 2.7  
Position control mode  
This servo is used as position control servo.  
Section 3.1.2  
Section 3.1.5  
The servo-on (SON , ready (RD  
any other pins.  
and other input signals can be reassigned to  
)
)
I/O signal selection  
Section 3.2.6  
Section 4.2.2  
Section 4.3.2  
Section 5.3.2  
Status display  
Analog monitor  
Servo status is shown on the 5-digit, 7-segment LED display  
Servo status is output in terms of voltage in real time.  
(3) Base unit (Abbreviation BU)  
Function  
Description  
Reference  
Used when the built-in regenerative brake resistor of the unit does not have  
sufficient regenerative capability for the regenerative power generated.  
Regenerative brake option  
Section 12.1.1  
(4) MR Configurator (servo configuration software)  
Function  
Description  
Reference  
Machine analyzer function Analyzes the frequency characteristic of the mechanical system.  
Can simulate machine motions on a personal computer screen on the basis of the  
machine analyzer results.  
Machine simulation  
Gain search function  
External I/O signal  
display  
Can simulate machine motions on the basis of the machine analyzer results.  
Section 4.3.7  
ON/OFF statuses of external I/O signals are shown on the display.  
Section 4.2.6  
Section 4.3.8  
Output signal (DO)  
forced output  
Output signal can be forced on/off independently of the servo status.  
Use this function for output signal wiring check, etc.  
JOG operation and positioning operation are possible.  
Test operation mode  
1 - 4  
1. FUNCTIONS AND CONFIGURATION  
(5) Option unit  
Function  
Description  
Reference  
Merely setting a home position once makes home position return unnecessary at  
every power-on.  
Battery unit MR-J2M-BT (shortly correspondence schedule) is necessary.  
The encoder feedback is output from extension IO unit MR-J2M-D01 (shortly  
Absolute position  
detection system  
Encoder pulse output  
correspondence schedule) by the A  
B
Z phase pulse. The number of pulses  
output by the parameter can be changed.  
1.5 Model code definition  
(1) Drive unit  
(a) Rating plate  
SON  
ALM  
Rating plate  
MODEL  
Model  
MR-J2M-40DU  
Capacity  
POWER 400W  
INPUT DC270V-311V  
OUTPUT 170V 0-360Hz 2.3A  
SERIAL N9Z95046  
Applicable power supply  
Rated output current  
Serial number  
TC300A***G51  
MITSUBISHI ELECTRIC  
Rating plate  
(b) Model code  
MR-J2M- DU  
Rated output  
Symbol Capacity of applied servo motor  
10  
20  
40  
70  
100  
200  
400  
750  
(2) Interface unit  
(a) Rating plate  
AC SERVO  
MITSUBISHI  
Model  
MODEL  
Rating  
plate  
MR-J2M-P8A  
Input capacity  
POWER :75W  
AC INPUT:2PH AC200-230V 50Hz  
Applicable  
power supply  
2PH AC200-230V 60Hz  
OUTPUT : DC5/12/20 4.6A/1.2/0.7A  
Output voltage / current  
Serial number  
A5  
SERIAL  
:
TC3 AAAAG52  
PASSED  
MITSUBISHI ELECTRIC CORPORATION  
MADE IN JAPAN  
(b) Model code  
MR-J2M-P8A  
Pulse train interface compatible  
1 - 5  
1. FUNCTIONS AND CONFIGURATION  
(3) Base unit  
(a) Rating plate  
Rating plate  
MITSUBISHI  
MODEL  
Model  
MR-J2M-BU4  
Applicable power  
supply  
Serial number  
INPUT : 3PH 200-230  
14A 50/60Hz  
SERIAL:  
N87B95046  
BC336U246  
PASSED  
MITSUBISHI ELECTRIC  
MADE IN JAPAN  
(b) Model code  
MR-J2M-BU  
Number of Maximum servo motor  
Symbol  
Continuous capacity [W]  
slots  
connection capacity [W]  
4
6
8
4
6
8
1600  
2400  
3200  
1280  
1920  
2560  
1.6 Combination with servo motor  
The following table lists combinations of drive units and servo motors. The same combinations apply to  
the models with electromagnetic brakes and the models with reduction gears.  
Servo motor  
Drive unit  
HC-KFS  
053 13  
23  
HC-MFS  
053 13  
23  
HC-UFS  
13  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
23  
43  
43  
43  
73  
73  
73  
1 - 6  
1. FUNCTIONS AND CONFIGURATION  
1.7 Parts identification  
(1) Drive unit  
Mounting screw  
Status indicator LED  
Indicates the status of the drive unit.  
Blinking green: Servo off status  
Steady green: Servo on status  
Blinking red: Warning status  
Steady red: Alarm status  
Rating plate  
CN2  
Encoder connector  
Connect the  
servo motor encoder  
CNP2  
Servo motor connector  
For connection of servo  
motor power line cable  
(2) Interface unit  
Display  
Indicates operating status or alarm.  
Pushbutton switches  
Used to change status indication or set IFU parameters  
and DRU parameters.  
Mounting screw  
Display/setting cover  
CN1A  
I/O signal (For 1 to 4 slots)  
CN1B  
I/O signal (For 5 to 8 slots)  
CN5  
Forward rotation stroke end  
Reverse rotation stroke end  
Forced stop input  
CN3  
For connection of personal computer (RS-232C).  
Outputs analog monitor.  
Charge lamp  
Lit when main circuit capacitor carries electrical charge.  
When this lamp is on, do not remove/reinstall any unit  
from/to base unit and do not unplug/plug cable and  
connector from/into any unit.  
1 - 7  
1. FUNCTIONS AND CONFIGURATION  
(3) Base unit  
The following shows the MR-J2M-BU4.  
CON3A  
First slot connector  
CNP1B  
CON3C  
Control circuit power input connector  
Third slot connector  
CNP1A  
Regenerative brake  
option connector  
CON4  
CNP3  
Option slot connector  
Main circuit power  
input connector  
CON5  
Battery unit connector  
CON1,CON2  
Interface unit connectors  
CON3B  
Second slot connector  
CON3D  
Fourth slot connector  
1 - 8  
1. FUNCTIONS AND CONFIGURATION  
1.8 Servo system with auxiliary equipment  
To prevent an electric shock, always connect the protective earth (PE) terminal  
(terminal marked ) of the base unit to the protective earth (PE) of the control box.  
WARNING  
3-phase 200V to 230VAC  
power supply  
(Note) 1-phase 200V to 230VAC  
Options and auxiliary equipment  
Reference  
Options and auxiliary equipment  
Reference  
No-fuse breaker  
Section 12.2.2  
Regenerative brake option  
Section 12.1.1  
Section 12.2.1  
No-fuse  
breaker  
(NFB) or  
fuse  
Magnetic contactor  
Section 12.2.2 Cables  
MR Configurator  
(servo configuration software)  
Power factor improving reactor Section 12.2.3  
Section 12.1.4  
Control circuit  
power supply  
L11  
L21  
Command device  
(For 1 to 4 slots)  
Command device  
(For 5 to 8 slots)  
Magnetic  
contactor  
(MC)  
Regenerative brake  
option  
To CN1A  
To CN1B  
L1  
L2 L3  
P
C
To CNP1B  
Power  
factor  
improving  
reactor  
(FR-BAL)  
To CNP1A  
Encoder cable  
To CNP3  
Main circuit power supply  
To CN3  
To CN5  
Machine contact  
Power supply lead  
MR Configurator  
(servo configuration software  
MRZJW3-SETUP151E or later)  
Personal computer  
Note. For 1-phase 200 to 230VAC, connect the power supply to L1, L2 and leave L3 open.  
1 - 9  
1. FUNCTIONS AND CONFIGURATION  
MEMO  
1 - 10  
2. INSTALLATION AND START UP  
2. INSTALLATION AND START UP  
Stacking in excess of the limited number of products is not allowed.  
Install the equipment to incombustibles. Installing them directly or close to  
combustibles will led to a fire.  
Install the equipment in a load-bearing place in accordance with this Instruction  
Manual.  
Do not get on or put heavy load on the equipment to prevent injury.  
Use the equipment within the specified environmental condition range.  
Provide an adequate protection to prevent screws, metallic detritus and other  
conductive matter or oil and other combustible matter from entering each unit.  
Do not block the intake/exhaust ports of each unit. Otherwise, a fault may occur.  
Do not subject each unit to drop impact or shock loads as they are precision  
equipment.  
CAUTION  
Do not install or operate a faulty unit.  
When the product has been stored for an extended period of time, consult  
Mitsubishi.  
When treating the servo amplifier, be careful about the edged parts such as the  
corners of the servo amplifier.  
2.1 Environmental conditions  
The following environmental conditions are common to the drive unit, interface unit and base unit.  
Environment  
Conditions  
[
[
[
[
]
]
]
]
0 to 55 (non-freezing)  
32 to 131 (non-freezing)  
20 to 65 (non-freezing)  
4 to 149 (non-freezing)  
During  
operation  
Ambient  
temperature  
In storage  
During operation  
In storage  
Ambient  
humidity  
90%RH or less (non-condensing)  
Indoors (no direct sunlight)  
Free from corrosive gas, flammable gas, oil mist, dust and dirt  
Max. 1000m (3280 ft) above sea level  
Ambience  
Altitude  
2
2
[m/s ]  
5.9 [m/s ] or less  
Vibration  
2
2
[ft/s ]  
19.4 [ft/s ] or less  
2 - 1  
2. INSTALLATION AND START UP  
2.2 Installation direction and clearances  
The equipment must be installed in the specified direction. Otherwise, a fault may  
occur.  
CAUTION  
Leave specified clearances between each unit and control box inside walls or other  
equipment.  
(1) Installation of one MELSERVO-J2M  
40mm(1.57inch) or more  
40mm(1.57inch) or more  
(2) Installation of two or more MELSERVO-J2M  
When installing two units vertically, heat generated by the lower unit influences the ambient  
temperature of the upper unit. Suppress temperature rises in the control box so that the temperature  
between the upper and lower units satisfies the environmental conditions. Also provide adequate  
clearances between the units or install a fan.  
40mm(1.57inch) or more  
Leave 100mm(3.94inch) or more  
clearance or install fan for forced air cooling.  
40mm(1.57inch) or more  
2 - 2  
2. INSTALLATION AND START UP  
(3) Others  
When using heat generating equipment such as the regenerative brake option, install them with full  
consideration of heat generation so that MELSERVO-J2M is not affected.  
Install MELSERVO-J2M on a perpendicular wall in the correct vertical direction.  
2.3 Keep out foreign materials  
(1) When installing the unit in a control box, prevent drill chips and wire fragments from entering each  
unit.  
(2) Prevent oil, water, metallic dust, etc. from entering each unit through openings in the control box or a  
fan installed on the ceiling.  
(3) When installing the control box in a place where there are much toxic gas, dirt and dust, conduct an  
air purge (force clean air into the control box from outside to make the internal pressure higher than  
the external pressure) to prevent such materials from entering the control box.  
2.4 Cable stress  
(1) The way of clamping the cable must be fully examined so that flexing stress and cable's own mass  
stress are not applied to the cable connection.  
(2) For use in any application where the servo motor moves, fix the cables (encoder, power supply, brake)  
supplied with the servo motor, and flex the optional encoder cable or the power supply and brake  
wiring cables. Use the optional encoder cable within the flexing life range. Use the power supply and  
brake wiring cables within the flexing life of the cables.  
(3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner  
or stamped by workers or vehicles.  
(4) For installation on a machine where the servo motor will move, the flexing radius should be made as  
large as possible. Refer to section 11.4 for the flexing life.  
2 - 3  
2. INSTALLATION AND START UP  
2.5 Mounting method  
(1) Base unit  
As shown below, mount the base unit on the wall of a control box or like with M5 screws.  
Wall  
(2) Interface unit/drive unit (MR-J2M-40DU or less)  
The following example gives installation of the drive unit to the base unit. The same also applies to the  
interface unit.  
Sectional view  
Base unit  
Drive unit  
Wall  
1)  
Positioning hole  
Catch  
1) Hook the catch of the drive unit in the positioning hole of the base unit.  
Sectional view  
2)  
Base unit  
Drive unit  
Wall  
2) Using the catch hooked in the positioning hole as a support, push the drive unit in.  
2 - 4  
2. INSTALLATION AND START UP  
Sectional view  
3)  
3)  
Wall  
3) Tighten the M4 screw supplied for the base unit to fasten the drive unit to the base unit.  
POINT  
Securely tighten the drive unit fixing screw.  
Sectional view  
Wall  
(3) Drive unit (MR-J2M-70DU)  
When using the MR-J2M-70DU, install it on two slots of the base unit. The slot number of this drive  
unit is that of the left hand side slot of the two occupied slots, when they are viewed from the front of  
the base unit.  
2 - 5  
2. INSTALLATION AND START UP  
2.6 When switching power on for the first time  
Before starting operation, check the following:  
(1) Wiring  
(a) Check that the control circuit power cable, main circuit power cable and servo motor power cable  
are fabricated properly.  
(b) Check that the control circuit power cable is connected to the CNP1B connector and the main  
circuit power cable is connected to the CNP3 connector.  
(c) Check that the servo motor power cable is connected to the drive unit CNP2 connector.  
(d) Check that the base unit is earthed securely. Also check that the drive unit is screwed to the base  
unit securely.  
(e) When using the regenerative brake option, check that the cable using twisted wires is fabricated  
properly and it is connected to the CNP1A connector properly.  
(f) When the MR-J2M-70DU is used, it is wired to have the left-hand side slot number of the two slots.  
(g) 24VDC or higher voltages are not applied to the pins of connector CN3.  
(h) SD and SG of connector CN1A CN1B CN3 CN4A CN4B and CN5 are not shorted.  
(i) The wiring cables are free from excessive force.  
(j) Check that the encoder cable and servo motor power cable connected to the drive unit are connected  
to the same servo motor properly.  
(k) When stroke end limit switches are used, the signals across LSP -SG and LSN -SG are on  
during operation.  
(2) Parameters  
(a) Check that the drive unit parameters are set to correct values using the servo system controller  
screen or MR Configurator (servo configuration software).  
(b) Check that the interface unit parameters are set to correct values using the interface unit display  
or MR Configurator (servo configuration software).  
(3) Environment  
Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.  
(4) Machine  
(a) The screws in the servo motor installation part and shaft-to-machine connection are tight.  
(b) The servo motor and the machine connected with the servo motor can be operated.  
2 - 6  
2. INSTALLATION AND START UP  
2.7 Start up  
Do not operate the switches with wet hands. You may get an electric shock.  
Do not operate the controller with the front cover removed. High-voltage terminals  
and charging area exposed and you may get an electric shock.  
WARNING  
CAUTION  
During power-on or for some time after power-off, do not touch or close a parts  
(cable etc.) to the regenerative brake resistor, servo motor, etc. Their temperatures  
may be high and you may get burnt or a parts may damaged.  
Before starting operation, check the parameters. Some machines may perform  
unexpected operation.  
Take safety measures, e.g. provide covers, to prevent accidental contact of hands  
and parts (cables, etc.) with the servo amplifier heat sink, regenerative brake  
resistor, servo motor, etc.since they may be hot while power is on or for some time  
after power-off. Their temperatures may be high and you may get burnt or a parts  
may damaged.  
During operation, never touch the rotating parts of the servo motor. Doing so can  
cause injury.  
Connect the servo motor with a machine after confirming that the servo motor operates properly alone.  
2 - 7  
2. INSTALLATION AND START UP  
(1) Power on  
Switching on the main circuit power/control circuit power places the interface unit display in the scroll  
status as shown below.  
In the absolute position detection system, first power-on results in the absolute position lost (A.25)  
alarm and the servo system cannot be switched on. This is not a failure and takes place due to the  
uncharged capacitor in the encoder.  
The alarm can be deactivated by keeping power on for a few minutes in the alarm status and then  
switching power off once and on again.  
Also in the absolute position detection system, if power is switched on at the servo motor speed of  
500r/min or higher, position mismatch may occur due to external force or the like. Power must  
therefore be switched on when the servo motor is at a stop.  
(2) Test operation  
Using JOG operation in the test operation mode, make sure that the servo motor operates. (Refer to  
Section 6.8.2.)  
(3) Parameter setting  
Set the parameters according to the structure and specifications of the machine. Refer to Chapter 5 for  
the parameter definitions.  
After setting the parameters, switch power off once.  
2 - 8  
2. INSTALLATION AND START UP  
(4) Slot number confirmation  
Confirm the slot number in the interface unit display section of the installed drive unit.  
For MR-J2M-BU4  
Display  
First slot  
Third slot  
Slot number  
Drive unit status  
Slot number  
Second slot  
Fourth slot  
(5) Servo-on  
Switch the servo-on in the following procedure:  
1) Switch on main circuit/control power supply.  
2) Turn on the servo-on (SON ).  
When the servo-on status is established, operation is enabled and the servo motor is locked. At  
this time, the interface unit displays "@ d@". (@ represents the slot number.)  
(6) Command pulse input  
Entry of a pulse train from the positioning device rotates the servo motor. At first, run it at low speed  
and check the rotation direction, etc. If it does not run in the intended direction, check the input  
signal.  
On the status display, check the speed, command pulse frequency, load factor, etc. of the servo motor.  
When machine operation check is over, check automatic operation with the program of the positioning  
device.  
This servo amplifier has a real-time auto tuning function under model adaptive control. Performing  
operation automatically adjusts gains. The optimum tuning results are provided by setting the  
response level appropriate for the machine in DRU parameter No. 2. (Refer to chapter 7.)  
(7) Home position return  
Make home position return as required.  
2 - 9  
2. INSTALLATION AND START UP  
(8) Stop  
In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo  
motor:  
Refer to Section 3.8, (2) for the servo motor equipped with electromagnetic brake. Note that the stop  
pattern of forward rotation stroke end (LSP ) reverse rotation stroke end (LSN ) OFF is as described  
below.  
(a) Servo-on (SON ) OFF  
The base circuit is shut off and the servo motor coasts.  
(b) Alarm occurrence  
When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the  
servo motor to a sudden stop.  
(c) Forced stop (EMG_ ) OFF  
The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden  
stop. Servo forced stop warning (A.E6) occurs.  
(d) Forward rotation stroke end (LSP ) reverse rotation stroke end (LSN ) OFF  
The droop pulse value is erased and the servo motor is stopped and servo-locked. It can be run in  
the opposite direction.  
POINT  
A sudden stop indicates deceleration to a stop at the deceleration time  
constant of zero.  
2 - 10  
3. SIGNALS AND WIRING  
3. SIGNALS AND WIRING  
Any person who is involved in wiring should be fully competent to do the work.  
Before starting wiring, make sure that the voltage is safe in the tester more than 10  
minutes after power-off. Otherwise, you may get an electric shock.  
Ground the base unit and the servo motor securely.  
WARNING  
Do not attempt to wire each unit and servo motor until they have been installed.  
Otherwise, you may get an electric shock.  
The cables should not be damaged, stressed excessively, loaded heavily, or  
pinched. Otherwise, you may get an electric shock.  
Wire the equipment correctly and securely. Otherwise, the servo motor may  
misoperate, resulting in injury.  
Connect cables to correct terminals to prevent a burst, fault, etc.  
Ensure that polarity ( , ) is correct. Otherwise, a burst, damage, etc. may occur.  
The surge absorbing diode installed to the DC relay designed for control output  
should be fitted in the specified direction. Otherwise, the signal is not output due to  
a fault, disabling the forced stop and other protective circuits.  
Interface unit  
Interface unit  
VIN  
VIN  
SG  
SG  
CAUTION  
Control output  
signal  
Control output  
signal  
RA  
RA  
Use a noise filter, etc. to minimize the influence of electromagnetic interference,  
which may be given to electronic equipment used near each unit.  
Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF  
option) with the power line of the servo motor.  
When using the regenerative brake resistor, switch power off with the alarm signal.  
Otherwise, a transistor fault or the like may overheat the regenerative brake  
resistor, causing a fire.  
Do not modify the equipment.  
3 - 1  
3. SIGNALS AND WIRING  
3.1 Control signal line connection example  
POINT  
Refer to Section 3.4 for connection of the power supply line and to Section  
3.5 for connection with servo motors.  
MR-J2M-P8A  
CN1A(Note 4)  
(Note 13)  
(Note 2)  
Symbol  
RD  
Slot 1 Slot 2 Slot 3 Slot 4  
RA  
RA  
RA  
11  
35  
33  
8
6
28  
3
INP  
30  
(Note 7)  
27  
ALM_A  
24VDC  
power  
supply  
37  
36  
10  
9
32  
31  
5
4
SON  
RES  
Positioning module  
QD70  
LG  
P5  
OP_VIN  
21, 46, 50  
CON1  
(Note 13)  
49  
47  
1
(Note 8)  
Symbol  
Slot 1 Slot 2 Slot 3 Slot 4  
24G  
24V  
A1  
B1  
SG  
VIN  
OPC  
26  
2
CLEAR COM  
B14  
B13  
B3  
B16  
B15  
B6  
A14  
A13  
A3  
A16  
A15  
A6  
CR  
PG  
CLEAR  
PULSE COM  
PULSE F  
12  
44  
19  
45  
20  
25  
34  
42  
17  
43  
18  
24  
7
29  
38  
13  
39  
14  
22  
40  
15  
41  
16  
23  
B4  
B7  
A4  
A7  
PP  
NG  
B2  
B5  
A2  
A5  
PULSE R  
PG COM  
PG  
NP  
B18  
B17  
OP  
B20  
B19  
A18  
A17  
A20  
A19  
OP_COM  
48  
Plate  
SD  
(Note 13) CN1B(Note 4)  
(Note 2)  
Symbol  
RD  
Slot 5 Slot 6 Slot 7 Slot 8  
RA  
RA  
RA  
11  
35  
33  
8
6
28  
3
INP  
30  
ALM_B  
27  
(Note 7)  
37  
36  
10  
9
32  
31  
5
4
SON  
RES  
LG  
21, 46, 50  
P5  
49  
47  
1
(Note 8)  
OP_VIN  
SG  
CON2  
Slot 5 Slot 6 Slot 7 Slot 8  
(Note 13)  
VIN  
OPC  
CR  
26  
2
Symbol  
CLEAR COM  
B14  
B13  
B3  
B16  
B15  
B6  
A14  
A13  
A3  
A16  
A15  
A6  
CLEAR  
PULSE COM  
PULSE F  
12  
44  
19  
45  
20  
25  
34  
42  
17  
43  
18  
24  
7
29  
38  
13  
39  
14  
22  
PG  
40  
15  
41  
16  
23  
B4  
B7  
A4  
A7  
PP  
NG  
PULSE R  
B2  
B5  
A2  
A5  
NP  
PG COM  
B18  
B17  
OP  
B20  
B19  
A18  
A17  
A20  
A19  
48  
Plate  
PG  
OP_COM  
SD  
3 - 2  
3. SIGNALS AND WIRING  
(Note 9)  
MR Configurator  
(servo  
configuration  
Personal computer  
(Note 5)CN3  
4
software)  
CN3  
CN5  
A
A
A
MO1  
10k  
10k  
10k  
(Note 12)  
Monitor  
output  
Max. +1mA  
meter  
Zero-center  
14 MO2  
Communication  
cable  
7
MO3  
LG  
(Note 13)  
Symbol Slot 1 Slot 2 Slot 3 Slot 4  
11  
1
2
3
4
5
6
7
LSP  
LSN  
(Note 6)  
Plate  
SD  
10  
SG  
8
Base unit  
Drive unit  
(Note 13)  
CN5  
CON3A  
(Slot 1)  
(Note 5) CN2  
Symbol Slot 5 Slot 6 Slot 7 Slot 8  
LSP  
LSN  
11  
12  
13  
14  
15  
16  
17  
18  
(Note 6)  
CN5  
Symbol Slot 1 to 8  
Drive unit  
EMG_A  
EMG_B  
20  
19  
CON3B  
(Slot 2)  
(Note 3, 6)  
(Note 5) CN2  
MR-J2M-P8A  
Drive unit  
CON3H  
(Slot 8)  
(Note 5) CN2  
(Note 11)  
Battery unit  
MR-J2M-BT  
MR-J2MBTCBL  
M
(Note 10)MR-J2M-D01  
CN4A  
CON4  
(Note 1)  
CN4B  
3 - 3  
3. SIGNALS AND WIRING  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (terminal marked ) of the base unit to the  
protective earth (PE) of the control box.  
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals,  
disabling the forced stop and other protective circuits.  
3. The forced stop switch (normally closed contact) must be installed.  
4. CN1A CN1B, CN4A CN4B have the same shape. Wrong connection of the connectors will lead to a fault.  
5. CN2 and CN3 have the same shape. Wrong connection of the connectors can cause a fault.  
6. When starting operation, always connect the forced stop (EMG_A) and forward/reverse rotation stroke end (LSN /LSP ) with  
SG. (Normally closed contacts)  
7. Trouble (ALM_ ) is connected with COM in normal alarm-free condition. When this signal is switched off (at occurrence of an  
alarm), the output of the programmable controller should be stopped by the sequence program.  
8. Always connect P5-OP_VIN when using the 5V output (P5). Keep them open when supplying external power.  
9. Use MRZJW3-SETUP151E.  
10. Refer to Section 3.3 for the MR-J2M-D01 extension IO unit.  
11. The MR-J2M-BT battery unit is required to configure an absolute position detection system. Refer to Chapter 14 for details.  
12. When connecting the personal computer together with monitor outputs 1, 2, use the maintenance junction card (MR-J2CN3TM).  
(Refer to Section 12.1.2)  
13.  
in Symbol indicates a slot number.  
3 - 4  
3. SIGNALS AND WIRING  
3.2 I/O signals of interface unit  
3.2.1 Connectors and signal arrangements  
POINT  
The connector pin-outs shown above are viewed from the cable connector  
wiring section side.  
(1) Signal arrangement  
CN1A  
CN1B  
2
OPC  
4
2
OPC  
4
27  
27  
1
SG  
3
1
SG  
3
26  
26  
VIN  
28  
ALM_B  
29  
ALM_A  
29  
VIN  
28  
RES4  
6
CR8  
31  
CR4  
31  
RES8  
6
INP4  
5
INP8  
5
RD4  
30  
RD8  
30  
RD3  
8
RES7  
33  
RES3  
33  
RD7  
8
SON4  
7
SON8  
7
INP3  
32  
INP7  
32  
INP2  
10  
RD6  
35  
RD2  
35  
INP6  
10  
CR3  
9
CR7  
9
SON3  
34  
SON7  
34  
SON2  
12  
INP5  
37  
INP1  
37  
SON6  
12  
RES2  
11  
RES6  
11  
CR2  
36  
CR6  
36  
CR1  
14  
SON5  
39  
SON1  
39  
CR5  
14  
RD1  
13  
RD5  
13  
RES1  
38  
RES5  
38  
NP4  
16  
NG8  
41  
NG4  
41  
NP8  
16  
PP4  
15  
PP8  
15  
PG4  
40  
PG8  
40  
NP3  
18  
NG7  
43  
NG3  
43  
NP7  
18  
PP3  
17  
PP7  
17  
PG3  
42  
PG7  
42  
NP2  
20  
NG6  
45  
NG2  
45  
NP6  
20  
PP2  
19  
PP6  
19  
PG2  
44  
PG6  
44  
MR-J2M-P8A  
NP1  
22  
NG5  
47  
NG1  
47  
NP5  
22  
PP1  
21  
PP5  
21  
PG1  
46  
PG5  
46  
OP4  
24  
OP_VIN  
49  
OP8  
24  
OP_VIN  
49  
LG  
LG  
LG  
LG  
23  
23  
48  
48  
OP2  
OP6  
P5  
P5  
OP3  
25  
OP7  
25  
OP_COM  
OP_COM  
50  
50  
OP1  
OP5  
LG  
LG  
CN5  
CN3  
1
LSP1  
3
11  
LSP5  
13  
1
LG  
3
11  
LG  
13  
2
LSN1  
4
12  
LSN5  
14  
2
RXD  
4
12  
TXD  
14  
LSP2  
5
LSP6  
15  
LG  
5
The connector frames are  
connected with the PE (earth)  
terminal inside the servo amplifier.  
LSN2  
6
LSN6  
16  
MO1  
6
MO2  
16  
15  
RDN  
17  
LSP3  
7
LSP7  
17  
RDP  
7
LSN3  
8
LSN7  
18  
8
18  
LSP4  
9
LSP8  
19  
MO3  
9
SG  
10  
LSN8  
19  
20  
EMG_A  
10  
20  
P5  
EMG_B  
SDP  
SDN  
LSN4  
TRE  
3 - 5  
3. SIGNALS AND WIRING  
3.2.2 Signal explanations  
For the I/O interfaces (symbols in I/O column in the table), refer to Section 3.2.5.  
The pin No.s in the connector pin No. column are those in the initial status.  
(1) Input signals  
Connector  
Signal  
Symbol  
Functions/Applications  
I/O division  
pin No.  
Servo-on 1  
SON 1 CN1A-37 SON 1: Servo-on signal for slot 1  
DI-1  
SON 2: Servo-on signal for slot 2  
Servo-on 2  
Servo-on 3  
Servo-on 4  
Servo-on 5  
Servo-on 6  
Servo-on 7  
Servo-on 8  
SON 2 CN1A-10  
SON 3 CN1A-32  
SON 3: Servo-on signal for slot 3  
SON 4: Servo-on signal for slot 4  
SON 4  
CN1A-5  
SON 5: Servo-on signal for slot 5  
SON 5 CN1B-37  
SON 6 CN1B-10  
SON 7 CN1B-32  
SON 6: Servo-on signal for slot 6  
SON 7: Servo-on signal for slot 7  
SON 8: Servo-on signal for slot 8  
SON 8  
CN1B-5  
Connect SON -SG to switch on the base circuit and make the servo  
amplifier ready to operate (servo-on).  
Disconnect SON -SG to shut off the base circuit and coast the servo  
motor (servo off).  
Reset 1  
Reset 2  
Reset 3  
Reset 4  
Reset 5  
Reset 6  
Reset 7  
Reset 8  
RES 1 CN1A-36 RES 1: Reset signal for slot 1  
DI-1  
RES 2: Reset signal for slot 2  
RES 2  
RES 3 CN1A-31  
RES 4 CN1A-4  
RES 5 CN1B-36  
RES 6 CN1B-9  
RES 7 CN1B-31  
RES 8 CN1B-4  
CN1A-9  
RES 3: Reset signal for slot 3  
RES 4: Reset signal for slot 4  
RES 5: Reset signal for slot 5  
RES 6: Reset signal for slot 6  
RES 7: Reset signal for slot 7  
RES 8: Reset signal for slot 8  
Disconnect RES -SG for more than 50ms to reset the alarm.  
Some alarms cannot be deactivated by the reset (RES . Refer to  
)
Section 9.2.  
Shorting RES -SG in an alarm-free status shuts off the base circuit.  
The base circuit is not shut off when "  
1
"is set in DRU  
parameter No. 51 (Function selection 6).  
3 - 6  
3. SIGNALS AND WIRING  
Connector  
pin No.  
Signal  
Symbol  
Functions/Applications  
I/O division  
Forward rotation  
stroke end 1  
LSP 1  
LSP 2  
LSP 3  
LSP 4  
LSP 5  
LSP 6  
LSP 7  
LSP 8  
CN5-1  
CN5-3  
LSP 1: Forward rotation stroke end signal for slot 1  
LSP 2: Forward rotation stroke end signal for slot 2  
LSP 3: Forward rotation stroke end signal for slot 3  
LSP 4: Forward rotation stroke end signal for slot 4  
LSP 5: Forward rotation stroke end signal for slot 5  
LSP 6: Forward rotation stroke end signal for slot 6  
LSP 7: Forward rotation stroke end signal for slot 7  
LSP 8: Forward rotation stroke end signal for slot 8  
LSN 1: Reverse rotation stroke end signal for slot 1  
LSN 2: Reverse rotation stroke end signal for slot 2  
LSN 3: Reverse rotation stroke end signal for slot 3  
LSN 4: Reverse rotation stroke end signal for slot 4  
LSN 5: Reverse rotation stroke end signal for slot 5  
LSN 6: Reverse rotation stroke end signal for slot 6  
LSN 7: Reverse rotation stroke end signal for slot 7  
LSN 8: Reverse rotation stroke end signal for slot 8  
To start operation, short LSP -SG and/or LSN -SG. Open them to  
bring the motor to a sudden stop and make it servo-locked.  
DI-1  
Forward rotation  
stroke end 2  
Forward rotation  
stroke end 3  
CN5-5  
Forward rotation  
stroke end 4  
CN5-7  
Forward rotation  
stroke end 5  
CN5-11  
CN5-13  
CN5-15  
CN5-17  
Forward rotation  
stroke end 6  
Forward rotation  
stroke end 7  
Forward rotation  
stroke end 8  
Reverse rotation  
stroke end 1  
LSN 1  
LSN 2  
CN5-2  
CN5-4  
Set "  
1" in parameter No. 22 (Function selection 4) to make a  
Reverse rotation  
stroke end 2  
slow stop.  
(Refer to Section 5.1.2.)  
Reverse rotation  
stroke end 3  
LSN 3  
LSN 4  
LSN 5  
LSN 6  
LSN 7  
LSN 8  
CN5-6  
CN5-10  
CN5-12  
CN5-14  
CN5-16  
CN5-18  
(Note) Input signals  
Operation  
CCW CW  
direction direction  
LSP  
LSN  
Reverse rotation  
stroke end 4  
1
0
1
0
1
1
0
0
Reverse rotation  
stroke end 5  
Reverse rotation  
stroke end 6  
Note. 0: LSP /LSN -SG off (open)  
1: LSP /LSN -SG on (short)  
Reverse rotation  
stroke end 7  
Reverse rotation  
stroke end 8  
Forced stop A  
Forced stop B  
EMG_A CN5-20 EMG_A: Forced stop signal for slots 1 to 8  
EMG_B CN5-19 EMG_B: Forced stop signal for slots 1 to 8  
DI-1  
Disconnect EMG_ -SG to bring the servo motor to forced stop state, in  
which the servo is switched off and the dynamic brake is operated.  
Connect EMG_ -SG in the forced stop state to reset that state.  
When either of EMG-A and EMG-B is to be used, short the unused  
signal with SG.  
3 - 7  
3. SIGNALS AND WIRING  
Connector  
pin No.  
Signal  
Symbol  
Functions/Applications  
I/O division  
Clear 1  
CR 1  
CR 2  
CR 3  
CR 4  
CR 5  
CR 6  
CR 7  
CR 8  
CN1A-12 CR 1: Clear signal for slot 1  
DI-1  
CR 2: Clear signal for slot 2  
CR 3: Clear signal for slot 3  
CR 4: Clear signal for slot 4  
CR 5: Clear signal for slot 5  
CR 6: Clear signal for slot 6  
CR 7: Clear signal for slot 7  
CR 8: Clear signal for slot 8  
Clear 2  
Clear 3  
Clear 4  
Clear 5  
Clear 6  
Clear 7  
Clear 8  
CN1A-34  
CN1A-7  
CN1A-29  
CN1B-12  
CN1B-34  
CN1B-7  
CN1B-29  
Connect CR -SG to clear the position control counter droop pulses on its  
leading edge. The pulse width should be 10ms or more.  
When the DRU parameter No.42 (Input signal selection 1) setting is"  
", the pulses are always cleared while CR -SG are connected.  
1
PP 1  
NP 1  
PG 1  
NG 1  
PP 2  
NP 2  
PG 2  
NG 2  
PP 3  
NP 3  
PG 3  
NG 3  
PP 4  
NP 4  
PG 4  
NG 4  
PP 5  
NP 5  
PG 5  
NG 5  
PP 6  
NP 6  
PG 6  
NG 6  
PP 7  
NP 7  
PG 7  
NG 7  
PP 8  
NP 8  
PG 8  
NG 8  
CN1A-19 PP 1 NP 1 PG 1 NG 1: Forward/reverse rotation pulse train for slot 1  
CN1A-20 PP 2 NP 2 PG 2 NG 2: Forward/reverse rotation pulse train for slot 2  
CN1A-44 PP 3 NP 3 PG 3 NG 3: Forward/reverse rotation pulse train for slot 3  
CN1A-45 PP 4 NP 4 PG 4 NG 4: Forward/reverse rotation pulse train for slot 4  
DI-2  
Forward rotation  
pulse train 1  
Reverse rotation  
pulse train 1  
PP 5 NP 5 PG 5 NG 5: Forward/reverse rotation pulse train for slot 5  
PP 6 NP 6 PG 6 NG 6: Forward/reverse rotation pulse train for slot 6  
PP 7 NP 7 PG 7 NG 7: Forward/reverse rotation pulse train for slot 7  
PP 8 NP 8 PG 8 NG 8: Forward/reverse rotation pulse train for slot 8  
Used to enter a command pulse train.  
CN1A-17  
CN1A-18  
CN1A-42  
CN1A-43  
CN1A-15  
CN1A-16  
CN1A-40  
CN1A-41  
CN1A-13  
CN1A-14  
CN1A-38  
CN1A-39  
CN1B-19  
CN1B-20  
CN1B-44  
CN1B-45  
CN1B-17  
CN1B-18  
CN1B-42  
CN1B-43  
CN1B-15  
CN1B-16  
CN1B-40  
CN1B-41  
CN1B-13  
CN1B-14  
CN1B-38  
CN1B-39  
Forward rotation  
pulse train 2  
Reverse rotation  
pulse train 2  
Forward rotation  
pulse train 3  
In the open collector system (max. input frequency 200kpps):  
Forward rotation pulse train across PP -SG  
Reverse rotation  
pulse train 3  
Reverse rotation pulse train across NP -SG  
In the differential receiver system (max. input frequency 500kpps):  
Forward rotation pulse train across PG -PP  
Forward rotation  
pulse train 4  
Reverse rotation pulse train across NG -NP  
Reverse rotation  
pulse train 4  
The command pulse train form can be changed using DRU parameter No.  
21 (Function selection 3).  
Forward rotation  
pulse train 5  
Reverse rotation  
pulse train 5  
Forward rotation  
pulse train 6  
Reverse rotation  
pulse train 6  
Forward rotation  
pulse train 7  
Reverse rotation  
pulse train 7  
Forward rotation  
pulse train 8  
Reverse rotation  
pulse train 8  
3 - 8  
3. SIGNALS AND WIRING  
(2) Output signals  
Connector  
pin No.  
Signal  
Symbol  
Functions/Applications  
I/O division  
Trouble A  
ALM_A CN1A-27 ALM_A: Alarm signal for slot 1 to 4  
DO-1  
ALM_B: Alarm signal for slot 5 to 8  
Trouble B  
ALM_B CN1B-27  
ALM -SG are disconnected when power is switched off or the  
protective circuit is activated to shut off the base circuit. Without  
alarm, ALM -SG are connected within about 3s after power on.  
Ready 1  
Ready 2  
Ready 3  
Ready 4  
Ready 5  
Ready 6  
Ready 7  
Ready 8  
RD 1  
RD 2  
RD 3  
RD 4  
RD 5  
RD 6  
RD 7  
RD 8  
CN1A-11 RD 1: Ready signal for slot 1  
DO-1  
RD 2: Ready signal for slot 2  
CN1A-33  
CN1A-6  
RD 3: Ready signal for slot 3  
RD 4: Ready signal for slot 4  
CN1A-28  
CN1B-11  
CN1B-33  
CN1B-6  
RD 5: Ready signal for slot 5  
RD 6: Ready signal for slot 6  
RD 7: Ready signal for slot 7  
RD 8: Ready signal for slot 8  
CN1B-28  
RD -SG are connected when the servo is switched on and the servo  
amplifier is ready to operate.  
In position 1  
In position 2  
In position 3  
In position 4  
In position 5  
In position 6  
In position 7  
In position 8  
INP 1  
INP 2  
INP 3  
INP 4  
INP 5  
INP 6  
INP 7  
INP 8  
CN1A-35 INP 1: In position signal for slot 1  
DO-1  
INP 2: In position signal for slot 2  
CN1A-8  
CN1A-30  
CN1A-3  
CN1B-35  
CN1B-8  
CN1B-30  
CN1B-3  
INP 3: In position signal for slot 3  
INP 4: In position signal for slot 4  
INP 5: In position signal for slot 5  
INP 6: In position signal for slot 6  
INP 7: In position signal for slot 7  
INP 8: In position signal for slot 8  
INP -SG are connected when the number of droop pulses is in the  
preset in-position range. The in-position range can be changed using  
DRU parameter No. 5.  
When the in-position range is increased, INP -SG may be kept  
connected during low-speed rotation.  
Encoder Z-phase  
pulse 1  
OP 1  
OP 2  
OP 3  
OP 4  
OP 5  
OP 6  
OP 7  
OP 8  
MO1  
MO2  
MO3  
CN1A-25 OP 1: Encoder Z-phase pulse signal for slot 1  
OP 2: Encoder Z-phase pulse signal for slot 2  
DO-2  
OP 3: Encoder Z-phase pulse signal for slot 3  
Encoder Z-phase  
pulse 2  
CN1A-24  
CN1A-23  
CN1A-22  
CN1B-25  
CN1B-24  
CN1B-23  
CN1B-22  
CN3-4  
OP 4: Encoder Z-phase pulse signal for slot 4  
OP 5: Encoder Z-phase pulse signal for slot 5  
Encoder Z-phase  
pulse 3  
OP 6: Encoder Z-phase pulse signal for slot 6  
OP 7: Encoder Z-phase pulse signal for slot 7  
Encoder Z-phase  
pulse 4  
OP 8: Encoder Z-phase pulse signal for slot 8  
Outputs the zero-point signal of the encoder. One pulse is output per  
servo motor revolution. OP and LG are connected when the zero-point  
position is reached. (Negative logic)  
Encoder Z-phase  
pulse 5  
Encoder Z-phase  
pulse 6  
The minimum pulse width is about 400 s. For home position return  
using this pulse, set the creep speed to 100r/min. or less.  
Encoder Z-phase  
pulse 7  
Encoder Z-phase  
pulse 8  
Analog monitor 1  
Used to output the data set in IFU parameter No.3 (Analog monitor 1  
output) to across MO1-LG in terms of voltage. Resolution 10 bits  
Analog  
output  
Analog  
output  
Analog  
output  
Analog monitor 2  
Analog monitor 3  
CN3-14 Used to output the data set in IFU parameter No.4 (Analog monitor 2  
output) to across MO2-LG in terms of voltage. Resolution 10 bits  
CN3-7  
Used to output the data set in IFU parameter No.5 (Analog monitor 3  
output) to across MO3-LG in terms of voltage. Resolution 10 bits  
3 - 9  
3. SIGNALS AND WIRING  
(3) Communication  
POINT  
Refer to Chapter 13 for the communication function.  
Connector  
pin No.  
Signal  
Symbol  
Functions/Applications  
RS-422 I/F  
SDP  
SDN  
RDP  
RDN  
TRE  
CN3-9  
RS-422 and RS-232C functions cannot be used together.  
CN3-19 Choose either one in IFU parameter No. 16.  
CN3-5  
CN3-15  
RS-422  
CN3-10 Termination resistor connection terminal of RS-422 interface.  
When the servo amplifier is the termination axis, connect this terminal to RDN  
(CN3-15).  
termination  
RS-232C I/F  
RXD  
TXD  
CN3-2  
RS-422 and RS-232C functions cannot be used together.  
CN3-12 Choose either one in IFU parameter No. 0.  
(4) Power supply  
Connector  
Signal  
Symbol  
Functions/Applications  
pin No.  
Digital I/F power  
supply input  
VIN  
CN1A-26 Driver power input terminal for digital interface.  
CN1B-26 Input 24VDC (300mA or more) for input interface.  
24VDC 10%  
Digital I/F  
common  
SG  
P5  
CN1A-1 Common terminal of VIN. Pins are connected internally.  
CN1B-1 Separated from LG.  
CN5-8  
5V output  
CN1A-49 Internal power supply for encoder Z-phase pulses. Connect P5-OP_VIN when using  
CN1B-49 this power supply as an encoder Z-phase pulse common.  
CN3-20 5VDC 5%  
Encoder Z-phase  
pulse power  
supply  
OP_VIN CN1A-47 Power input for encoder Z-phase pulse common. Connect P5-OP_VIN when using  
CN1B-47 the 5V output (P5) as an encoder Z-phase pulse common. Supply power to OP_VIN  
when using an external power supply as an encoder Z-phase pulse common. At this  
time, do not connect P5-OP_VIN.  
Encoder Z-phase  
pulse common  
CN1A-48 Common for encoder Z-phase pulses. Power input to OP_VIN is output from  
OP_COM  
CN1B-48 OP_COM.  
Control common  
LG  
CN1A-50 Common terminal for MO1, MO2 and MO3.  
CN1A-46  
CN1A-21  
CN1B-50  
CN1B-46  
CN1B-21  
CN3-1  
CN3-3  
CN3-11  
CN3-13  
Shield  
SD  
Plate  
Connect the external conductor of the shield cable.  
3 - 10  
3. SIGNALS AND WIRING  
3.2.3 Detailed description of the signals  
(1) Pulse train input  
(a) Input pulse waveform selection  
Encoder pulses may be input in any of three different forms, for which positive or negative logic  
can be chosen. Set the command pulse train form in DRU parameter No. 21.  
Arrow  
or  
in the table indicates the timing of importing a pulse train.  
A- and B-phase pulse trains are imported after they have been multiplied by 4.  
Forward rotation  
command  
Reverse rotation  
command  
DRU parameter No. 21  
(Command pulse train)  
Pulse train form  
Forward rotation  
pulse train  
PP  
0010  
0011  
Reverse rotation  
pulse train  
NP  
PP  
Pulse train sign  
L
H
NP  
PP  
A-phase pulse train  
B-phase pulse train  
0012  
NP  
PP  
Forward rotation  
pulse train  
0000  
0001  
0002  
Reverse rotation  
pulse train  
NP  
PP  
NP  
Pulse train sign  
L
H
PP  
NP  
A-phase pulse train  
B-phase pulse train  
3 - 11  
3. SIGNALS AND WIRING  
(b) Connections and waveforms  
1) Open collector system  
Connect as shown below:  
Servo amplifier  
OPC  
24VDC  
PP  
Approx. 1.2k  
Approx. 1.2k  
NP  
SD  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (DRU parameter No.21 has been set to 0010). The waveforms  
in the table in (a), (1) of this section are voltage waveforms of PP and NP based on SG. Their  
relationships with transistor ON/OFF are as follows:  
Forward rotation  
pulse train  
(transistor)  
(ON) (OFF) (ON) (OFF) (ON)  
(OFF)  
Reverse rotation  
pulse train  
(transistor)  
(OFF)  
(ON) (OFF) (ON) (OFF) (ON)  
Reverse rotation command  
Forward rotation command  
3 - 12  
3. SIGNALS AND WIRING  
2) Differential line driver system  
Connect as shown below:  
Servo amplifier  
PP  
PG  
NP  
NG  
SD  
The explanation assumes that the input waveform has been set to the negative logic and forward  
and reverse rotation pulse trains (DRU parameter No.21 has been set to 0010).  
For the differential line driver, the waveforms in the table in (a), (1) of this section are as follows.  
The waveforms of PP , PG , NP and NG are based on that of the ground of the differential  
line driver.  
Forward rotation  
pulse train  
PP  
PG  
Reverse rotation  
pulse train  
NP  
NG  
Forward rotation command  
Reverse rotation command  
3 - 13  
3. SIGNALS AND WIRING  
(2) In-position (INP )  
PF-SG are connected when the number of droop pulses in the deviation counter falls within the preset  
in-position range (DRU parameter No. 5). INP -SG may remain connected when low-speed operation  
is performed with a large value set as the in-position range.  
ON  
Servo-on(SON  
Alarm  
)
OFF  
Yes  
No  
In-position range  
Droop pulses  
ON  
In position(INP  
)
OFF  
(3) Ready (RD )  
ON  
Servo-on(SON  
Alarm  
)
OFF  
Yes  
No  
100ms less  
10ms less  
10ms less  
ON  
Ready(RD  
)
OFF  
3 - 14  
3. SIGNALS AND WIRING  
3.2.4 Internal connection diagram  
MR-J2M-P8A  
(Note)  
symbol  
CN1A  
slot 1  
CN1A (Note)  
slot 2 slot 3 slot 4  
symbol  
ALM_A  
slot 2 slot 3 slot 4  
27  
slot 1  
VIN  
SG  
26  
1
SON  
CR  
37  
12  
36  
10  
34  
9
32  
7
5
29  
4
11  
35  
25  
33  
8
6
28  
3
RD  
INP  
OP  
LG  
Approx.6.8k  
Approx.6.8k  
30  
23  
RES  
OPC  
31  
24  
22  
2
21, 46, 50  
49  
PG  
PP  
NG  
44  
19  
45  
20  
42  
17  
43  
18  
40  
15  
41  
16  
38  
13  
39  
14  
Approx.1.2k  
Approx.100  
Approx.100  
5VDC  
5V  
P5  
OP_VIN  
OP_COM  
47  
Approx.1.2k  
48  
NP  
SD  
SD  
Plate  
Plate  
CN1B  
CN1B (Note)  
symbol  
(Note)  
symbol  
slot 5 slot 6 slot 7 slot 8  
2
slot 6 slot 7 slot 8  
slot 5  
25  
OPC  
PG  
OP_VIN  
OP_COM  
P5  
47  
48  
49  
44  
19  
45  
20  
42  
17  
43  
18  
40  
15  
41  
16  
38  
13  
39  
14  
Approx.100  
Approx.100  
Approx.1.2k  
Approx.1.2k  
PP  
NG  
NP  
24  
23  
22  
OP  
LG  
21, 46, 50  
27  
ALM_B  
RD  
VIN  
SG  
26  
1
11  
35  
33  
8
6
28  
3
INP  
SD  
30  
SON  
CR  
37  
12  
36  
10  
34  
9
32  
7
5
29  
4
Approx.6.8k  
Plate  
RES  
SD  
31  
Approx.6.8k  
Plate  
CN5  
CN3  
4
symbol  
slot 1 to 8  
MO1  
MO2  
MO3  
EMG_A  
EMG_B  
20  
19  
Approx.6.8k  
Approx.6.8k  
14  
7
CN5  
(Note)  
symbol  
slot 1 slot 2 slot 3 slot 4  
LSP  
LSN  
1
2
3
4
5
6
7
LG  
SD  
11  
Approx.6.8k  
Approx.6.8k  
10  
Plate  
TXD  
RXD  
SDP  
SDN  
RDP  
RDN  
12  
2
(Note) CN5  
9
symbol  
LSP  
slot 5 slot 6 slot 7 slot 8  
19  
5
11  
12  
13  
14  
15  
16  
17  
18  
Approx.6.8k  
Approx.6.8k  
LSN  
SG  
15  
8
Note. in Symbol indicates the slot number.  
3 - 15  
3. SIGNALS AND WIRING  
3.2.5 Interface  
(1) Common line  
The following diagram shows the power supply and its common line.  
Interface unit  
INP , etc.  
SD  
24VDC  
RA  
VIN  
SON , etc.  
SG  
MO1  
MO2  
MO3  
Analog monitor output  
DI-1  
OPC  
LG  
(Note)  
PG NG  
SDP  
SDN  
RDP  
RDN  
LG  
PG NP  
SG  
RS-422  
SD  
Base unit  
TXD  
RXD  
RS-232C  
Drive unit  
Servo motor encoder  
MR  
MRR  
LG  
SD  
Servo motor  
M
E
Extension IO unit  
LA, etc.  
LAR, etc.  
LG  
Differential line driver output  
35mA max.  
SD  
Ground  
SG  
MBR  
VIN  
RA  
DI-1  
EM1  
24VDC  
Note. Assumes a differential line driver pulse train input.  
3 - 16  
3. SIGNALS AND WIRING  
(2) Detailed description of the interfaces  
This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in  
Sections 3.2.2.  
Refer to this section and connect the interfaces with the external equipment.  
(a) Digital input interface DI-1  
Give a signal with a relay or open collector transistor.  
Interface unit  
24VDC  
300mA or more  
R: Approx. 4.7k  
VIN  
For transistor  
Approx. 5mA  
SON  
etc.  
Switch  
SG  
TR  
VCES 1.0V  
I CE0 100  
A
(b) Digital output interface DO-1  
A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush  
current suppressing resister (R) for a lamp load. (Permissible current: 40mA or less, inrush  
current: 100mA or less)  
1) Inductive load  
Interface unit  
VIN  
24VDC  
Load  
10%  
ALM_  
etc.  
SG  
Opposite polarity of diode  
will fail interface unit.  
2) Lamp load  
Interface unit  
VIN  
R
24VDC  
10%  
ALM_  
etc.  
SG  
3 - 17  
3. SIGNALS AND WIRING  
(c) Pulse train input interface DI-2  
Give a pulse train signal in an open collector or differential line driver system.  
1) Open collector system  
Interface unit  
24VDC  
OPC  
Max. input pulse  
frequency 200kpps  
2m(78.74in)  
Approx.  
or less  
1.2k  
PP , NP  
SD  
tc  
tHL  
tLH tHL 0.2  
s
0.9  
0.1  
tc  
tF  
2
3
s
s
PP  
NP  
tc  
tLH  
tF  
2) Differential line driver system  
Interface unit  
Max. input pulse  
frequency 500kpps  
10m (393.70in) or less  
PP (NP  
)
About 100  
)
PG (NG  
SD  
Am26LS31 or equivalent  
tc  
tHL  
tLH tHL 0.1  
tc 0.7 s  
s
0.9  
PG  
PP  
NP  
tF  
3
s
0.1  
tc  
tLH  
tF  
NG  
3 - 18  
3. SIGNALS AND WIRING  
(d) Encoder pulse output DO-2  
1) Open collector system  
Max. intake current 35mA  
Interface unit  
Interface unit  
5 to 24VDC  
OP  
LG  
OP  
LG  
Photocoupler  
SD  
SD  
2) Differential line driver system  
Max. output current 35mA  
extension IO unit  
LA  
extension IO unit  
High-speed  
photocoupler  
LA  
Am26LS32 or equivalent  
150  
100  
(LB , LZ  
)
(LB , LZ  
)
LAR  
LAR  
(LBR , LZR  
)
(LBR , LZR  
)
LG  
SD  
SD  
Sarvo motor CCW rotation  
LA  
LAR  
LB  
T
LBR  
/2  
LZ  
LZR  
400 s or more  
OP  
(e) Analog output  
Output voltage: 4V  
Max. output current: 0.5mA  
Resolution: 10bit  
Interface unit  
10k  
MO  
Reading in one or both  
directions 1mA meter.  
A
LG  
SD  
3 - 19  
3. SIGNALS AND WIRING  
3.3 Signal and wiring for extension IO unit  
3.3.1 Connection example  
POINT  
The pins without symbols can be assigned any devices using the MR  
Configurator (servo configuration software).  
MR-J2M-D01  
(Note 2)  
(Note 2)  
CN4A  
(Note 3)  
24VDC  
(Note 1)  
CN4A  
VIN  
SG  
CN4B-11  
11, 36  
12, 37  
1
9
RA1  
RA2  
RA3  
RA4  
Approx. 6.8k  
10  
34  
35  
2
3
4
5
6
(Note 2)  
CN4A  
7
8
13, 38 LG  
26  
27  
28  
29  
30  
31  
32  
33  
50 LA1  
25 LAR1  
49 LB1  
24 LBR1  
48 LZ1  
23 LZR1  
47 LA2  
22 LAR2  
46 LB2  
21 LBR2  
45 LZ2  
20 LZR2  
44 LA3  
19 LAR3  
43 LB3  
18 LBR3  
42 LZ3  
17 LZR3  
41 LA4  
16 LAR4  
40 LB4  
15 LBR4  
39 LZ4  
14 LZR4  
plate SD  
Encoder A-phase pulse 1  
(Differential line driver system)  
Encoder B-phase pulse 1  
(Differential line driver system)  
Encoder Z-phase pulse 1  
(Differential line driver system)  
Approx. 6.8k  
Encoder A-phase pulse 2  
(Differential line driver system)  
Encoder B-phase pulse 2  
(Differential line driver system)  
Encoder Z-phase pulse 2  
(Differential line driver system)  
Encoder A-phase pulse 3  
(Differential line driver system)  
Encoder B-phase pulse 3  
(Differential line driver system)  
Encoder Z-phase pulse 3  
(Differential line driver system)  
Encoder A-phase pulse 4  
(Differential line driver system)  
Encoder B-phase pulse 4  
(Differential line driver system)  
Encoder Z-phase pulse 4  
(Differential line driver system)  
3 - 20  
3. SIGNALS AND WIRING  
(Note 2)  
CN4B  
(Note 2)  
CN4B  
CN4A-11  
LG  
13, 38  
1
Approx. 6.8k  
2
3
50 LA5  
25 LAR5  
49 LB5  
24 LBR5  
48 LZ5  
23 LZR5  
47 LA6  
22 LAR6  
46 LB6  
21 LBR6  
45 LZ6  
20 LZR6  
44 LA7  
19 LAR7  
43 LB7  
18 LBR7  
42 LZ7  
17 LZR7  
41 LA8  
16 LAR8  
40 LB8  
15 LBR8  
39 LZ8  
14 LZR8  
Encoder A-phase pulse 5  
(Differential line driver system)  
4
Encoder B-phase pulse 5  
(Differential line driver system)  
5
6
7
Encoder Z-phase pulse 5  
(Differential line driver system)  
8
26  
27  
28  
29  
30  
31  
32  
33  
Encoder A-phase pulse 6  
(Differential line driver system)  
Encoder B-phase pulse 6  
(Differential line driver system)  
Encoder Z-phase pulse 6  
(Differential line driver system)  
Approx. 6.8k  
SG  
12, 37  
Encoder A-phase pulse 7  
(Differential line driver system)  
VIN 11, 36  
Encoder B-phase pulse 7  
(Differential line driver system)  
Encoder Z-phase pulse 7  
(Differential line driver system)  
Encoder A-phase pulse 8  
(Differential line driver system)  
Encoder B-phase pulse 8  
(Differential line driver system)  
Encoder Z-phase pulse 8  
(Differential line driver system)  
plate  
SD  
(Note 2)  
CN4B  
(Note 1)  
RA7  
9
RA8  
RA9  
10  
34  
35  
RA10  
MR-J2M-D01  
Note 1. Connect the diodes in the correct orientation. Opposite connection may cause the servo amplifier to be faulty and  
disable the signals from being output, making the forced stop and other protective circuits inoperative.  
2. The signals having the same name are connected to the inside of the servo amplifier.  
3. Always connect 24VDC (200mA).  
3 - 21  
3. SIGNALS AND WIRING  
3.3.2 Connectors and signal configurations  
(1) Signal configurations  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
The pins without symbols can be assigned any devices using the MR  
Configurator (servo configuration software).  
CN4A  
50  
CN4B  
25  
LAR1  
23  
50  
LA5  
48  
25  
LAR5  
23  
49  
LB1  
47  
24  
LBR1  
22  
49  
LB5  
47  
24  
LBR5  
22  
LA1  
48  
LZ1  
46  
LZR1  
21  
LZ5  
46  
LZR5  
21  
LA2  
45  
LAR2  
20  
LA6  
45  
LAR6  
20  
LB2  
44  
LBR2  
19  
LB6  
44  
LBR6  
19  
LZ2  
43  
LZR2  
18  
LZ6  
43  
LZR6  
18  
LA3  
42  
LAR3  
17  
LA7  
42  
LAR7  
17  
LB3  
41  
LBR3  
16  
LB7  
41  
LBR7  
16  
LZ3  
40  
LZR3  
15  
LZ7  
40  
LZR7  
15  
LA4  
39  
LAR4  
14  
LA8  
39  
LAR8  
14  
LB4  
38  
LBR4  
13  
LB8  
38  
LBR8  
13  
LZ4  
37  
LZR4  
12  
LZ8  
37  
LZR8  
12  
LG  
36  
LG  
LG  
36  
LG  
SG  
35  
SG  
SG  
35  
SG  
11  
11  
10  
10  
VIN  
34  
VIN  
9
VIN  
34  
VIN  
9
33  
31  
29  
27  
8
6
4
2
33  
31  
29  
27  
8
6
4
2
32  
30  
28  
26  
7
5
3
1
32  
30  
28  
26  
7
5
3
1
3 - 22  
3. SIGNALS AND WIRING  
3.3.3 Signal explanations  
For the IO interfaces (system in I/O column in the table), refer to section 3.2.5.  
(1) Input signal  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
CN4A-1  
CN4A-2  
CN4A-3  
CN4A-4  
DI-1  
No signals are factory-assigned to these pins. Using the MR Configurator  
(servo configuration software), you can assign the input devices for  
corresponding slots as signals. Refer to Section 3.3.4 for assignable devices.  
Device Name  
Symbol  
SON  
RES  
PC  
Device Name  
Forward rotation stroke end  
Reverse rotation stroke end  
Clear  
Symbol  
LSP  
LSN  
CR  
CN4A-5  
CN4A-6  
CN4A-7  
CN4A-8  
CN4A-26  
CN4A-27  
CN4A-28  
CN4A-29  
Servo-on  
Reset  
Proportion control  
Internal torque limit selection  
Electronic gear selection 1  
Electronic gear selection 2  
Gain switching selection  
TL1  
(Note) External torque limit  
(Note) Speed selection 1  
(Note) Speed selection 2  
(Note) Speed selection 3  
TL  
CM1  
CM2  
CDP  
SP1  
SP2  
SP3  
CN4A-30  
CN4A-31  
CN4A-32  
CN4A-33  
CN4B-1  
CN4B-2  
CN4B-3  
CN4B-4  
CN4B-5  
CN4B-6  
CN4B-7  
CN4B-8  
CN4B-26  
CN4B-27  
CN4B-28  
CN4B-29  
CN4B-30  
CN4B-31  
CN4B-32  
CN4B-33  
Note. You cannot select these devices when using the MR-J2M-P8A interface  
unit.  
(2) Output signal  
Connector  
pin No.  
I/O  
Signal  
Symbol  
Functions/Applications  
division  
No signals are factory-assigned to these pins. Using the MR Configurator  
(servo configuration software), you can assign the input devices for  
corresponding slots as signals. Refer to Section 3.3.4 for assignable devices.  
DO-1  
CN4A-9  
CN4A-10  
CN4A-34  
CN4A-35  
CN4B-9  
Device Name  
Symbol  
Device Name  
Symbol  
RD  
Limiting torque  
TLC  
VLC  
Ready  
Electromagnetic brake interlock MBR  
(Note) Limiting speed  
Trouble  
CN4B-10  
CN4B-34  
CN4B-35  
In position  
INP  
SA  
ALM_  
WNG  
BWNG  
(Note) Up to speed  
Zero speed detection  
Warning  
ZSP  
Battery warning  
Note. You cannot select these devices when using the MR-J2M-P8A interface  
unit.  
3 - 23  
3. SIGNALS AND WIRING  
Connector  
I/O  
Signal  
Symbol  
Functions/Applications  
pin No.  
division  
Encoder A-phase  
pulse 1  
Encoder B-phase  
pulse 1  
LA1 CN4A-50 As LA , LAR , LB and LBR , the pulses per servo motor revolution set DO-2  
LAR1 CN4A-25 in the DRU parameter No. 27 (Encoder output pulses) of the corresponding  
LB1 CN4A-49 slots are output in the differential line driver system.  
LBR1 CN4A-24 In CCW rotation of the servo motor, the encoder B-phase pulse lags the  
encoder A-phase pulse by a phase angle of /2.  
LZ1  
CN4A-48  
Encoder Z-phase  
pulse 1  
The relationships between rotation direction and phase difference of the A-  
and B-phase pulses can be changed using DRU parameter No. 54 (Function  
selection 9).  
LZR1 CN4A-23  
LA2 CN4A-47  
LAR2 CN4A-22  
LB2 CN4A-46  
LBR2 CN4A-21  
Encoder A-phase  
pulse 2  
As LZ  
and LZR  
the zero-point signals of the encoders of the  
Encoder B-phase  
pulse 2  
corresponding slots are output. One pulse is output per servo motor  
revolution. The same signals as OP are output in the differential line  
driver system.  
LZ2  
CN4A-45  
Encoder Z-phase  
pulse 2  
LZR2 CN4A-20  
LA3 CN4A-44  
LAR3 CN4A-19  
LB3 CN4A-43  
LBR3 CN4A-18  
Encoder pulse outputs for slot 1  
Signal  
Symbol  
Encoder A-phase  
pulse 3  
Encoder A-phase pulse 1  
Encoder B-phase pulse 1  
Encoder Z-phase pulse 1  
Encoder pulse outputs for slot 2  
Signal  
LA1 LAR1  
LB1 LBR1  
LZ1 LZR1  
Encoder B-phase  
pulse 3  
LZ3  
CN4A-42  
Encoder Z-phase  
pulse 3  
LZR3 CN4A-17  
LA4 CN4A-41  
LAR4 CN4A-16  
LB4 CN4A-40  
LBR4 CN4A-15  
Symbol  
Encoder A-phase pulse 2  
Encoder B-phase pulse 2  
Encoder Z-phase pulse 2  
LA2 LAR2  
LB2 LBR2  
LZ2 LZR2  
Encoder A-phase  
pulse 4  
Encoder B-phase  
pulse 4  
Encoder pulse outputs for slot 3  
LZ4  
CN4A-39  
Signal  
Symbol  
Encoder Z-phase  
pulse 4  
LZR4 CN4A-14  
LA5 CN4B-50  
LAR5 CN4B-25  
LB5 CN4B-49  
LBR5 CN4B-24  
Encoder A-phase pulse 3  
Encoder B-phase pulse 3  
Encoder Z-phase pulse 3  
LA3 LAR3  
LB3 LBR3  
LZ3 LZR3  
Encoder A-phase  
pulse 5  
Encoder pulse outputs for slot 4  
Encoder B-phase  
pulse 5  
Signal  
Symbol  
LZ5  
CN4B-48  
Encoder A-phase pulse 4  
Encoder B-phase pulse 4  
Encoder Z-phase pulse 4  
LA4 LAR4  
LB4 LBR4  
LZ4 LZR4  
Encoder Z-phase  
pulse 5  
LZR5 CN4B-23  
LA6 CN4B-47  
LAR6 CN4B-22  
LB6 CN4B-46  
LBR6 CN4B-21  
Encoder A-phase  
pulse 6  
Encoder pulse outputs for slot 5  
Signal  
Symbol  
Encoder B-phase  
pulse 6  
Encoder A-phase pulse 5  
Encoder B-phase pulse 5  
Encoder Z-phase pulse 5  
LA5 LAR5  
LB5 LBR5  
LZ5 LZR5  
LZ6  
CN4B-45  
Encoder Z-phase  
pulse 6  
LZR6 CN4B-20  
LA7 CN4B-44  
LAR7 CN4B-19  
LB7 CN4B-43  
LBR7 CN4B-18  
Encoder pulse outputs for slot 6  
Encoder A-phase  
pulse 7  
Signal  
Symbol  
Encoder A-phase pulse 6  
Encoder B-phase pulse 6  
Encoder Z-phase pulse 6  
LA6 LAR6  
LB6 LBR6  
LZ6 LZR6  
Encoder B-phase  
pulse 7  
LZ7  
CN4B-42  
Encoder Z-phase  
pulse 7  
LZR7 CN4B-17  
LA8 CN4B-41  
LAR8 CN4B-16  
LB8 CN4B-40  
LBR8 CN4B-15  
Encoder pulse outputs for slot 7  
Signal  
Symbol  
Encoder A-phase  
pulse 8  
Encoder A-phase pulse 7  
Encoder B-phase pulse 7  
Encoder Z-phase pulse 7  
LA7 LAR7  
LB7 LBR7  
LZ7 LZR7  
Encoder B-phase  
pulse 8  
LZ8  
CN4B-39  
Encoder pulse outputs for slot 8  
Encoder Z-phase  
pulse 8  
LZR8 CN4B-14  
Signal  
Symbol  
Encoder A-phase pulse 8  
Encoder B-phase pulse 8  
Encoder Z-phase pulse 8  
LA8 LAR8  
LB8 LBR8  
LZ8 LZR8  
3 - 24  
3. SIGNALS AND WIRING  
(3) Power supply  
Connector  
Signal  
Symbol  
Functions/Applications  
pin No.  
Power input for  
digital interface  
VIN  
CN4A-11 Driver power input terminal for digital interface.  
CN4A-36 Used to input 24VDC (200mA or more) for input interface.  
CN4B-11 24VDC 10%  
CN4B-36 Not connected to VIN of the interface unit.  
CN4A-12 Common terminal to VIN. Pins are connected internally.  
CN4A-37 Separated from LG.  
Common for  
SG  
LG  
SD  
digital interface  
CN4B-12 Not connected to SG of the interface unit.  
CN4B-37  
Control common  
Shield  
CN4A-13 Common terminal to MO1, MO2 and MO3.  
CN4A-38  
CN4B-13  
CN4B-38  
Plate  
Connect the external conductor of the shield cable.  
3 - 25  
3. SIGNALS AND WIRING  
3.3.4 Device explanations  
(1) Input device  
Using the MR Configurator (servo configuration software), you can assign the devices given in this  
section to the pins of connectors CN4A and CN4B of the MR-J2M-D01 extension IO unit.  
Device name  
Symbol  
Functions/Applications  
Internal torque limit selection 1  
Internal torque limit selection 2  
Internal torque limit selection 3  
Internal torque limit selection 4  
Internal torque limit selection 5  
Internal torque limit selection 6  
Internal torque limit selection 7  
Internal torque limit selection 8  
TL11  
TL12  
TL13  
TL14  
TL15  
TL16  
TL17  
TL11: Internal torque limit selection device for slot 1  
TL12: Internal torque limit selection device for slot 2  
TL13: Internal torque limit selection device for slot 3  
TL14: Internal torque limit selection device for slot 4  
TL15: Internal torque limit selection device for slot 5  
TL16: Internal torque limit selection device for slot 6  
TL17: Internal torque limit selection device for slot 7  
TL18: Internal torque limit selection device for slot 8  
Refer to Section 3.3.5 (2) for details.  
TL18  
Proportion control 1  
Proportion control 2  
Proportion control 3  
Proportion control 4  
Proportion control 5  
Proportion control 6  
Proportion control 7  
Proportion control 8  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC1: Proportion control device for slot 1  
PC2: Proportion control device for slot 2  
PC3: Proportion control device for slot 3  
PC4: Proportion control device for slot 4  
PC5: Proportion control device for slot 5  
PC6: Proportion control device for slot 6  
PC7: Proportion control device for slot 7  
PC8: Proportion control device for slot 8  
Short PC -SG to switch the speed amplifier from the proportional integral  
type to the proportional type.  
If the servo motor at a stop is rotated even one pulse due to any external  
factor, it generates torque to compensate for a position shift. When the servo  
motor shaft is to be locked mechanically after positioning completion (stop),  
switching on the proportion control (PC ) upon positioning completion will  
suppress the unnecessary torque generated to compensate for a position shift.  
3 - 26  
3. SIGNALS AND WIRING  
Device name  
Symbol  
Functions/Applications  
Electronic gear selection 11  
Electronic gear selection 12  
Electronic gear selection 13  
Electronic gear selection 14  
Electronic gear selection 15  
Electronic gear selection 16  
Electronic gear selection 17  
Electronic gear selection 18  
Electronic gear selection 21  
Electronic gear selection 22  
Electronic gear selection 23  
Electronic gear selection 24  
Electronic gear selection 25  
Electronic gear selection 26  
Electronic gear selection 27  
Electronic gear selection 28  
CM11  
CM12  
CM13  
CM14  
CM15  
CM16  
CM17  
CM18  
CM21  
CM22  
CM23  
CM24  
CM25  
CM26  
CM27  
CM28  
CM11: Electronic gear selection 1 device for slot 1  
CM12: Electronic gear selection 1 device for slot 2  
CM13: Electronic gear selection 1 device for slot 3  
CM14: Electronic gear selection 1 device for slot 4  
CM15: Electronic gear selection 1 device for slot 5  
CM16: Electronic gear selection 1 device for slot 6  
CM17: Electronic gear selection 1 device for slot 7  
CM18: Electronic gear selection 1 device for slot 8  
CM21: Electronic gear selection 2 device for slot 1  
CM22: Electronic gear selection 2 device for slot 2  
CM23: Electronic gear selection 2 device for slot 3  
CM24: Electronic gear selection 2 device for slot 4  
CM25: Electronic gear selection 2 device for slot 5  
CM26: Electronic gear selection 2 device for slot 6  
CM27: Electronic gear selection 2 device for slot 7  
CM28: Electronic gear selection 2 device for slot 8  
The combination of CM1 -SG and CM2 -SG gives you a choice of four  
different electronic gear numerators set in the DRU parameters.  
CM1 and CM2 cannot be used in the absolute position detection system.  
(Note) Input signal  
Electronic gear numerator  
CM2  
CM1  
0
0
1
1
0
1
0
1
DRU parameter No.3  
DRU parameter No.69  
DRU parameter No.70  
DRU parameter No.71  
Note. 0: Off across terminal-SG (open)  
1: On across terminal-SG (shorted)  
Gain switching 1  
Gain switching 2  
Gain switching 3  
Gain switching 4  
Gain switching 5  
Gain switching 6  
Gain switching 7  
Gain switching 8  
CDP1  
CDP2  
CDP3  
CDP4  
CDP5  
CDP6  
CDP7  
CDP8  
CDP1: Gain switching device for slot 1  
CDP2: Gain switching device for slot 2  
CDP3: Gain switching device for slot 3  
CDP4: Gain switching device for slot 4  
CDP5: Gain switching device for slot 5  
CDP6: Gain switching device for slot 6  
CDP7: Gain switching device for slot 7  
CDP8: Gain switching device for slot 8  
Connect CDP -SG to change the load inertia moment ratio into the DRU  
parameter No. 61 setting and the gain values into the values multiplied by the  
DRU parameter No. 62 to 64 settings.  
3 - 27  
3. SIGNALS AND WIRING  
(2) Output device  
Device name  
Symbol  
Functions/Applications  
Ready 1  
Ready 2  
Ready 3  
Ready 4  
Ready 5  
Ready 6  
Ready 7  
Ready 8  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD1: Ready device for slot 1  
RD2: Ready device for slot 2  
RD3: Ready device for slot 3  
RD4: Ready device for slot 4  
RD5: Ready device for slot 5  
RD6: Ready device for slot 6  
RD7: Ready device for slot 7  
RD8: Ready device for slot 8  
RD -SG are connected when the servo is switched on and the servo amplifier  
is ready to operate.  
In position 1  
In position 2  
In position 3  
In position 4  
In position 5  
In position 6  
In position 7  
In position 8  
INP1  
INP2  
INP3  
INP4  
INP5  
INP6  
INP7  
INP8  
INP1: In position device for slot 1  
INP2: In position device for slot 2  
INP3: In position device for slot 3  
INP4: In position device for slot 4  
INP5: In position device for slot 5  
INP6: In position device for slot 6  
INP7: In position device for slot 7  
INP8: In position device for slot 8  
INP -SG are connected when the number of droop pulses is in the preset in-  
position range. The in-position range can be changed using DRU parameter  
No. 5.  
When the in-position range is increased, INP -SG may be kept connected  
during low-speed rotation.  
Limiting torque 1  
Limiting torque 2  
Limiting torque 3  
Limiting torque 4  
Limiting torque 5  
Limiting torque 6  
Limiting torque 7  
Limiting torque 8  
TLC1  
TLC2  
TLC3  
TLC4  
TLC5  
TLC6  
TLC7  
TLC8  
TLC1: Limiting torque device for slot 1  
TLC2: Limiting torque device for slot 2  
TLC3: Limiting torque device for slot 3  
TLC4: Limiting torque device for slot 4  
TLC5: Limiting torque device for slot 5  
TLC6: Limiting torque device for slot 6  
TLC7: Limiting torque device for slot 7  
TLC8: Limiting torque device for slot 8  
TLC -SG are connected when the torque generated reaches the value set to  
the internal torque limit 1 (DRU parameter No. 28) or internal torque limit  
2(DRU parameter No. 76).  
Zero speed detection 1  
Zero speed detection 2  
Zero speed detection 3  
Zero speed detection 4  
Zero speed detection 5  
Zero speed detection 6  
Zero speed detection 7  
Zero speed detection 8  
ZSP1  
ZSP2  
ZSP3  
ZSP4  
ZSP5  
ZSP6  
ZSP7  
ZSP8  
ZSP1: Zero speed detection device for slot 1  
ZSP2: Zero speed detection device for slot 2  
ZSP3: Zero speed detection device for slot 3  
ZSP4: Zero speed detection device for slot 4  
ZSP5: Zero speed detection device for slot 5  
ZSP6: Zero speed detection device for slot 6  
ZSP7: Zero speed detection device for slot 7  
ZSP8: Zero speed detection device for slot 8  
ZSP -SG are connected when the servo motor speed is zero speed (50r/min)  
or less. Zero speed can be changed using DRU parameter No. 24.  
MBR1: Electromagnetic brake interlock device for slot 1  
MBR2: Electromagnetic brake interlock device for slot 2  
MBR3: Electromagnetic brake interlock device for slot 3  
MBR4: Electromagnetic brake interlock device for slot 4  
MBR5: Electromagnetic brake interlock device for slot 5  
MBR6: Electromagnetic brake interlock device for slot 6  
MBR7: Electromagnetic brake interlock device for slot 7  
MBR8: Electromagnetic brake interlock device for slot 8  
In the servo-off or alarm status, MBR -SG are disconnected.  
Electromagnetic brake interlock 1  
Electromagnetic brake interlock 2  
Electromagnetic brake interlock 3  
Electromagnetic brake interlock 4  
Electromagnetic brake interlock 5  
Electromagnetic brake interlock 6  
Electromagnetic brake interlock 7  
Electromagnetic brake interlock 8  
MBR1  
MBR2  
MBR3  
MBR4  
MBR5  
MBR6  
MBR7  
MBR8  
3 - 28  
3. SIGNALS AND WIRING  
Device name  
Symbol  
Functions/Applications  
Warning 1  
Warning 2  
Warning 3  
Warning 4  
Warning 5  
Warning 6  
Warning 7  
Warning 8  
WNG1 WNG1: Warning device for slot 1  
WNG2: Warning device for slot 2  
WNG2  
WNG3  
WNG4  
WNG5  
WNG6  
WNG7  
WNG8  
WNG3: Warning device for slot 3  
WNG4: Warning device for slot 4  
WNG5: Warning device for slot 5  
WNG6: Warning device for slot 6  
WNG7: Warning device for slot 7  
WNG8: Warning device for slot 8  
When warning has occurred, WNG -SG are connected.  
When there is no warning, WNG -SG are disconnected within about 3 second  
after power-on.  
Battery warning 1  
Battery warning 2  
Battery warning 3  
Battery warning 4  
Battery warning 5  
Battery warning 6  
Battery warning 7  
Battery warning 8  
BWNG1 BWNG1: Battery warning device for slot 1  
BWNG2: Battery warning device for slot 2  
BWNG2  
BWNG3  
BWNG4  
BWNG5  
BWNG6  
BWNG7  
BWNG8  
BWNG3: Battery warning device for slot 3  
BWNG4: Battery warning device for slot 4  
BWNG5: Battery warning device for slot 5  
BWNG6: Battery warning device for slot 6  
BWNG7: Battery warning device for slot 7  
BWNG8: Battery warning device for slot 8  
BWNG -SG are connected when battery cable breakage warning (A.92) or  
battery warning (A.9F) has occurred.  
When there is no battery warning, BWNG -SG are disconnected within  
about 3 second after power-on  
3 - 29  
3. SIGNALS AND WIRING  
3.3.5 Detailed description of the device  
(1) Electronic gear switching  
The combination of CM1 -SG and CM2 -SG gives you a choice of four different electronic gear  
numerators set in the DRU parameters.  
As soon as Electronic gear selection (CM1  
/ Electronic gear selection 2 (CM2  
is turned ON or  
)
)
OFF, the denominator of the electronic gear changes. Therefore, if any shock occurs at this change, use  
position smoothing (DRU parameter No. 7) to relieve shock.  
(Note) External input signal  
Electronic gear numerator  
CM2  
CM1  
0
0
1
1
0
1
0
1
DRU parameter No. 3  
DRU parameter No. 69  
DRU parameter No. 70  
DRU parameter No. 71  
Note. 0: CM1 /CM2 -SG off(open)  
1: CM1 /CM2 -SG on(short)  
(2) Torque limit  
Releasing the torque limit during servo lock may cause the servo motor to  
suddenly rotate according to the position deviation from the instructed position.  
CAUTION  
(a) Torque limit and torque  
By setting DRU parameter No. 28 (internal torque limit 1), and DRU parameter No. 76 (internal  
torque limit 2), torque is always limited to the maximum value during operation. A relationship  
between the limit value and servo motor torque is shown below.  
Max. torque  
0
0
100  
Torque limit value [%]  
(b) Torque limit value selection  
By making internal torque limit selection (TL1 ) usable, you can select the torque limit value as  
indicated below.  
(Note 1) External input signals  
(Note 2) Torque limit value made valid  
TL1  
0
Internal torque limit 1 (DRU parameter No. 28)  
DRU parameter No. 76 DRU parameter No. 28: DRU parameter No. 28  
DRU parameter No. 76 DRU parameter No. 28: DRU parameter No. 76  
1
Note 1. 0: TL1 -SG off (open)  
1: TL1 -SG on (short)  
2. Releasing the torque limit during servo lock may cause the servo motor to suddenly rotate according to the position  
deviation from the instructed position.  
(c) Limiting torque (TLC )  
TLC-SG are connected when the torque by the servo motor reaches the torque set to internal  
torque limit 1 or internal torque limit 2.  
3 - 30  
3. SIGNALS AND WIRING  
3.3.6 Device assignment method  
POINT  
When using the device setting, preset "000E" in IFU parameter No. 19.  
(1) How to open the setting screen  
Click "Parameters" on the menu bar and click "Device setting" in the menu.  
Making selection displays the following window.  
Click "Yes" button reads and displays the function assigned to each pin from the interface unit and  
extension IO unit.  
Click "No" button displays the initial status of the interface unit and extension IO unit.  
Click "Cancel" button terminates the processing.  
Click "Yes" button or "No" button displays the following two windows.  
3 - 31  
3. SIGNALS AND WIRING  
(2) Screen explanation  
(a) DIDO device setting window screen  
This is the device assignment screen of the interface unit/option unit. In Dev. selection, choose the  
IFU (interface unit) or D01 (extension IO unit). Making selection displays the pin assignment  
status per unit.  
a)  
b)  
d)  
c)  
1) Read of function assignment ( a))  
Click the "Read" button reads and displays all functions assigned to the pins from the interface  
unit and extension IO unit.  
2) Write of function assignment ( b))  
Click the "Write" button writes all pins that are assigned the functions to the interface unit and  
extension IO unit.  
3) Verify of function assignment ( c))  
Click the "Verify" button verifies the function assignment in the interface unit and extension IO  
unit with the device information on the screen.  
4) Initial setting of function assignment ( d))  
Click the "Set to Default" button initializes the function assignment.  
3 - 32  
3. SIGNALS AND WIRING  
(b) DIDO function display window screen  
This screen is used to select the slot numbers and functions assigned to the pins.  
Choose the slot numbers in Input device slot selection and Output device slot selection.  
The functions displayed below Input device function and Output device function are assignable.  
a)  
b)  
In the DIDO function display window, choose the slot numbers where you want to assign the  
functions.  
Move the pointer to the place of the function to be assigned. Drag and drop it as-is to the pin you  
want to assign in the DIDO device setting window.  
1) Assignment check/auto ON setting ( a))  
Press this button to display the screen that shows the slot-by-slot assignment list and enables  
auto ON setting.  
Refer to this section (4) for more information.  
2) Quitting  
Click "Close" button to exit from the window. ( b))  
3 - 33  
3. SIGNALS AND WIRING  
(C) Function device assignment check/auto ON setting display  
Click the "Function device assignment check/auto ON setting" button in the DIDO function display  
window displays the following window.  
a)  
b)  
c)  
d)  
e)  
The assigned functions are indicated by  
.
The functions assigned by auto ON are grayed. When you want to set auto ON to the function that  
is enabled for auto ON, click the corresponding cell. Clicking it again disables auto ON.  
1) Auto ON read of function assignment ( a))  
Click "Auto ON read" button reads the functions set for auto ON from the interface unit and  
extension IO unit.  
2) Auto ON write of function assignment ( b))  
Click "Auto ON write" button writes the functions currently set for auto ON to the interface unit  
and extension IO unit.  
3) Auto ON verify of function assignment ( c))  
Click "Auto ON verify" button verifies the current auto ON setting in the interface unit and  
extension IO unit with the auto ON setting on the screen.  
4) Auto ON initial setting of function assignment ( d))  
Click "Auto ON initial setting" button initializes the auto ON setting.  
5) Quitting the function device assignment checking/auto ON setting window ( e))  
Click "Close" button exits from the window.  
3 - 34  
3. SIGNALS AND WIRING  
3.4 Signals and wiring for base unit  
When each unit has become faulty, switch power off on the servo amplifier power  
side. Continuous flow of a large current may cause a fire.  
Use the trouble (ALM_ to switch power off. Otherwise, a regenerative brake  
)
transistor fault or the like may overheat the regenerative brake resistor, causing a  
CAUTION  
fire.  
Fabricate the cables noting the shapes of the CNP1A housing (X type) and CNP1B  
housing (Y type).  
3.4.1 Connection example for power line circuit  
Wire the power supply and main circuit as shown below so that the servo-on (SON  
turns off as soon as  
)
alarm occurrence, or a servo forced stop is made valid is detected and power is shut off.  
A no-fuse breaker (NFB) must be used with the input cables of the power supply.  
(1) For 3-phase 200 to 230VAC power supply  
Forced  
stop A  
Forced  
stop B  
Trouble A  
RA1  
Trouble B  
RA2  
ON  
MC  
OFF  
MC  
SK  
MELSERVO-J2M  
CNP3  
NFB  
MC  
L1  
L2  
L3  
1
2
3
Power supply  
3-phase  
200 to 230VAC  
CNP1B  
CN1A  
27  
L11  
1
2
RA1  
ALM_A  
VIN  
Trouble A  
L21  
26  
CN5  
20  
EMG_A  
CN1B  
Forced stop A  
Forced stop B  
EMG_B 19  
SG  
27 ALM_B  
26  
VIN  
RA2  
Trouble B  
8
24VDC  
3 - 35  
3. SIGNALS AND WIRING  
(2) For 1-phase 200 to 230 VAC power supply  
Forced  
stop A  
Forced  
stop B  
Trouble A  
RA1  
Trouble B  
RA2  
ON  
MC  
OFF  
MC  
SK  
NFB  
MELSERVO-J2M  
CNP3  
MC  
(Note)  
L1  
L2  
L3  
Power supply  
1-phase  
200 to 230VAC  
1
2
3
CNP1B  
CN1A  
27  
RA1  
1
2
L11  
L21  
ALM_A  
Trouble A  
Trouble B  
26  
VIN  
CN5  
20  
EMG_A  
EMG_B  
SG  
CN1B  
27  
Forced stop A  
Forced stop B  
RA2  
19  
8
ALM_B  
VIN  
26  
24VDC  
Note. Connect a 1-phase 200 to 230VAC power supply to L1/L2 and keep L3 open.  
3 - 36  
3. SIGNALS AND WIRING  
3.4.2 Connectors and signal configurations  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CNP1B  
(Y type)  
CNP1A  
(X type)  
1
1
L11  
2
Base unit  
N
2
P
3
L21  
3
C
CNP3  
3
L3  
2
L2  
1
The connector frames are connected to  
the PE (earth) terminal of the base unit.  
L1  
Cable side connector  
Model  
Connector  
Maker  
Housing: 1-178128-3 (X type)  
CNP1A  
Contact: 917511-2 (max. sheath OD: 2.8[mm] ( 0.11[in]))  
353717-2 (max. sheath OD: 3.4[mm] ( 0.13[in])) (Note)  
Housing: 2-178128-3 (Y type)  
Tyco  
CNP1B  
CNP3  
Contact: 917511-2 (max. sheath OD: 2.8[mm] ( 0.11[in]))  
353717-2 (max. sheath OD: 3.4[mm] ( 0.13[in])) (Note)  
Housing: 1-179958-3  
Electronics  
Contact: 316041-2  
Note. This contact is not included in the option (MR-J2MCNM).  
3 - 37  
3. SIGNALS AND WIRING  
3.4.3 Terminals  
Refer to Section 10.2 for the layouts and signal configurations of the terminal blocks.  
Connection target  
Connector  
Pin No.  
Code  
Description  
(Application)  
CNP3  
(1) When using a three -phase power supply  
1
2
3
L
L
L
1
2
3
Supply L , L and L with three-phase, 200 to 230VAC, 50/60Hz  
1
2
3
power.  
(2) When using a signal -phase power supply  
Supply L and L with signal-phase, 200 to 230VAC, 50/60Hz  
Main circuit power  
1
2
power.  
CNP1B  
CNP1A  
1
2
3
1
2
3
L
L
11  
21  
Supply L and L with single-phase, 200 to 230VAC, 50/60Hz  
11 21  
Control circuit power  
power.  
N
Connect the regenerative brake option across P-C.  
Accidental connection of the regenerative brake option to P-N may  
cause burning (Refer to Section 12.1.1)  
Regenerative brake  
option  
P
C
Connect this terminal to the protective earth (PE) terminals of the  
servo motor and control box for grounding.  
Protective earth (PE)  
(Earth)  
3.4.4 Power-on sequence  
(1) Power-on procedure  
1) Always wire the power supply as shown in above Section 3.7.1 using the magnetic contactor with  
the main circuit power supply (three-phase 200V: L1, L2, L3). Configure up an external sequence to  
switch off the magnetic contactor as soon as an alarm occurs.  
2) Switch on the control circuit power supply L11, L21 simultaneously with the main circuit power  
supply or before switching on the main circuit power supply. If the main circuit power supply is not  
on, the display shows the corresponding warning. However, by switching on the main circuit power  
supply, the warning disappears and the servo amplifier will operate properly.  
3) The servo amplifier can accept the servo-on (SON ) about 3s after the main circuit power supply is  
switched on. Therefore, when SON is switched on simultaneously with the main circuit power  
supply, the base circuit will switch on in about 1 to 2s, and the ready (RD ) will switch on in  
further about 20ms, making the servo amplifier ready to operate. (Refer to paragraph (2) in this  
section.)  
4) When the reset (RES ) is switched on, the base circuit is shut off and the servo motor shaft coasts.  
(2) Timing chart  
SON accepted  
(3s)  
ON  
Main circuit  
control circuit  
power  
OFF  
ON  
Base circuit  
OFF  
10ms  
10ms  
10ms  
10ms  
100ms  
20ms  
Servo-on  
ON  
(SON  
)
OFF  
100ms  
20ms  
Reset  
(RES  
ON  
)
OFF  
20ms  
10ms  
ON  
Ready  
(RD  
)
OFF  
3 - 38  
3. SIGNALS AND WIRING  
(3) Forced stop  
Install an forced stop circuit externally to ensure that operation can be stopped and  
power shut off immediately.  
CAUTION  
Make up a circuit which shuts off main circuit power as soon as EMG_ -SG are opened at a forced  
stop. To ensure safety, always install a forced stop switch across EMG_ -SG. By disconnecting  
EMG_ -SG, the dynamic brake is operated to bring the servo motor to a stop. At this time, the  
display shows the servo forced stop warning (A.E6).  
During ordinary operation, do not use forced stop (EMG_ ) to alternate stop and run. The service life  
of each drive unit may be shortened.  
Interface unit  
24VDC  
VIN  
EMG_A  
EMG_B  
SG  
3.5 Connection of drive unit and servo motor  
3.5.1 Connection instructions  
Connect the wires to the correct phase terminals (U, V, W) of the drive unit and  
servo motor. Otherwise, the servo motor will operate improperly.  
CAUTION  
Do not connect AC power supply directly to the servo motor. Otherwise, a fault  
may occur.  
POINT  
Do not apply the test lead bars or like of a tester directly to the pins of the  
connectors supplied with the servo motor. Doing so will deform the pins,  
causing poor contact.  
The connection method differs according to the series and capacity of the servo motor and whether or not  
the servo motor has the electromagnetic brake. Perform wiring in accordance with this section.  
(1) The protective earth of the servo motor joins to the base unit via the drive unit mounting screw.  
Connect the protective earth terminal of the base unit to the protective earth of the control box to  
discharge electricity to the earth.  
(2) The power supply for the electromagnetic brake should not be used as the 24VDC power supply for  
interface. Always use the power supply for electromagnetic brake only.  
3 - 39  
3. SIGNALS AND WIRING  
3.5.2 Connection diagram  
The following table lists wiring methods according to the servo motor types. Use the connection diagram  
which conforms to the servo motor used. For cables required for wiring, refer to Section 12.2.1. For  
encoder cable connection, refer to Section 12.1.2. For the signal layouts of the connectors, refer to Section  
3.5.3.  
For the servo motor connector, refer to Chapter 3 of the Servo Motor Instruction Manual.  
Servo motor  
Connection diagram  
Base unit Drive unit  
Servo motor  
Motor  
CNP2  
U (Red)  
U
V
V (White)  
W (Black)  
W
(Note 1) (Note 3)  
(Green)  
(Earth)  
24VDC  
B1  
B2  
(Note 2)  
Electro-  
magnetic  
brake  
HC-KFS053 (B) to 73 (B)  
HC-MFS053 (B) to 73 (B)  
HC-UFS13 (B) to 73 (B)  
EM1  
To be shut off when servo-  
on (SON ) switches off or  
by trouble (ALM_  
)
CN2  
Encoder  
Encoder cable  
Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal of the base  
unit to the protective earth (PE) of the control box.  
2. This circuit applies to the servo motor with electromagnetic brake.  
3. The protective earth of the servo motor is connected to the base unit via the drive unit  
mounting screw.  
3 - 40  
3. SIGNALS AND WIRING  
3.5.3 I/O terminals  
(1) Drive unit  
POINT  
The pin configurations of the connectors are as viewed from the cable  
connector wiring section.  
CN2  
20  
P5  
10  
8
19  
P5  
9
Drive unit  
BAT  
7
18  
17  
P5  
CNP2  
MRR  
15  
MR  
5
2
V
1
4
16  
6
MD  
4
MDR  
14  
3
U
W
13  
3
12  
2
11  
1
LG  
LG  
Cable side connector  
Model  
Connector  
LG  
LG  
Maker  
1. Soldering type  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
2. Insulation displacement type  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
3M  
CN2  
Housing: 5557-04R-210  
Terminal: 5556PBT3L  
CNP2  
molex  
(2) Servo motor (HC-KFS HC-MFS HC-UFS3000r/min series)  
Encoder connector signal arrangement  
Power supply lead  
4-AWG19 0.3m(0.98ft)  
1
MR  
4
2
MRR  
5
3
BAT  
6
Power supply connector (molex)  
Without electromagnetic brake  
Encoder cable 0.3m(0.98ft)  
5557-04R-210 (receptacle)  
With connector 1-172169-9  
MD  
7
MDR  
8
5556PBTL (Female terminal)  
(Tyco Electronics)  
9
With electromagnetic brake  
5557-06R-210 (receptacle)  
P5  
LG  
SHD  
5556PBTL (Female terminal)  
Power supply  
connector  
5557-04R-210  
Power supply  
Signal  
U
Pin  
1
connector  
5557-06R-210  
Pin  
1
Signal  
U
V
W
2
3
1
2
3
4
1
2
3
4
5
6
2
3
V
W
4
(Earth)  
B1  
4
(Earth)  
(Note) 5  
(Note) 6  
B2  
Note. Supply electromagnetic brake power (24VDC).  
There is no polarity.  
3 - 41  
3. SIGNALS AND WIRING  
3.6 Alarm occurrence timing chart  
When an alarm has occurred, remove its cause, make sure that the operation  
signal is not being input, ensure safety, and reset the alarm before restarting  
operation.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (SON ) and power off the main  
circuit.  
When an alarm occurs in the MELSERVO-J2M, the base circuit is shut off and the servo motor is  
coated to a stop. Switch off the main circuit power supply in the external sequence. To reset the alarm,  
switch the control circuit power supply from off to on, or turn the reset (RES ) from off to on. However,  
the alarm cannot be reset unless its cause is removed.  
(Note)  
Main circuit  
control circuit  
power supply  
ON  
OFF  
Power off  
Power on  
ON  
OFF  
Base circuit  
Valid  
Invalid  
Dynamic brake  
Servo-on  
Brake operation  
Brake operation  
ON  
(SON  
)
OFF  
Ready  
ON  
(RD  
)
OFF  
Trouble  
(ALM_  
ON  
OFF  
)
3s  
ON  
OFF  
Reset  
(RES  
)
30ms or more  
50ms or more  
Alarm occurs.  
Remove cause of trouble.  
Note. Switch off the main circuit power as soon as an alarm occurs.  
(1) Overcurrent, overload 1 or overload 2  
If operation is repeated by switching control circuit power off, then on to reset the overcurrent (A.32),  
overload 1 (A.50) or overload 2 (A.51) alarm after its occurrence, without removing its cause, the servo  
amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of  
the alarm and also allow about 30 minutes for cooling before resuming operation.  
(2) Regenerative alarm  
If operation is repeated by switching control circuit power off, then on to reset the regenerative (A.30)  
alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an  
accident.  
(3) Instantaneous power failure  
Undervoltage (A.10) occurs when the input power is in either of the following statuses.  
A power failure of the control circuit power supply continues for 30ms or longer and the control  
circuit is not completely off.  
The bus voltage dropped to 200VDC or less.  
(4) Incremental  
When an alarm occurs, the home position is lost. When resuming operation after deactivating the  
alarm, make a home position return.  
3 - 42  
3. SIGNALS AND WIRING  
3.7 Servo motor with electromagnetic brake  
Configure the electromagnetic brake operation circuit so that it is activated not only  
by the interface unit signals but also by an external forced stop (EMG_ ).  
Contacts must be open when  
Circuit must be  
servo-on (SON ) is off, when an  
opened during  
trouble (ALM_ ) is present and  
forced stop  
when an electromagnetic brake  
(EMG_ ).  
interlock (MBR ).  
Servo motor  
RA EMG_  
CAUTION  
24VDC  
Electromagnetic brake  
The electromagnetic brake is provided for holding purpose and must not be used  
for ordinary braking.  
Before performing the operation, be sure to confirm that the electromagnetic brake  
operates properly.  
POINT  
Refer to the Servo Motor Instruction Manual for specifications such as the  
power supply capacity and operation delay time of the electromagnetic  
brake.  
Note the following when the servo motor equipped with electromagnetic brake is used:  
1) Using the MR Configurator (servo configuration software), make the electromagnetic brake  
interlock (MBR ) valid.  
2) Do not share the 24VDC interface power supply between the interface and electromagnetic  
brake. Always use the power supply designed exclusively for the electromagnetic brake.  
3) The brake will operate when the power (24VDC) switches off.  
4) While the reset (RES  
is on, the base circuit is shut off. When using the servo motor with a  
)
vertical shaft, use the electromagnetic brake interlock (MBR ).  
5) Switch off the servo-on (SON  
command after the servo motor has stopped.  
)
(1) Connection diagram  
Interface unit  
or  
Forced stop A  
extension IO unit  
Servo motor  
or  
Forced stop B  
RA  
B1  
B2  
24VDC  
SG  
24VDC  
RA  
MBR  
(2) Setting  
1) Using the MR Configurator (servo configuration software), make the electromagnetic brake  
interlock (MBR ) valid.  
2) In DRU parameter No.33 (electromagnetic brake sequence output), set the delay time (Tb) from  
electromagnetic brake operation to base circuit shut-off at a servo off time as in the timing chart  
in (3) in this section.  
3 - 43  
3. SIGNALS AND WIRING  
(3) Timing charts  
(a) Servo-on (SON  
command (from controller) ON/OFF  
)
Tb [ms] after the servo-on (SON ) is switched off, the servo lock is released and the servo motor  
coasts. If the electromagnetic brake is made valid in the servo lock status, the brake life may be  
shorter. Therefore, when using the electromagnetic brake in a vertical lift application or the like,  
set delay time (Tb) to about the same as the electromagnetic brake operation delay time to prevent  
a drop.  
Coasting  
0 r/min  
Servo motor speed  
(100ms)  
(120ms)  
Tb  
ON  
Base circuit  
OFF  
Electromagnetic brake  
operation delay time  
Invalid(ON)  
Valid(OFF)  
Electromagnetic  
brake(MBR  
)
ON  
Servo-on(SON  
)
OFF  
(b) Forced stop (EMG_ ) ON/OFF  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Electromagnetic brake  
Servo motor speed  
Electromagnetic brake release  
(180ms)  
(10ms)  
ON  
Base circuit  
OFF  
(180ms)  
Electromagnetic brake  
operation delay time  
Invalid (ON)  
Electromagnetic  
brake interlock (MBR  
)
Valid (OFF)  
Invalid (ON)  
Valid (OFF)  
Forced stop (EMG_  
)
(c) Alarm occurrence  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
Servo motor speed  
Base circuit  
Electromagnetic brake  
(10ms)  
ON  
OFF  
Invalid(ON)  
Electromagnetic brake  
operation delay time  
Electromagnetic  
brake interlock (MBR  
)
Valid(OFF)  
No(ON)  
Trouble (ALM_  
)
Yes(OFF)  
3 - 44  
3. SIGNALS AND WIRING  
(d) Both main and control circuit power supplies off  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Electromagnetic brake  
(Note)15 to 100ms  
ON  
Base circuit  
OFF  
Invalid(ON)  
Electromagnetic  
brake interlock(MBR  
)
Valid(OFF)  
No(ON)  
Electromagnetic brake  
operation delay time  
Trouble (ALM_  
)
Yes(OFF)  
ON  
Main circuit  
Control circuit  
power  
OFF  
Note. Changes with the operating status.  
(e) Only main circuit power supply off (control circuit power supply remains on)  
Dynamic brake  
Dynamic brake  
Electromagnetic brake  
(10ms)  
Servo motor speed  
Electromagnetic brake  
(Note 1)15ms or more  
ON  
Base circuit  
OFF  
Invalid(ON)  
Electromagnetic  
brake interlock  
Valid(OFF)  
Electromagnetic brake  
operation delay time  
(Note 2)  
(MBR  
)
No(ON)  
Trouble (ALM_  
)
Yes(OFF)  
ON  
Main circuit power  
supply  
OFF  
Note 1. Changes with the operating status.  
2. When the main circuit power supply is off in a motor stop status,  
the main circuit off warning (A.E9) occurs and the trouble (ALM_ ) does not turn off.  
3 - 45  
3. SIGNALS AND WIRING  
3.8 Grounding  
Ground the base unit and servo motor securely.  
To prevent an electric shock, always connect the protective earth (PE) terminal of  
the base unit with the protective earth (PE) of the control box.  
WARNING  
The base unit switches the power transistor on-off to supply power to the servo motor. Depending on the  
wiring and ground cablerouting, MELSERVO-J2M may be affected by the switching noise (due to di/dt  
and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram and always ground.  
To conform to the EMC Directive, refer to the EMC Installation Guidelines (IB(NA)67310).  
Control box  
Base unit  
Power  
supply  
NFB  
Servo motor  
FR-BAL  
Drive unit  
MC  
CN2  
3-phase  
200 to  
230VAC  
(Note4)  
1-phase  
200 to  
L1  
L2  
Encoder  
L3  
U
V
U
L11  
L21  
M
V
230VAC  
CNP2  
W
(Earth)  
W
(Note 2)  
(Note 3)  
Drive unit  
Servo motor  
CN2  
Encoder  
U
V
U
M
V
CNP2  
W
W
(Earth)  
(Note2)  
(Note 3)  
Interface unit  
CN1A  
(Note 1)  
Protective earth(PE)  
Note 1. To reduce the influence of external noise, we recommend you to ground the bus cable near  
the controller using a cable clamping fixture or to connect three or four data line filters in series.  
2. The mounting screw of the drive unit is also used for PE connection of the servo motor.  
3. Ensure to connect it to PE terminal of the drive unit. Do not connect it directly to the protective earth of the control panel.  
4. For 1-phase 230VAC, connect the power supply to L1 L2 and leave L3 open.  
3 - 46  
3. SIGNALS AND WIRING  
3.9 Instructions for the 3M connector  
When fabricating an encoder cable or the like, securely connect the shielded external conductor of the  
cable to the ground plate as shown in this section and fix it to the connector shell.  
External conductor  
Sheath  
Core  
External conductor  
Pull back the external conductor to cover the sheath  
Sheath  
Strip the sheath.  
Screw  
Cable  
Screw  
Ground plate  
3 - 47  
3. SIGNALS AND WIRING  
MEMO  
3 - 48  
4. OPERATION AND DISPLAY  
4. OPERATION AND DISPLAY  
On the interface unit display (5-digit, seven-segment display), check the status of communication with the  
servo system controller at power-on, check the slot number, and diagnose a fault at occurrence of an  
alarm.  
4.1 Display flowchart  
When powered on, the MELSERVO-J2M is placed in the automatic scroll mode in which the statuses of  
the interface unit/drive units installed on the base unit appear at intervals of 2 seconds in due order. At  
this time, open slot numbers do not appear.  
In the initial status, the indication is in the automatic scroll mode. Pressing the "SET" button switches the  
automatic scroll mode to the fixed mode. In the fixed mode, pressing the "UP" or "DOWN" button displays  
the status of the subsequent-slot drive unit.  
If an alarm/warning occurs in the interface unit/drive units, the alarm/warning number of the interface  
unit/drive unit appears. (Refer to Section 4.1.2)  
Automatic scroll  
or  
button  
DOWN  
UP  
IFU status indication DRU status indication DRU status indication  
(Slot 2)  
DRU status indication DRU status indication  
(Slot 7)  
(Slot 1)  
(Slot 8)  
In the automatic scroll mode, pressing the "MODE" button for 2s or more switches between the normal  
indication and the corresponding unit-related display screen. (Refer to Section 4.2/ Section 4.3.)  
4 - 1  
4. OPERATION AND DISPLAY  
4.1.1 Normal indication  
The normal indication shows the interface unit status or the slot number and current status (during servo  
ON or during servo OFF) of the corresponding drive unit to allow you to diagnose faults at alarm  
occurrence.  
The following are the drive unit status display data in the normal indication.  
(Note 1)Indication  
Status  
Description  
@
@
C@  
d@  
Servo off  
Servo-on  
Servo off status.  
Servo on status.  
(Note 2) @A**@  
Alarm Warning  
The encountered alarm/warning number is displayed.  
(Refer to Section 9.1.)  
/
@T d@.  
@T C@.  
Test operation mode  
Test operation mode status using the MR Configurator  
(servo configuration software).  
Displayed for JOG operation, positioning operation,  
motor-less operation or D0 forced output.  
The indication varies with the current condition.  
Note 1. @ denotes the slot number of the base unit.  
2. ** indicates the warning/alarm No.  
(1) When the drive unit is during servo off  
1.  
C 1  
Slot number  
Indicates servo OFF.  
Slot number  
(2) When the drive unit is during servo on  
1.  
d
1
Slot number  
Indicates servo ON.  
Slot number  
(3) When the interface unit is normal  
F.  
Indicates the interface unit.  
4 - 2  
4. OPERATION AND DISPLAY  
4.1.2 If alarm/warning occurs  
(1) If alarm/warning occurs in drive unit  
An alarm/warning which occurred in the drive unit is represented by the following indication.  
The following indication example assumes that an encoder error (A.16) occurred in the drive unit of  
installed on slot 1. During alarm occurrence digits flicker.  
1. A 1 6. 1  
Slot number  
Alarm/warning number  
Denotes alarm/warning indication.  
Slot number  
(2) If alarm/warning occurs in interface unit  
An alarm/warning which occurred in the interface unit is represented by the following indication. The  
following indication example assumes that interface unit undervoltage (A.10) occurred. During alarm  
occurrence digits flicker.  
F. A 1 0.  
Alarm/warning number  
Denotes alarm/warning indication.  
Denotes interface unit.  
4 - 3  
4. OPERATION AND DISPLAY  
4.1.3 If test operation  
POINT  
Test operation can be performed using the MR Configurator (servo  
configuration software).  
(1) When test operation is being performed  
Test operation being performed is indicated as follows.  
@.  
@.  
T
C
Slot number. Test operation being performed is indicated as follows.  
Indicates the current status. Refer to the following table for below.  
Denotes test operation indication.  
Slot number  
Indication  
@T C@.  
@T d@.  
Current Status  
Servo off status  
Servo on status  
(2) When alarm occurs during test operation  
Any alarm that occurred during test operation is indicated as follows.  
@.  
@.  
A 1 6.  
Slot number. The decimal point is lit during test operation.  
Alarm display  
Slot number  
4 - 4  
4. OPERATION AND DISPLAY  
4.2 Interface unit display  
4.2.1 Display flowchart of interface unit  
Use the display (5-digit, 7-segment LED) on the front panel of the interface unit for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status.  
The automatic scroll mode is selected at power-on. Before starting use, therefore, press the "UP" or  
"DOWN" button to change the fifth digit to "F" and press the "MODE" button for 2s or more to change the  
indication.  
Press the "MODE" "UP" or "DOWN" button once to move to the next screen.  
button  
MODE  
Expansion IFU  
parameters  
Basic IFU parameters  
Status display  
Diagnosis  
Alarm  
Regenerative load  
ratio [%]  
Interface unit  
Current alarm  
Last alarm  
IFU parameter No. 0  
IFU parameter No. 1  
IFU parameter No. 20  
IFU parameter No. 21  
external input signal  
Interface unit  
external output signal  
Bus voltage [V]  
UP  
Peak bus voltage  
[V]  
Second alarm in past  
Third alarm in past  
Fourth alarm in past  
Fifth alarm in past  
Interface unit output  
signal (DO) forced output  
DOWN  
Software version  
Low  
Software version  
High  
IFU parameter No. 18  
IFU parameter No. 19  
IFU parameter No. 28  
IFU parameter No. 29  
Sixth alarm in past  
Parameter error No.  
Note. The parameter display range varies with the parameter write inhibit.  
4 - 5  
4. OPERATION AND DISPLAY  
4.2.2 Status display of interface unit  
MELSERVO-J2M status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP"  
or "DOWN" button to change display data as desired. When the required data is selected, the  
corresponding symbol appears. Press the "SET" button to display its data.  
(1) Display examples  
The following table lists display examples:  
Displayed data  
Item  
Status  
Interface unit display  
Regenerative load ratio  
60%  
Bus voltage  
270V  
350V  
Peak bus voltage  
(2) Interface unit status display list  
The following table indicates the MELSERVO-J2M statuses that can be shown. After it has been  
selected, each status display changes to a symbol display. Press the "SET" button to show the  
definition of the status display. Refer to Appendix 1 for the measurement point.  
Pressing the "MODE" button during a status definition display returns to a symbol display.  
Display  
range  
Name  
Symbol  
Unit  
Description  
Regenerative load  
ratio  
The ratio of regenerative power to permissible regenerative power is  
displayed in %.  
F.L  
F.Pn  
%
V
V
0 to 100  
0 to 450  
Bus voltage  
The voltage (across P-N) of the main circuit converter is displayed.  
Shows the maximum voltage of the main circuit converter (across P-N).  
The maximum value during past 15s is displayed.  
Peak bus voltage  
F.PnP  
0 to 450  
4 - 6  
4. OPERATION AND DISPLAY  
4.2.3 Diagnostic mode of interface unit  
Name  
Display  
Description  
Shows the ON/OFF states of the external input signals.  
1) Forced stop A (EMG_A)  
ON: On OFF: Off  
2)  
1)  
Interface unit external  
input signal  
2) Forced stop B (EMG_B)  
ON: On OFF: Off  
Shows the ON/OFF states of the external output signals.  
1) Trouble A (ALM_A)  
ON: On OFF: Off  
2) Trouble B (ALM_B)  
ON: On OFF: Off  
Interface unit external  
output signal  
2)  
1)  
The digital output signal can be forced on/off. For more  
information, refer to section 4.2.6.  
During output signal (DO) forced output, the decimal point in the  
first digit is lit.  
Interface unit output  
signal (DO) forced  
output  
Software version Low  
Software version High  
Indicates the version of the software.  
Indicates the system number of the software.  
4 - 7  
4. OPERATION AND DISPLAY  
4.2.4 Alarm mode of interface unit  
The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the  
display indicate the alarm number that has occurred or the parameter number in error. Display examples  
are shown below.  
Name  
Display  
Description  
Indicates no occurrence of an alarm in the interface unit.  
Current alarm  
Indicates the occurrence of overvoltage (A.10) in the interface unit.  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is base unit error (A.1C) in the interface  
unit.  
Indicates that the second alarm in the past is overvoltage (A.33) in the  
interface unit.  
Indicates that the third alarm in the past is undervoltage (A.10) in the  
interface unit.  
Alarm history  
Indicates that the fourth alarm in the past is over regenerative (A.30) in  
the interface unit.  
Indicates that there is no fifth alarm in the past of the interface unit.  
Indicates that there is no sixth alarm in the past of the interface unit.  
Indicates no occurrence of parameter error (A.37) of the interface unit.  
Indicates that the data of parameter No. 1 is faulty of the interface unit.  
Parameter error No.  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the fourth  
digit flickers.  
(3) For any alarm, remove its cause and clear it in any of the following: (for clearable alarms, refer to  
Section 9.2)  
(a) Switch power OFF, then ON.  
(b) Press the "SET" button on the current alarm screen.  
(4) Use IFU parameter No. 0 to clear the alarm history.  
(5) Pressing "SET" button on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
(6) Press "UP" or "DOWN" button to move to the next history.  
(7) Pressing the "MODE" button on the alarm detail display screen returns to the alarm history display.  
4 - 8  
4. OPERATION AND DISPLAY  
4.2.5 Interface unit parameter mode  
The parameters whose abbreviations are marked* are made valid by changing the setting and then  
switching power off once and switching it on again. Refer to Section 5.2.2.  
The following example shows the operation procedure performed after power-on to change the  
regenerative brake resistor (IFU parameter No. 1) to 0005 (MR-RB15).  
Using the "MODE" button, show the basic parameter screen.  
The parameter number is displayed.  
Press  
or  
UP DOWN  
button to change the number.  
Press SET twice.  
The set value of the specified parameter number flickers.  
Press UP fifth.  
During flickering, the set value can be changed.  
Use  
(
or  
button .  
UP  
DOWN  
5: regenerative brake option MR-RB14)  
Press SET to enter.  
Pressing the "MODE" button during a parameter setting display or setting change display cancels the  
processing and returns to a parameter number display.  
To shift to the next parameter, press the "UP" or "DOWN" button.  
4 - 9  
4. OPERATION AND DISPLAY  
4.2.6 Interface unit output signal (DO) forced output  
POINT  
This function is available during test operation.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state (SON off).  
Call the display screen shown after power-on. Using the "MODE" button, show the diagnostic screen.  
Press UP button twice.  
Press SET button for more than 2s.  
Turns on/off the signal under the lit LED.  
Always lit.  
Indicates whether the output signal is ON or OFF.  
The signals are the same as the external output  
signals. (On: ON, Off: OFF)  
ALM_A ALM_B  
Pressing MODE button once moves the lit LED to the left.  
Press UP button once.  
The ALM_A turns on.  
(There will be continuity across ALM_A-SG.)  
Press DOWN button once.  
The ALM_A turns off.  
Press SET button for more than 2s.  
4 - 10  
4. OPERATION AND DISPLAY  
4.3 Drive unit display  
4.3.1 Drive unit display sequence  
Use the display (5-digit, 7-segment LED) on the front panel of the servo amplifier for status display,  
parameter setting, etc. Set the parameters before operation, diagnose an alarm, confirm external  
sequences, and/or confirm the operation status.  
The automatic scroll mode is selected at power-on. Before starting use, therefore, press the "UP" or  
"DOWN" button to change the fifth digit to the necessary slot number "1" to "8" and press the "MODE"  
button for 2s or more to change the indication.  
Press the "MODE" "UP" or "DOWN" button once to move to the next screen.  
To refer to or set the expansion parameters, make them valid with DRU parameter No. 19 (parameter  
write disable).  
button  
MODE  
Expansion DRU  
parameters 1  
Expansion DRU  
parameters 2  
Basic DRU  
parameters  
Status display  
Diagnosis  
Alarm  
@
@
@
@
@
@
(Note)  
Cumulative feedback  
pulses [pulse]  
Drive unit external  
input signal  
Current alarm  
DRU parameter No. 0  
DRU parameter No. 20  
DRU parameter No. 50  
@
@
@
@
Last alarm  
@
@
Motor speed  
[r/min]  
Drive unit external  
output signal  
DRU parameter No. 1  
DRU parameter No. 21  
DRU parameter No. 51  
@
@
@
Droop pulses  
[pulse]  
Drive unit output signal Second alarm in past  
(DO) forced output  
UP  
@
@
@
Cumulative command  
pulses [pulse]  
Software version  
Low  
Third alarm in past  
DOWN  
@
@
@
@
@
@
Command pulse  
frequency [kpps]  
Software version  
High  
Fourth alarm in past  
DRU parameter No. 18 DRU parameter No. 48  
DRU parameter No. 83  
@
@
@
@
@
@
Effective load ratio  
[%]  
Motor series ID  
Fifth alarm in past  
DRU parameter No. 19 DRU parameter No. 49  
DRU parameter No. 84  
@
@
@
Peak load ratio  
[%]  
Motor type ID  
Sixth alarm in past  
@
@
@
Instantaneous torque  
[%]  
Encoder ID  
Parameter error No.  
@
Within one-revolution  
position low [pulse]  
@
Within one-revolution  
position, high [100 pulses]  
@
ABS counter  
[rev]  
@
Load inertia moment  
ratio [times]  
Note 1. @ indicates the slot number.  
2. The parameter display range varies with the parameter write inhibit.  
4 - 11  
4. OPERATION AND DISPLAY  
4.3.2 Status display of drive unit  
The servo status during operation is shown on the 5-digit, 7-segment LED display. Press the "UP" or  
"DOWN" button to change display data as desired. When the required data is selected, the corresponding  
symbol appears. Press the "SET" button to display its data.  
(1) Display examples  
The following table lists display examples:  
Displayed data  
Item  
Status  
Servo amplifier display  
Forward rotation at 3000r/min  
Motor speed  
Reverse rotation at 3000r/min  
Reverse rotation is indicated by " ".  
11252pulse  
Multi-  
revolution  
counter  
12566pulse  
Lit  
Negative value is indicated by the lit decimal points in the upper four  
digits.  
Load inertia  
moment  
15.5 times  
4 - 12  
4. OPERATION AND DISPLAY  
(2) Drive unit status display list  
The following table lists the servo statuses that may be shown:  
Refer to Appendix 2 for the measurement point.  
Display  
range  
Name  
Symbol  
Unit  
Description  
Cumulative feedback  
pulses  
@.C  
pulse  
Feedback pulses from the servo motor encoder are counted and  
displayed. The value in excess of 99999 is counted, bus since the  
interface display is five digits, it shows the lower five digits of the  
actual value. Press the "SET" button to reset the display value to  
zero.  
99999  
to  
99999  
Reverse rotation is indicated by the lit decimal points in the upper  
four digits.  
Servo motor speed  
Droop pulses  
@.r  
r/min  
pulse  
The servo motor speed is displayed.  
The value rounded off is displayed in 0.1r/min.  
5400  
to  
5400  
99999  
to  
@.E  
The number of droop pulses in the deviation counter is displayed.  
When the servo motor is rotating in the reverse direction, the  
decimal points in the upper four digits are lit.  
99999  
Since the servo amplifier display is five digits, it shows the lower five  
digits of the actual value.  
The number of pulses displayed is not yet multiplied by the electronic  
gear.  
Cumulative command  
pulses  
@.P  
pulse  
The position command input pulses are counted and displayed.  
As the value displayed is not yet multiplied by the electronic gear  
(CMX/CDV), it may not match the indication of the cumulative  
feedback pulses.  
99999  
to  
99999  
The value in excess of 99999 is counted, but since the interface  
display is five digits, it shows the lower five digits of the actual value.  
Press the "SET" button to reset the display value to zero. When the  
servo motor is rotating in the reverse direction, the decimal points in  
the upper four digits are lit.  
Command pulse  
frequency  
@.n  
@.J  
kpps  
%
The frequency of the position command input pulses is displayed.  
The value displayed is not multiplied by the electronic gear  
(CMX/CDV).  
The continuous effective load torque is displayed.  
The effective value in the past 15 seconds is displayed relative to the  
rated torque of 100%.  
The maximum torque generated during acceleration/deceleration, etc.  
The highest value in the past 15 seconds is displayed relative to the  
rated torque of 100%.  
Torque that occurred instantaneously is displayed.  
The value of the torque that occurred is displayed in real time  
relative to the rate torque of 100%.  
800  
to  
800  
0
to  
300  
0
to  
400  
0
to  
400  
0
Effective load ratio  
Peak load ratio  
@.b  
%
Instantaneous torque  
@.T  
%
Within one-revolution  
position Low  
@.CY1  
pulse  
Position within one revolution is displayed in encoder pulses.  
The value returns to "0" when it exceeds the maximum number of  
pulses.  
to  
99999  
The value is incremented in the "CCW" direction of rotation.  
Within one-revolution @.CY2  
position High  
100  
The within one-revolution position is displayed in 100 pulse  
increments of the encoder.  
0
to  
pulse  
The value returns to "0" when it exceeds the maximum number of  
pulses.  
13107  
The value is incremented in the "CCW" direction of rotation.  
Travel value from the home position in the absolute position  
detection systems is displayed in terms of the absolute position  
detectors counter value.  
ABS counter  
@.LS  
@.dC  
rev  
0.1  
32768  
to  
32768  
0.0  
Load inertia moment  
ratio  
The estimated ratio of the load inertia moment to the servo motor  
Times shaft inertia moment is displayed.  
to  
300.0  
4 - 13  
4. OPERATION AND DISPLAY  
4.3.3 Diagnostic mode of drive unit  
Name  
(Note) Display  
Description  
Shows the ON/OFF statuses of the external input signals.  
Each signal corresponds to the function assignment. (The  
corresponding segment is lit when the function-assigned signal  
turns on.)  
Drive unit external  
input signal  
Refer to section 4.3.6.  
Refer to section 4.3.6.  
Shows the ON/OFF statuses of the external output signals.  
When the corresponding segment is lit, the output is provided to  
the assigned signal.  
Drive unit external  
output signal  
Drive unit output  
signal (DO) forced  
output  
The digital output signal can be forced on/off. For more  
information, refer to section 4.3.8.  
@
Software version Low  
Software version High  
Indicates the version of the drive unit software.  
@
@
@
Indicates the system number of the drive unit software.  
Press the "SET" button to show the motor series ID of the servo  
motor currently connected.  
Motor series ID  
Motor type ID  
Encoder ID  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the motor type ID of the servo  
motor currently connected.  
@
@
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Press the "SET" button to show the encoder ID of the servo motor  
currently connected.  
For indication details, refer to the optional MELSERVO Servo  
Motor Instruction Manual.  
Note. @ indicates the slot number.  
4 - 14  
4. OPERATION AND DISPLAY  
4.3.4 Alarm mode of drive unit  
Name  
(Note) Display  
Description  
Indicates no occurrence of an alarm in the drive unit.  
@
@
@
@
@
@
@
@
@
@
Current alarm  
Indicates the occurrence of overvoltage (A.33) in the drive unit.  
Flickers at occurrence of the alarm.  
Indicates that the last alarm is overload 1 (A.50) in the drive unit.  
Indicates that the second alarm in the past is overvoltage (A.33) in the  
drive unit.  
Indicates that the third alarm in the past is undervoltage (A.52) in the  
drive unit.  
Alarm history  
Indicates that the fourth alarm in the past is encoder error (A.20) in the  
drive unit.  
Indicates that there is no fifth alarm in the past in the drive unit.  
Indicates that there is no sixth alarm in the past in the drive unit.  
Indicates no occurrence of parameter error (A.37) in the drive unit.  
Indicates that the data of parameter No. 1 is faulty in the drive unit.  
Parameter error No.  
Note. @ indicates the slot number.  
Functions at occurrence of an alarm  
(1) Any mode screen displays the current alarm.  
(2) The other screen is visible during occurrence of an alarm. At this time, the decimal point in the fourth  
digit flickers.  
(3) For any alarm, remove its cause and clear it in any of the following methods: (for clearable alarms,  
refer to Section 9.2)  
(a) Switch power OFF, then ON.  
(b) Turn on the reset (RES ).  
(4) Use DRU parameter No. 16 to clear the alarm history.  
(5) Pressing "SET" button on the alarm history display screen for 2s or longer shows the following detailed  
information display screen. Note that this is provided for maintenance by the manufacturer.  
@
(6) Press "UP" or "DOWN" button to move to the next history.  
4 - 15  
4. OPERATION AND DISPLAY  
4.3.5 Drive unit parameter mode  
The parameter setting of the drive unit is the same as that of the interface unit. Refer to Section 4.2.5.  
To use the expansion parameters, change the setting of DRU parameter No. 19 (parameter write disable).  
Refer to section 5.1.1.  
4.3.6 Drive unit external input signal display  
The ON/OFF states of the digital input signals connected to the servo amplifier can be confirmed.  
(1) Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
External input signal display screen  
@
(2) Display definition  
Corresponds to the signals of the seven-segment LED.  
Slot number  
RES  
TL1  
PC  
SON  
LSN  
LSP  
CR  
Always lit  
CM2  
CM1 CDP  
Lit: ON  
Extinguished: OFF  
The 7-segment LED shown above indicates ON/OFF.  
Each segment at top indicates the input signal and each segment at bottom indicates the output signal.  
The following table indicates the signal names.  
Signal Name List  
Signal  
LSP  
LSN  
SON  
RES  
CR  
Signal Name  
Forward rotation stroke end  
Reverse rotation stroke end  
Servo-on  
Signal  
PC  
Signal Name  
Proportion control  
TL1  
Internal torque limit selection  
Electronic gear 1 selection  
Electronic gear 2 selection  
Gain switch selection  
CM1  
CM2  
CDP  
Reset  
Clear  
4 - 16  
4. OPERATION AND DISPLAY  
4.3.7 Drive unit external output signal display  
The ON/OFF states of the digital output signals connected to the servo amplifier can be confirmed.  
(1) Operation  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
@
Press UP button once.  
External output signal display screen  
@
(2) Display definition  
Slot number  
Always lit  
ALM_ TLC  
ZSP  
INP  
OP  
MBR  
RD  
WNG  
BWNG  
Lit: ON  
Extinguished: OFF  
The 7-segment LED shown above indicates ON/OFF.  
Each segment at top indicates the input signal and each segment at bottom indicates the output signal.  
The following table indicates the signal names.  
Signal Name List  
Signal  
RD  
Signal Name  
Signal  
TLC  
Signal Name  
Ready  
Limiting torque  
Trouble  
MBR  
OP  
Electromagnetic brake sequence output  
Encoder Z-phase pulse  
In position  
ALM_  
WNG  
Warning  
INP  
ZSP  
BWNG  
Battery warning  
Zero speed  
4 - 17  
4. OPERATION AND DISPLAY  
4.3.8 Drive unit output signal (DO) forced output  
POINT  
This function is usable during test operation only.  
The output signal can be forced on/off independently of the servo status. This function is used for output  
signal wiring check, etc. This operation must be performed in the servo off state (SON off).  
Call the display screen shown after power-on.  
Using the "MODE" button, show the diagnostic screen.  
@
Press UP button twice.  
@
Press SET button for more than 2 seconds.  
Switch on/off the signal below the lit segment.  
Always lit  
@
Indicates the ON/OFF of the output signal. The correspondences  
between segments and signals are as in the external output  
signal display.  
(Lit: ON, extinguished: OFF)  
ZSP  
BWNG TLC  
ALM_  
WNG  
OP  
MBR  
RD  
INP  
Press the MODE button once to shift the lit LED to the left.  
@
@
Press UP button once.  
RD is switched on.  
(RD -SG conduct.)  
Press DOWN button once.  
RD is switched off.  
Press SET button for more than 2 seconds.  
4 - 18  
5. PARAMETERS  
5. PARAMETERS  
CAUTION  
Never adjust or change the parameter values extremely as it will make operation  
instable.  
5.1 DRU parameter list  
5.1.1 DRU parameter write inhibit  
POINT  
After setting the DRU parameter No. 19 value, switch power off, then on  
to make that setting valid.  
In the MELSERVO-J2M servo amplifier, its parameters are classified into the DRU basic parameters  
(No. 0 to 19), DRU expansion parameters 1 (No. 20 to 49) and DRU expansion parameters 2 (No.50 to  
84) according to their safety aspects and frequencies of use. In the factory setting condition, the  
customer can change the basic parameter values but cannot change the DRU expansion parameter  
values. When fine adjustment, e.g. gain adjustment, is required, change the DRU parameter No. 19  
setting to make the expansion parameters write-enabled.  
The following table indicates the parameters which are enabled for reference and write by the setting of  
DRU parameter No. 19. Operation can be performed for the DRU parameters marked  
.
DRU parameter  
No. 19 setting  
DRU basic parameters DRU expansion parameters 1 DRU expansion parameters 2  
Operation  
No. 0 to 19  
No. 20 to 49  
No. 50 to 84  
Reference  
Write  
0000  
(initial value)  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
No. 19 only  
Reference  
Write  
Reference  
Write  
5 - 1  
5. PARAMETERS  
5.1.2 Lists  
POINT  
For any DRU parameter whose symbol is preceded by *, set the DRU  
parameter value and switch power off once, then switch it on again to  
make that DRU parameter setting valid.  
(1) Item list  
Customer  
setting  
No. Symbol  
Name  
Initial value  
Unit  
0
1
2
For manufacturer setting  
0000  
0000  
0105  
*OP1 Function selection 1  
ATU Auto tuning  
Electronic gear numerator  
CMX  
3
4
1
1
(Command pulse multiplying factor numerator)  
Electronic gear denominator  
CDV  
(Command pulse multiplying factor denominator)  
In-position range  
5
6
INP  
PG1  
100  
35  
pulse  
rad/s  
Position loop gain 1  
Position command acceleration/deceleration time constant  
(Position smoothing)  
7
PST  
3
ms  
For manufacturer setting  
100  
500  
1000  
0
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0
0
0
0
*BPS Alarm history clear  
For manufacturer setting  
0000  
0100  
0000  
0000  
*BLK DRU parameter write inhibit  
5 - 2  
5. PARAMETERS  
Customer  
setting  
No. Symbol  
Name  
Initial value  
Unit  
20  
21  
22  
23  
24  
25  
26  
*OP2 Function selection 2  
0000  
0000  
0000  
0
*OP3 Function selection 3 (Command pulse selection)  
*OP4 Function selection 4  
FFC Feed forward gain  
%
ZSP  
Zero speed  
50  
r/min  
For manufacturer setting  
0
100  
pulse  
/rev  
%
27  
*ENR Encoder output pulses  
4000  
28  
29  
30  
31  
32  
33  
TL1  
Internal torque limit 1  
100  
0
For manufacturer setting  
0
0
0
MBR Electromagnetic brake sequence output  
100  
ms  
0.1  
34  
GD2 Ratio of load inertia moment to servo motor inertia moment  
70  
times  
rad/s  
rad/s  
rad/s  
ms  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
PG2  
Position loop gain 2  
35  
VG1 Speed loop gain 1  
VG2 Speed loop gain 2  
177  
817  
VIC  
Speed integral compensation  
48  
VDC Speed differential compensation  
For manufacturer setting  
*DIA  
980  
0
0000  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
*DI1 Input signal selection 1  
For manufacturer setting  
5 - 3  
5. PARAMETERS  
Customer  
setting  
No. Symbol  
Name  
Initial value  
Unit  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
For manufacturer setting  
0000  
0000  
0000  
0000  
0000  
0000  
0
*OP6 Function selection 6  
For manufacturer setting  
*OP9 Function selection 9  
*OPA Function selection A  
For manufacturer setting  
10  
NH1 Machine resonance suppression filter 1  
NH2 Machine resonance suppression filter 2  
0000  
0000  
0000  
LPF  
Low-pass filter, adaptive vibration suppression control  
0.1  
times  
%
61 GD2B Ratio of load inertia moment to Servo motor inertia moment 2  
70  
62  
63  
64  
65  
66  
67  
68  
PG2B Position control gain 2 changing ratio  
VG2B Speed control gain 2 changing ratio  
VICB Speed integral compensation changing ratio  
*CDP Gain changing selection  
100  
100  
100  
0000  
10  
%
%
CDS Gain changing condition  
(Note)  
CDT Gain changing time constant  
For manufacturer setting  
1
ms  
0
69 CMX2 Command pulse multiplying factor numerator 2  
70 CMX3 Command pulse multiplying factor numerator 3  
71 CMX4 Command pulse multiplying factor numerator 4  
1
1
1
For manufacturer setting  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
200  
300  
500  
800  
100  
100  
10000  
10  
TL2  
Internal torque limit 2  
%
For manufacturer setting  
10  
100  
100  
100  
0
Note. Depends on the parameter No. 65 setting.  
5 - 4  
5. PARAMETERS  
(2) Details list  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
0
1
For manufacturer setting  
Do not change this value any means.  
0000  
*OP1 Function selection 1  
0000  
Refer to  
Name  
Used to select the absolute position detection system.  
and  
0 0 0  
function  
column.  
Selection of absolute position detection system  
(Refer to Chapter 15)  
0: Used in incremental system  
1: Used in absolute position detection system  
(Serial communication)  
2
ATU Auto tuning  
0105  
Refer to  
Name  
Used to selection the response level, etc. for execution of auto tuning.  
Refer to Chapter 6.  
and  
function  
column.  
0
0
Auto tuning response level setting  
Set Response Machine resonance  
value  
1
level  
Low  
frequency guideline  
15Hz  
response  
2
20Hz  
3
25Hz  
4
30Hz  
5
35Hz  
6
45Hz  
7
8
9
55Hz  
70Hz  
85Hz  
Middle  
response  
A
B
C
D
E
F
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
High  
response  
If the machine hunts or generates  
large gear sound, decrease the  
set value.  
To improve performance, e.g.  
shorten the settling time, increase  
the set value.  
Gain adjustment mode selection  
(For more information, refer to Section 6.1.1.)  
Set  
value  
Gain adjustment mode  
Description  
Interpolation mode  
Fixes position control gain 1  
(DRU parameter No. 6).  
Ordinary auto tuning.  
0
Auto tuning mode 1  
Auto tuning mode 2  
1
2
Fixes the load inertia moment  
ratio set in DRU parameter  
No. 34. Response level setting  
can be changed.  
3
4
Manual mode 1  
Manual mode 2  
Simple manual adjustment.  
Manual adjustment of all gains.  
5 - 5  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
3
CMX Electronic gear numerator (Command pulse multiplying factor numerator)  
Used to set the electronic gear numerator value.  
1
0
to  
1
65535  
For the setting, refer to Section 5.2.1.  
Setting "0" automatically sets the resolution of the servo motor connected.  
For the HC-MFS series, 131072 pulses are set for example.  
4
5
CDV Electronic gear denominator (Command pulse multiplying factor  
denominator)  
1
1
to  
65535  
Used to set the electronic gear denominator value.  
For the setting, refer to Section 5.2.1.  
INP In-position range  
100  
pulse  
0
to  
10000  
Set the in-position (INP ) output range in the command pulse unit that  
was used before electronic gear calculation.  
For example, when you want to set 100 m when the ballscrew is directly  
coupled, the lead is 10mm, the feedback pulse count is 131072 pulses/rev,  
and the electronic gear numerator (CMX)/electronic gear denominator  
(CDV) is 16384/125 (setting in units of 10 m per pulse), set "10" as indicated  
by the following expression.  
6
100[ m] 10  
10[mm] 10  
125  
16384  
10  
131072[pulse/rev]  
3
6
7
PG1 Position loop gain 1  
Used to set the gain of position loop.  
35  
red/s  
4
to  
2000  
Increase the gain to improve trackability in response to the position  
command.  
When auto turning mode 1,2 is selected, the result of auto turning is  
automatically used.  
PST Position command acceleration/deceleration time constant  
(position smoothing)  
3
ms  
0
to  
20000  
Used to set the time constant of a low pass filter in response to the position  
command.  
You can use DRU parameter No. 55 to choose the primary delay or linear  
acceleration/deceleration control system. When you choose linear  
acceleration/deceleration, the setting range is 0 to 10ms. Setting of longer  
than 10ms is recognized as 10ms.  
Example: When a command is given from a synchronizing detector,  
synchronous operation can be started smoothly if started during  
line operation.  
Synchronizing  
detector  
Start  
Servo motor  
Servo amplifier  
Without time  
constant setting  
With time  
Servo motor  
speed  
constant setting  
ON  
OFF  
t
Start  
5 - 6  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
8
For manufacturer setting  
Do not change this value any means.  
100  
500  
1000  
0
9
10  
11  
12  
13  
14  
15  
16  
0
0
0
0
*BPS Alarm history clear  
Clear the alarm history.  
0000  
Refer to  
Name  
and  
0
0
0
function  
column.  
Alarm history clear  
0: Invalid  
1: Valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
17  
For manufacturer setting  
0100  
Do not change this value any means.  
DRU parameter write inhibit  
18  
19  
0000  
0000  
*BLK  
Refer to  
Name  
Used to select the reference and write ranges of the parameters.  
and  
Operation can be performed for the parameters marked  
.
function  
column.  
Expansion  
DRU  
parameters 2  
Basic DRU  
parameters  
No. 0 to No. 19 No. 20 to No. 49  
Expansion DRU  
parameters 1  
Set  
value  
Operation  
No. 50 to No. 84  
0000  
(Initial  
value)  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
No. 19 only  
No. 19 only  
000A  
000B  
000C  
000E  
100B  
100C  
100E  
No. 19 only  
No. 19 only  
No. 19 only  
Refer to  
Name  
and  
0000  
20  
*OP2 Function selection 2  
Used to select slight vibration suppression control.  
0 0  
function  
column.  
Slight vibration suppression control  
Made valid when auto tuning selection is  
set to "0400" in DRU parameter No. 2.  
Used to suppress vibration at a stop.  
0: Invalid  
1: Valid  
Encoder cable selection  
0: 2-wire type (when MR-JCCBL M-L/H is used)  
1: 4-wire type (when MR-JC4CBL M-H is used)  
5 - 7  
5. PARAMETERS  
Initial  
value  
0000  
Setting  
range  
Refer to  
Name  
and  
function  
column.  
Class No. Symbol  
Name and function  
Unit  
21  
*OP3 Function selection 3 (Command pulse selection)  
Used to select the input form of the pulse train input signal.  
(Refer to Section 3.2.3.)  
0 0  
Command pulse train input form  
0: Forward/reverse rotation pulse train  
1: Signed pulse train  
2: A/B phase pulse train  
Pulse train logic selection  
0: Positive logic  
1: Negative logic  
Refer to  
Name  
and  
function  
column.  
22  
*OP4 Function selection 4  
0000  
Used to select stop processing at the forward rotation stroke end  
(LSP  
reveres rotation stroke end (LSN  
off.  
)
)
0
0 0  
How to make a stop when the forward rotation  
stroke end (LSP  
(LSN ) is valid.  
0: Sudden stop  
1: Slow stop  
)
reveres rotation stroke end  
23  
24  
FFC Feed forward gain  
0
%
0
to  
100  
Set the feed forward gain. When the setting is 100%, the droop pulses  
during operation at constant speed are nearly zero. However, sudden  
acceleration/deceleration will increase the overshoot. As a guideline, when  
the feed forward gain setting is 100%, set 1s or more as the  
acceleration/deceleration time constant up to the rated speed.  
ZSP Zero speed  
50  
r/min  
0
to  
Used to set the output range of the zero speed (ZSP ).  
10000  
For manufacturer setting  
Do not change this value any means.  
25  
26  
0
100  
4000  
27 *ENR Encoder output pulses  
pulse/  
rev  
1
to  
POINT  
65535  
The MR-J2M-D01 extension IO unit is required to output the  
encoder pulses (A phase, B phase, Z phase).  
Used to set the encoder pulses (A-phase, B-phase) output by the servo  
amplifier.  
Set the value 4 times greater than the A-phase or B-phase pulses.  
You can use DRU parameter No. 54 to choose the output pulse setting or  
output division ratio setting.  
The number of A/B-phase pulses actually output is 1/4 times greater than  
the preset number of pulses.  
The maximum output frequency is 1.3Mpps (after multiplication by 4). Use  
this parameter within this range.  
For output pulse designation  
Set " 0  
" (initial value) in DRU parameter No. 54.  
Set the number of pulses per servo motor revolution.  
Output pulse set value [pulses/rev]  
At the setting of 5600, for example, the actually output A/B-phase pulses  
are as indicated below:  
5600  
4
A B-phase output pulses  
1400[pulse/rev]  
For output division ratio setting  
Set " 1 " in DRU parameter No. 54.  
The number of pulses per servo motor revolution is divided by the set  
value.  
Resolution per servo motor revolution  
Output pulse  
[pulses/rev]  
Set value  
At the setting of 8, for example, the actually output A/B-phase pulses are  
as indicated below:  
131072  
1
4
A B-phase output pulses  
4096[pulse/rev]  
8
5 - 8  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
Internal torque limit 1  
28  
TL1  
100  
%
0
Set this parameter to limit servo motor torque on the assumption that the  
maximum torque is 100[%].  
When 0 is set, torque is not produced.  
to  
100  
When torque is output in analog monitor, this set value is the maximum  
output voltage ( 4V). (Refer to Section 3.3.5 (2))  
For manufacturer setting  
29  
30  
31  
32  
33  
0
0
0
Do not change this value any means.  
0
MBR Electromagnetic brake sequence output  
100  
ms  
0
to  
Used to set the delay time (Tb) between electronic brake interlock (MBR  
and the base drive circuit is shut-off.  
)
1000  
0
to  
34  
GD2 Ratio of load inertia moment to servo motor inertia moment  
70  
35  
0.1  
times  
Used to set the ratio of the load inertia moment to the servo motor shaft  
inertia moment. When auto tuning mode 1 and interpolation mode is  
selected, the result of auto tuning is automatically used.  
(Refer to section 6.2.1)  
3000  
In this case, it varies between 0 and 1000.  
35  
PG2 Position loop gain 2  
rad/s  
1
to  
Used to set the gain of the position loop.  
Set this parameter to increase the position response to level load  
disturbance. Higher setting increases the response level but is liable to  
generate vibration and/or noise.  
1000  
When auto tuning mode 1 2 and interpolation mode is selected, the result  
of auto tuning is automatically used.  
36  
37  
38  
39  
VG1 Speed loop gain 1  
177  
817  
48  
rad/s  
rad/s  
ms  
20  
to  
8000  
Normally this parameter setting need not be changed.  
Higher setting increases the response level but is liable to generate  
vibration and/or noise.  
When auto tuning mode 1 2, manual mode and interpolation mode is  
selected, the result of auto tuning is automatically used.  
VG2 Speed loop gain 2  
20  
to  
20000  
Set this parameter when vibration occurs on machines of low rigidity or  
large backlash. Higher setting increases the response level but is liable to  
generate vibration and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the result  
of auto tuning is automatically used.  
VIC Speed integral compensation  
1
to  
1000  
Used to set the integral time constant of the speed loop.  
Lower setting increases the response level but is liable to generate vibration  
and/or noise.  
When auto tuning mode 1 2 and interpolation mode is selected, the result  
of auto tuning is automatically used.  
VDC Speed differential compensation  
980  
0
to  
Used to set the differential compensation.  
Made valid when the proportion control (PC ) is switched on.  
For manufacturer setting  
Do not change this value any means.  
1000  
40  
41  
42  
0
0000  
0003  
*DI1 Input signal selection 1  
Used to set the clear (CR ).  
Refer to  
Name  
and  
0 0  
3
function  
column.  
Clear (CR ) selection  
0: Droop pulses are cleared on the leading edge.  
1: While on, droop pulses are always cleared.  
5 - 9  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
43  
44  
45  
46  
47  
48  
49  
50  
51  
For manufacturer setting  
Do not change this value any means.  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
*OP6 Function selection 6  
Refer to  
Name  
Used to select the operation to be performed when the reset (RES  
switches on.  
)
and  
function  
column.  
0
0 0  
Operation to be performed when the  
reset (RES ) switches on  
0: Base drive circuit is shut-off  
1: Base drive circuit is not shut-off  
52  
53  
54  
For manufacturer setting  
Do not change this value any means.  
*OP9 Function selection 9  
0000  
0000  
0000  
Refer to  
Name  
Use to select the command pulse rotation direction, encoder output pulse  
direction and encoder pulse output setting.  
and  
function  
column.  
0
Servo motor rotation direction changing  
Changes the servo motor rotation  
direction for the input pulse train.  
Servo motor rotation direction  
Set value  
At forward rotation  
pulse input (Note)  
At reverse rotation  
pulse input (Note)  
0
1
CW  
CCW  
CW  
CCW  
Note. Refer to Section 3.1.5 .  
Encoder pulse output phase changing  
Changes the phases of A B-phase encoder pulses output .  
Servo motor rotation direction  
Set value  
CCW  
CW  
A phase  
B phase  
A phase  
B phase  
0
A phase  
B phase  
A phase  
B phase  
1
Encoder output pulse setting selection (refer to DRU parameter No. 27)  
0: Output pulse designation  
1: Division ratio setting  
5 - 10  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
55  
*OPA Function selection A  
0000  
Refer to  
Name  
Used to select the position command acceleration/deceleration time  
constant (DRU parameter No. 7) control system.  
and  
function  
column.  
0 0  
0
Position command acceleration/deceleration  
time constant control  
0: Primary delay  
1: Linear acceleration/deceleration  
56  
57  
58  
0
For manufacturer setting  
Do not change this value any means.  
NH1 Machine resonance suppression filter 1  
Used to selection the machine resonance suppression filter.  
(Refer to Section 7.2.)  
10  
0000  
Refer to  
Name  
and  
function  
column.  
0
Notch frequency selection  
Set "00" when you have set adaptive vibration  
suppression control to be "valid" or "held"  
(DRU parameter No. 60:  
1
or  
2
).  
Setting Frequency Setting Frequency Setting Frequency Setting Frequency  
value  
value  
value  
value  
00  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
562.5  
500  
10  
281.3  
264.7  
250  
18  
187.5  
180  
01  
09  
11  
19  
02  
0A  
0B  
0C  
0D  
0E  
0F  
450  
12  
1A  
1B  
1C  
1D  
1E  
1F  
173.1  
166.7  
160.1  
155.2  
150  
03  
409.1  
375  
13  
236.8  
225  
04  
14  
05  
346.2  
321.4  
300  
15  
214.3  
204.5  
195.7  
06  
750  
16  
07  
642.9  
17  
145.2  
Notch depth selection  
Setting  
value  
Depth  
Gain  
0
1
40dB  
14dB  
Deep  
to  
2
3
8dB  
4dB  
Shallow  
59  
NH2 Machine resonance suppression filter 2  
0000  
Refer to  
Name  
Used to set the machine resonance suppression filter.  
and  
0
function  
column.  
Notch frequency  
Same setting as in DRU parameter No. 58  
However, you need not set "00" if you have  
set adaptive vibration suppression control to  
be "valid" or "held".  
Notch depth  
Same setting as in DRU parameter No. 58  
5 - 11  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
60  
LPF Low-pass filter/adaptive vibration suppression control  
Used to selection the low-pass filter and adaptive vibration suppression  
control. (Refer to Chapter 7.)  
0000  
Refer to  
Name  
and  
function  
column.  
0
Low-pass filter selection  
0: Valid (Automatic adjustment)  
1: Invalid  
VG2 setting 10  
2 (1 GD2 setting 0.1)  
When you choose "valid",  
[Hz]  
bandwidth filter is set automatically.  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration  
suppression control selection makes the machine  
resonance control filter 1 (DRU parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected  
and the filter is generated in response to resonance to  
suppress machine vibration.  
2: Held  
The characteristics of the filter generated so far are held,  
and detection of machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Used to set the sensitivity of machine resonance detection.  
0: Normal  
1: Large sensitivity  
61 GD2B Ratio of load inertia moment to servo motor inertia moment 2  
Used to set the ratio of load inertia moment to servo motor inertia moment  
when gain changing is valid.  
70  
0.1  
times  
0
to  
3000  
Made valid when auto tuning is invalid.  
62 PG2B Position control gain 2 changing ratio  
Used to set the ratio of changing the position control gain 2 when gain  
changing is valid.  
100  
100  
%
%
%
10  
to  
200  
Made valid when auto tuning is invalid.  
63 VG2B Speed control gain 2 changing ratio  
Used to set the ratio of changing the speed control gain 2 when gain  
changing is valid.  
10  
to  
200  
Made valid when auto tuning is invalid.  
64  
65  
VICB Speed integral compensation changing ratio  
100  
50  
to  
1000  
Used to set the ratio of changing the speed integral compensation when  
gain changing is valid. Made valid when auto tuning is invalid.  
*CDP Gain changing selection  
0000  
Refer to  
Name  
and  
Used to select the gain changing condition. (Refer to Section 7.5.)  
0 0 0  
function  
column.  
Gain changing selection  
Gains are changed in accordance with the settings  
of DRU parameters No. 61 to 64 under any of the  
following conditions:  
0: Invalid  
1: Gain changing (CDP ) is ON  
2: Command frequency is equal to higher than  
DRU parameter No. 66 setting  
3: Droop pulse value is equal to higher than  
DRU parameter No. 66 setting  
4: Servo motor speed is equal to higher than  
DRU parameter No. 66 setting  
5 - 12  
5. PARAMETERS  
Initial  
value  
Setting  
range  
Class No. Symbol  
Name and function  
Unit  
66  
CDS Gain changing condition  
10  
kpps  
pulse  
r/min  
10  
to  
Used to set the value of gain changing condition (command frequency, droop  
pulses, servo motor speed) selected in parameter No. 65 (Gain changing  
selection). The set value unit changes with the changing condition item.  
(Refer to Section 7.5.)  
9999  
67  
68  
CDT Gain changing time constant  
1
ms  
0
Used to set the time constant at which the gains will change in response to  
the conditions set in parameters No. 65 and 66.  
(Refer to Section 7.5.)  
to  
100  
For manufacturer setting  
0
1
Do not change this value any means.  
69 CMX2 Command pulse multiplying factor numerator 2  
Used to set the multiplier for the command pulse.  
0 1  
to  
Setting "0" automatically sets the connected motor resolution.  
70 CMX3 Command pulse multiplying factor numerator 3  
Used to set the multiplier for the command pulse.  
65535  
0 1  
1
1
to  
Setting "0" automatically sets the connected motor resolution.  
71 CMX4 Command pulse multiplying factor numerator 4  
Used to set the multiplier for the command pulse.  
65535  
0 1  
to  
Setting "0" automatically sets the connected motor resolution.  
65535  
72  
73  
74  
75  
76  
For manufacturer setting  
200  
300  
500  
800  
100  
Do not change this value any means.  
TL2 Internal torque limit 2  
%
0
Set this parameter to limit servo motor torque on the assumption that the  
maximum torque is 100[%].  
to  
100  
When 0 is set, torque is not produced.  
When torque is output in analog monitor, this set value is the maximum  
output voltage ( 4V). (Refer to Section 3.3.5 (2))  
For manufacturer setting  
77  
78  
79  
80  
81  
82  
83  
84  
100  
10000  
10  
Do not change this value any means.  
10  
100  
100  
100  
0
5 - 13  
5. PARAMETERS  
5.2 Interface unit  
5.2.1 IFU parameter write inhibit  
POINT  
Use the unit operation section pushbutton switches or MR Configurator  
(servo configuration software) to set the IFU parameters of the interface  
unit.  
Use the unit pushbutton switches or MR Configurator (servo configuration software) to set the interface  
unit parameters.  
When assigning the devices, change the setting to "000E".  
The following table indicates the IFU parameters which are made valid for reference and write by setting  
the IFU parameter No. 19.  
Expansion  
Setting  
I/O  
Setting  
IFU basic parameter  
IFU  
operation  
assignment  
parameter  
0000  
(initial  
value)  
Reference  
Write  
Reference  
Write  
IFU parameter No. 19  
IFU parameter No. 19  
000A  
000B  
000C  
000E  
100B  
100C  
Reference  
Write  
Reference  
Write  
Reference  
Write  
Reference  
Write  
IFU parameter No. 19  
IFU parameter No. 19  
Reference  
Write  
5.2.2 Lists  
POINT  
For any parameter whose symbol is preceded by *, set the IFU parameter  
value and switch power off once, then switch it on again to make that  
parameter setting valid.  
5 - 14  
5. PARAMETERS  
(1) Item list  
Classifi-  
Initial  
Customer  
setting  
No. Symbol  
cation  
Name  
Unit  
Value  
0
*BPS Serial communication function selection, alarm history clear  
SIC Regenerative brake option selection  
0000  
1
0
2
*OP1 Function selection 1  
0000  
3
MD1 Analog monitor 1 output  
0000  
4
MD2 Analog monitor 2 output  
0000  
5
MD3 Analog monitor 3 output  
0000  
6
MO1 Analog monitor 1 offset  
0
mV  
mV  
mV  
7
MO2 Analog monitor 2 offset  
0
8
MO3 Analog monitor 3 offset  
0
9
*OP2 Function selection 2  
0020  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
*ISN Interface unit serial communication station number selection  
*SL1 1 slot serial communication station number selection  
*SL2 2 slot serial communication station number selection  
*SL3 3 slot serial communication station number selection  
*SL4 4 slot serial communication station number selection  
*SL5 5 slot serial communication station number selection  
*SL6 6 slot serial communication station number selection  
*SL7 7 slot serial communication station number selection  
*SL8 8 slot serial communication station number selection  
*BLK IFU parameter write inhibit  
0
0
1
2
3
4
5
6
7
0000  
0
SIC  
Serial communication time-out selection  
For manufacturer setting  
s
0
0
0
0
0
0
0
0
0
5 - 15  
5. PARAMETERS  
(2) Details list  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
0
*BPS Serial communication function selection, alarm history clear  
Used to select the serial communication baudrate function selection,  
select various communication conditions, and clear the alarm  
history.  
0000  
Refer to  
name  
and  
function  
column.  
Serial communication baudrate selection  
0: 9600 [bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
Alarm history clear  
0: Invalid  
1: valid  
When alarm history clear is made valid,  
the alarm history is cleared at next power-on.  
After the alarm history is cleared, the setting  
is automatically made invalid (reset to 0).  
Serial communication I/F selection  
0: RS-232C  
1: RS-422  
Communication response delay time selection  
0: Invalid  
1: valid, reply sent after time of 888 s or more  
1
*REG Regenerative brake option selection  
Used to select the regenerative brake option.  
0000  
Refer to  
Name and  
function  
column.  
0 0  
Selection of regenerative brake option  
00: Not used  
01: Spare (do not set)  
02: MR-RB032  
05: MR-RB14  
06: MR-RB34  
07: MR-RB54  
2
*OP1 Function selection 1  
0000  
Refer to  
name  
Used to select the protocol of serial communication.  
and  
0 0  
0
function  
column.  
Protocol checksum selection  
0: Yes (checksum added)  
1: No (checksum not added)  
5 - 16  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
3
MD1 Analog monitor 1 output  
0000  
Refer to  
name  
Choose the signal to be output to analog monitor 1.  
and  
0 0  
function  
column.  
Analog monitor 1 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Command pulse frequency( 4V/500kpps)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Slot number of analog monitor 1  
Choose the slot number output to analog monitor 1.  
Slot number set value. Selecting "0" disables output.  
4
*MD2 Analog monitor 2 output  
Choose the signal to be output to analog monitor 2.  
0000  
Refer to  
name  
and  
0 0  
function  
column.  
Analog monitor 2 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Command pulse frequency ( 4V/500kpps)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Slot number of analog monitor 2  
Choose the slot number output to analog monitor 2.  
Slot number set value. Selecting "0" disables output.  
5 - 17  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
5
*MD3 Analog monitor 3 output  
0000  
Refer to  
name  
Choose the signal to be output to analog monitor 3.  
and  
0 0  
function  
column.  
Analog monitor 3 selection  
0: Servo motor speed ( 4V/max. Servo motor speed)  
1: Torque ( 4V/max. Torque)  
2: Servo motor speed ( 4V/max. Servo motor speed)  
3: Torque ( 4V/max. Torque)  
4: Current command ( 4V/max. Current command)  
5: Command pulse frequency ( 4V/500kpps)  
6: Droop pulses ( 4V/128pulse)  
7: Droop pulses ( 4V/2048pulse)  
8: Droop pulses ( 4V/8192pulse)  
9: Droop pulses ( 4V/32768pulse)  
A: Droop pulses ( 4V/131072pulse)  
B: Bus voltage ( 4V/400V)  
C: In position ( 4V/ON)  
D: Ready ( 4V/ON)  
E: Trouble ( 4V/ON)  
Slot number of analog monitor 3  
Choose the slot number output to analog monitor 3.  
Slot number set value. Selecting "0" disables output.  
MO1 Analog monitor 1 offset  
Used to set the offset voltage of the analog monitor 1 (MO1).  
999  
to  
999  
999  
to  
999  
999  
to  
6
7
8
9
0
0
mV  
mV  
mV  
MO2 Analog monitor 2 offset  
Used to set the offset voltage of the analog monitor 2 (MO2).  
MO3 Analog monitor 3 offset  
Used to set the offset voltage of the analog monitor 3 (MO2).  
0
999  
*OP2 Function selection 2  
0200  
Refer to  
name  
Used to select the input signal filter.  
and  
0 0 2 0  
function  
column.  
Input signal filter  
0 : None  
1 : 1.777ms  
2 : 3.555ms  
5 - 18  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
10  
11  
12  
13  
14  
15  
*INS Interface unit serial communication  
0
1
2
3
4
5
0
Choose the serial communication station number of the interface  
to  
31  
unit.  
When making selection, avoid setting the station number used by  
any other unit.  
*SL1 1 slot serial communication station number selection  
Choose the station number of the drive unit connected to the first  
slot of the base unit.  
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL2 2 slot serial communication station number selection  
Choose the station number of the drive unit connected to the second  
slot of the base unit.  
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL3 3 slot serial communication station number selection  
Choose the station number of the drive unit connected to the third  
slot of the base unit.  
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL4 4 slot serial communication station number selection  
Choose the station number of the drive unit connected to the fourth  
slot of the base unit.  
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL5 5 slot serial communication station number selection  
Choose the station number of the drive unit connected to the fifth  
slot of the base unit.  
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
5 - 19  
5. PARAMETERS  
Classifi-  
Initial  
Value  
Setting  
Range  
No. Symbol  
cation  
Name and Function  
Unit  
16  
17  
18  
19  
*SL6 6 slot serial communication station number selection  
Choose the station number of the drive unit connected to the sixth  
slot of the base unit.  
6
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL7 7 slot serial communication station number selection  
Choose the station number of the drive unit connected to the seventh  
slot of the base unit.  
7
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*SL8 8 slot serial communication station number selection  
Choose the station number of the drive unit connected to the eighth  
slot of the base unit.  
8
0
to  
31  
When making selection, avoid setting the station number used by  
any other unit.  
*BLK Parameter write inhibit  
0000  
Refer to  
name  
Used to select reference and write ranges of the parameters.  
Expansion  
and  
Setting  
I/O  
Setting  
IFU basic parameter  
IFU  
function  
column.  
operation  
assignment  
parameter  
0000  
(initial  
value)  
Reference  
Write  
Reference IFU parameter No. 19  
000A  
000B  
000C  
000E  
Write  
Reference  
Write  
IFU parameter No. 19  
Reference  
Write  
Reference  
Write  
Reference  
Write  
100B  
100C  
IFU parameter No. 19  
IFU parameter No. 19  
Reference  
Write  
20  
SIC  
Serial communication time-out selection  
0
0
s
0
Set the time-out period of the communication protocol in the [s] unit.  
Setting "0" disables time-out checking.  
For manufacturer setting  
to  
60  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Do not change this value any means.  
5 - 20  
5. PARAMETERS  
5.3 Detailed description  
5.3.1 Electronic gear  
Wrong setting can lead to unexpected fast rotation, causing injury.  
POINT  
CAUTION  
1
50  
CMX  
CDV  
The guideline of the electronic gear setting range is  
500.  
If the set value is outside this range, noise may be generated during  
acceleration/ deceleration or operation may not be performed at the preset  
speed and/or acceleration/deceleration time constants.  
The following specification symbols are required to calculate the electronic  
gear.  
(1) Concept of electronic gear  
The machine can be moved at any multiplication factor to input pulses.  
Motor  
Deviation  
counter  
CMX  
CDV  
DRU parameter No.3  
DRU parameter No.4  
CMX  
CDV  
Feedback pulse  
Electronic gear  
Encoder  
The following setting examples are used to explain how to calculate the electronic gear:  
POINT  
The following specification symbols are required to calculate the electronic  
gear  
Pb : Ballscrew lead [mm]  
n
: Reduction ratio  
Pt : Servo motor resolution [pulses/rev]  
Travel per command pulse [mm/pulse]  
Travel per servo motor revolution [mm/rev]  
Angle per pulse [ /pulse]  
0:  
:
:
S
: Angle per revolution [ /rev]  
(a) For motion in increments of 10 m per pulse  
Machine specifications  
n
n
NL/NM 1/2  
NL  
Pb 10[mm]  
NM  
Ballscrew lead Pb 10 [mm]  
Reduction ratio: n 1/2  
Servo motor resolution: Pt 131072 [pulses/rev]  
Servo motor  
131072 [pulse/rev]  
CMX  
CDV  
Pt  
S
Pt  
n Pb  
131072  
1/2 10  
262144 32768  
1000 125  
3
0
0
10 10  
Hence, set 32768 to CMX and 125 to CDV.  
5 - 21  
5. PARAMETERS  
(b) Conveyor setting example  
For rotation in increments of 0.01 per pulse  
Servo motor  
131072 [pulse/rev]  
Machine specifications  
Table  
Table : 360 /rev  
Reduction ratio: n 4/64  
Servo motor resolution: Pt 131072 [pulses/rev]  
Timing belt : 4/64  
CMX  
CDV  
Pt  
131072  
4/64 360  
65536  
1125  
................................................................................. (5.1)  
0.01  
Since CMX is not within the setting range in this status, it must be reduced to the lowest term.  
When CMX has been reduced to a value within the setting range, round off the value to the  
nearest unit.  
CMX 65536  
1125  
26214.4  
450  
26214  
450  
CDV  
Hence, set 26214 to CMX and 450 to CDV.  
POINT  
When “0” is set to parameter No.3 (CMX), CMX is automatically set to the  
servo motor resolution. Therefore, in the case of Expression (5.1), setting  
0 to CMX and 2250 to CDX concludes in the following expression:  
CMX/CDV=131072/2250, and electric gear can be set without the  
necessity to reduce the fraction to the lowest term.  
For unlimited one-way rotation, e.g. an index table, indexing positions will  
be missed due to cumulative error produced by rounding off.  
For example, entering a command of 36000 pulses in the above example  
causes the table to rotate only:  
26214  
450  
1
4
36000  
360  
359.995  
131072 64  
Therefore, indexing cannot be done in the same position on the table.  
(2) Instructions for reduction  
The calculated value before reduction must be as near as possible to the calculated value after  
reduction.  
In the case of (1), (b) in this section, an error will be smaller if reduction is made to provide no fraction  
for CDV. The fraction of Expression (5.1) before reduction is calculated as follows.  
CMX 65536  
................................................................................................................... (5.2)  
58.25422  
1125  
The result of reduction to provide no fraction for CMX is as follows.  
CDV  
CMX 65536  
1125  
32768  
562.5  
32768  
563  
.................................................................................... (5.3)  
58.20249  
CDV  
The result of reduction to provide no fraction for CDV is as follows.  
CMX 65536 26214.4 26214  
1125 450 450  
.................................................................................. (5.4)  
58.25333  
CDV  
As a result, it is understood that the value nearer to the calculation result of Expression (5.2) is the  
result of Expression (5.4). Accordingly, the set values of (1), (b) in this section are CMX 26214,  
CDV 450.  
5 - 22  
5. PARAMETERS  
(3) Setting for use of AD75P  
The AD75P also has the following electronic gear parameters. Normally, the servo amplifier side  
electronic gear must also be set due to the restriction on the command pulse frequency (differential  
400kpulse/s, open collector 200kpulse/s).  
AP: Number of pulses per motor revolution  
AL: Moving distance per motor revolution  
AM: Unit scale factor  
AP75P  
Servo amplifier  
Command  
value  
AP  
AL AM  
CMX  
CDV  
Deviation  
counter  
Control  
unit  
Command  
pulse  
Electronic gear  
Electronic gear  
Feedback pulse  
Servo motor  
The resolution of the servo motor is 131072 pulses/rev. For example, the pulse command needed to  
rotate the servo motor is as follows  
Servo motor speed [r/min]  
Required pulse command  
2000  
3000  
131072 2000/60 4369066 pulse/s  
131072 3000/60 6553600 pulse/s  
For the AD75P, the maximum value of the pulse command that may be output is 200kpulse/s in the  
open collector system or 400kpulse/s in the differential line driver system. Hence, either of the servo  
motor speeds exceeds the maximum output pulse command of the AD75P.  
Use the electronic gear of the servo amplifier to run the servo motor under the maximum output pulse  
command of the AD75P.  
5 - 23  
5. PARAMETERS  
To rotate the servo motor at 3000r/min in the open collector system (200kpulse/s), set the electronic  
gear as follows  
CMX N0  
CDV 60  
f
pt  
f
:
Input pulses [pulse/s]  
N0  
Pt  
:
:
Servo motor speed [r/min]  
Servo motor resolution [pulse/rev]  
CMX 3000  
200 103  
131072  
60  
CDV  
CMX 3000 131072  
CDV  
3000 131072 4096  
60 200000 125  
60  
2003  
The following table indicates the electronic gear setting example (ballscrew lead 10mm) when the  
AD75P is used in this way.  
Rated servo motor speed  
Input system  
3000r/min  
2000r/min  
Open  
Differential  
line driver  
500  
Open  
Differential  
line driver  
500  
collector  
200  
collector  
200  
Max. input pulse frequency [kpulse/s]  
Feedback pulse/revolution [pulse/rev]  
Electronic gear (CMX/CDV)  
Servo amplifier  
131072  
131072  
4096/125  
200  
2048/125  
400  
8192/375  
200  
4096/375  
400  
Command pulse frequency [kpulse/s] (Note)  
Number of pulses per servo motor revolution as  
viewed from AD75P[pulse/rev]  
4000  
8000  
6000  
12000  
AP  
AL  
AM  
AP  
1
1
1
1
1
1
1
Minimum command unit  
1
1
AD75P  
1pulse  
Electronic gear  
1
1
1
4000  
8000  
6000  
12000  
Minimum command unit  
0.1 m  
AL 1000.0 [ m] 1000.0 [ m] 1000.0 [ m] 1000.0 [ m]  
AM 10 10 10 10  
Note. Command pulse frequency at rated speed  
5 - 24  
5. PARAMETERS  
5.3.2 Analog monitor  
The servo status can be output to 3 channels in terms of voltage. Using an ammeter enables monitoring  
the servo status.  
(1) Setting  
Change the following digits of IFU parameter No.3 to 5:  
IFU parameter No. 3  
Analog monitor 1 selection  
(Signal output to across MO1-LG)  
Slot number of analog monitor 1  
IFU parameter No. 4  
Analog monitor 2 selection  
(Signal output to across MO2-LG)  
Slot number of analog monitor 2  
IFU parameter No. 5  
Analog monitor 3 selection  
(Signal output to across MO3-LG)  
Slot number of analog monitor 3  
IFU parameters No.6 to 8 can be used to set the offset voltages to the analog output voltages. The  
setting range is between 999 and 999mV.  
IFU parameter No.  
Description  
Setting range [mV]  
6
7
8
Used to set the offset voltage for the analog monitor 1.  
Used to set the offset voltage for the analog monitor 2.  
Used to set the offset voltage for the analog monitor 3.  
999 to 999  
(2) Settings  
The three channels are all factory-set to output servo motor speeds. By changing the IFU parameter  
No. 3 to 5 values, you can change the data as shown in the following tale.  
Refer to (3) for measurement points.  
Setting  
Output item  
Data  
CCW direction  
Setting  
Output item  
Data  
Driving in  
CCW direction  
0
Servo motor speed  
1
Torque (Note)  
4[V]  
4[V]  
Max. speed  
Max. torque  
0
0
Max. torque  
4[V]  
Max. speed  
4[V]  
Driving in  
CW direction  
CW direction  
5 - 25  
5. PARAMETERS  
Setting  
Output item  
Data  
Setting  
Output item  
Data  
CCW direction  
2
Servo motor speed  
9
Droop pulses  
4[V]  
CW  
direction  
CCW  
direction  
( 4V/32768pulse)  
4[V]  
32768[pulse]  
0
32768[pulse]  
Max. speed 0 Max. speed  
4[V]  
CCW direction  
CW direction  
4[V]  
3
Torque (Note)  
A
Droop pulses  
Driving in  
Driving in  
( 4V/131072pulse)  
CW direction  
CCW direction  
4[V]  
131072[pulse]  
0
131072[pulse]  
Max. torque  
Max. torque  
0
4[V]  
CW direction  
4[V]  
CCW direction  
4
Current command  
B
Bus voltage  
4[V]  
Max. current  
command  
0
Max. current  
command  
0
400[V]  
4[V]  
CW direction  
CCW direction  
5
Command pulse  
frequency  
C
In-position  
4[V]  
4[V]  
500[kpps]  
OFF  
ON  
0
500[kpps]  
0
4[V]  
CW direction  
4[V]  
CCW direction  
6
7
8
Droop pulses  
D
Ready  
( 4V/128pulse)  
4[V]  
128[pulse]  
OFF  
ON  
0
128[pulse]  
0
4[V]  
CW direction  
4[V]  
CCW direction  
Droop pulses  
E
Failure  
4[V]  
( 4V/2048pulse)  
Alarm  
Alarm  
2048[pulse]  
provided not provided  
0
2048[pulse]  
0
4[V]  
CW direction  
4[V]  
CCW direction  
Droop pulses  
( 4V/8192pulse)  
8192[pulse]  
0
8192[pulse]  
4[V]  
CW direction  
Note. 4V is outputted at the maximum torque. However, when DRU parameter No. 28 76 are set to limit torque, 4V is outputted at the  
torque highly limited.  
5 - 26  
5. PARAMETERS  
(3) Analog monitor block diagram  
5 - 27  
5. PARAMETERS  
5.3.3 Using forward rotation stroke end (LSP ) reverse rotation stroke end (LSN ) to change the stopping  
pattern  
The stopping pattern is factory-set to make a sudden stop when the forward rotation stroke end (LSP )  
reverse rotation stroke end (LSN ) is made valid. A slow stop can be made by changing the DRU  
parameter No. 22 (Function selection 2) value.  
DRU parameter No.22 Setting  
Stopping method  
0
Sudden stop  
(initial value)  
Motor stops with droop pulses cleared.  
Slow stop  
The motor is decelerated to a stop in accordance with the DRU parameter No. 7  
1
value.  
(Position command acceleration/deceleration time constant)  
5.3.4 Alarm history clear  
The servo amplifier stores one current alarm and five past alarms from when its power is switched on  
first. To control alarms which will occur during operation, clear the alarm history using DRU parameter  
No.16 or IFU parameter No.0 before starting operation.  
These parameters are made valid when you switch power off, then on after setting their values. DRU  
parameter No. 16 and IFU parameter No. 0 return to "  
cleared.  
0
" automatically when the alarm history is  
DRU parameter No.16  
Alarm history clear  
0: Invalid  
1: Valid  
IFU parameter No.0  
Alarm history clear  
0: Invalid  
1: Valid  
5 - 28  
5. PARAMETERS  
5.3.5 Position smoothing  
By setting the position command acceleration/deceleration time constant (DRU parameter No.7), you can  
run the servo motor smoothly in response to a sudden position command.  
The following diagrams show the operation patterns of the servo motor in response to a position command  
when you have set the position command acceleration/deceleration time constant.  
Choose the primary delay or linear acceleration/deceleration in DRU parameter No. 55 according to the  
machine used.  
(1) For step input  
: Input position command  
: Position command after  
filtering for primary delay  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command acceleration/  
deceleration time constant  
(DRU parameter No. 7)  
t
t
t
Time  
(3t)  
(2) For trapezoidal input  
(3t)  
t
: Input position command  
: Position command after filtering  
for linear acceleration/deceleration  
: Position command after  
filtering for primary delay  
t
: Position command acceleration/  
deceleration time constant  
(DRU parameter No. 7)  
t
Time  
(3t)  
5 - 29  
5. PARAMETERS  
MEMO  
5 - 30  
6. GENERAL GAIN ADJUSTMENT  
6. GENERAL GAIN ADJUSTMENT  
6.1 Different adjustment methods  
6.1.1 Adjustment on a MELSERVO-J2M  
The gain adjustment in this section can be made on the MELSERVO-J2M. For gain adjustment, first  
execute auto tuning mode 1. If you are not satisfied with the results, execute auto tuning mode 2, manual  
mode 1 and manual mode 2 in this order.  
(1) Gain adjustment mode explanation  
Gain adjustment  
mode  
DRU parameter  
No. 2 setting  
Estimation of load  
Automatically set  
DRU parameters  
Manually set  
inertia moment ratio  
DRU parameters  
Auto tuning mode 1  
(initial value)  
010  
020  
Always estimated  
PG1 (DRU parameter No. 6)  
GD2 (DRU parameter No. 34)  
PG2 (DRU parameter No. 35)  
VG1 (DRU parameter No. 36)  
VG2 (DRU parameter No. 37)  
VIC (DRU parameter No. 38)  
PG1 (DRU parameter No. 6)  
PG2 (DRU parameter No. 35)  
VG1 (DRU parameter No. 36)  
VG2 (DRU parameter No. 37)  
VIC (DRU parameter No. 38)  
PG2 (DRU parameter No. 35)  
VG1 (DRU parameter No. 36)  
Response level setting of DRU  
parameter No. 2  
Auto tuning mode 2  
Fixed to parameter  
No. 34 value  
GD2 (DRU parameter No. 34)  
Response level setting of  
parameter No. 2  
Manual mode 1  
Manual mode 2  
030  
040  
PG1 (DRU parameter No. 6)  
GD2 (DRU parameter No. 34)  
VG2 (DRU parameter No. 37)  
VIC (DRU parameter No. 38)  
PG1 (DRU parameter No. 6)  
GD2 (DRU parameter No. 34)  
PG2 (DRU parameter No. 35)  
VG1 (DRU parameter No. 36)  
VG2 (DRU parameter No. 37)  
VIC (DRU parameter No. 38)  
PG1 (DRU parameter No. 6)  
VG1 (DRU parameter No. 36)  
Interpolation mode  
000  
Always estimated  
GD2 (DRU parameter No. 34)  
PG2 (DRU parameter No. 35)  
VG2 (DRU parameter No. 37)  
VIC (DRU parameter No. 38)  
6 - 1  
6. GENERAL GAIN ADJUSTMENT  
(2) Adjustment sequence and mode usage  
START  
Usage  
Yes  
Used when you want to  
match the position gain 1  
(PG1) between 2 or more  
axes. Normally not used for  
other purposes.  
Interpolation  
made for 2 or more  
axes?  
Interpolation mode  
Operation  
No  
Allows adjustment by  
merely changing the  
response level setting.  
First use this mode to make  
adjustment.  
Auto tuning mode 1  
Operation  
Yes  
No  
Used when the conditions of  
auto tuning mode 1 are not  
met and the load inertia  
moment ratio could not be  
estimated properly, for  
example.  
OK?  
OK?  
Yes  
No  
Auto tuning mode 2  
Operation  
Yes  
OK?  
No  
This mode permits  
adjustment easily with three  
gains if you were not  
satisfied with auto tuning  
results.  
Manual mode 1  
Operation  
Yes  
OK?  
You can adjust all gains  
manually when you want to  
do fast settling or the like.  
No  
Manual mode 2  
END  
6.1.2 Adjustment using MR Configurator (servo configuration software)  
This section gives the functions and adjustment that may be performed by using the servo amplifier with  
the MR Configurator (servo configuration software) which operates on a personal computer.  
Function  
Description  
Adjustment  
Machine analyzer  
With the machine and servo motor  
coupled, the characteristic of the  
mechanical system can be measured by  
giving a random vibration command from  
the personal computer to the servo and  
measuring the machine response.  
You can grasp the machine resonance frequency and  
determine the notch frequency of the machine  
resonance suppression filter.  
You can automatically set the optimum gains in  
response to the machine characteristic. This simple  
adjustment is suitable for a machine which has large  
machine resonance and does not require much settling  
time.  
Gain search  
Executing gain search under to-and-fro  
positioning command measures settling  
characteristic while simultaneously  
changing gains, and automatically  
searches for gains which make settling  
time shortest.  
You can automatically set gains which make positioning  
settling time shortest.  
Machine simulation  
Response at positioning settling of a  
machine can be simulated from machine  
analyzer results on personal computer.  
You can optimize gain adjustment and command  
pattern on personal computer.  
6 - 2  
6. GENERAL GAIN ADJUSTMENT  
6.2 Auto tuning  
6.2.1 Auto tuning mode  
The MELSERVO-J2M has a real-time auto tuning function which estimates the machine characteristic  
(load inertia moment ratio) in real time and automatically sets the optimum gains according to that  
value. This function permits ease of gain adjustment of the MELSERVO-J2M.  
(1) Auto tuning mode 1  
The MELSERVO-J2M is factory-set to the auto tuning mode 1.  
In this mode, the load inertia moment ratio of a machine is always estimated to set the optimum gains  
automatically.  
The following DRU parameters are automatically adjusted in the auto tuning mode 1.  
DRU parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
34  
35  
36  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
PG2  
VG1  
Speed control gain 1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
POINT  
The auto tuning mode 1 may not be performed properly if the following  
conditions are not satisfied.  
Time to reach 2000r/min is the acceleration/deceleration time constant of 5s or  
less.  
Speed is 150r/min or higher.  
The ratio of load inertia moment to servo motor is not more than 100  
times.  
The acceleration/deceleration torque is 10% or more of the rated torque.  
Under operating conditions which will impose sudden disturbance torque  
during acceleration/deceleration or on a machine which is extremely loose,  
auto tuning may not function properly, either. In such cases, use the auto  
tuning mode 2 or manual mode 1 2 to make gain adjustment.  
(2) Auto tuning mode 2  
Use the auto tuning mode 2 when proper gain adjustment cannot be made by auto tuning mode 1.  
Since the load inertia moment ratio is not estimated in this mode, set the value of a correct load  
inertia moment ratio (DRU parameter No. 34).  
The following DRU parameters are automatically adjusted in the auto tuning mode 2.  
DRU parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Position control gain 2  
Speed control gain 1  
35  
36  
37  
38  
PG2  
VG1  
VG2  
Speed control gain 2  
VIC  
Speed integral compensation  
6 - 3  
6. GENERAL GAIN ADJUSTMENT  
6.2.2 Auto tuning mode operation  
The block diagram of real-time auto tuning is shown below.  
Load inertia  
moment  
Automatic setting  
Encoder  
Control gains  
Command  
Current  
control  
Servo  
motor  
PG1,VG1  
PG2,VG2,VIC  
Current feedback  
Real-time auto  
tuning section  
Position/speed  
feedback  
Set 0 or 1 to turn on.  
Load inertia  
moment ratio  
estimation section  
Gain  
table  
Switch  
Speed feedback  
DRU parameter No. 34  
Load inertia moment  
ratio estimation value  
DRU parameter  
No. 2  
Third digit First digit  
Auto tuning Response  
selection level setting  
When a servo motor is accelerated/decelerated, the load inertia moment ratio estimation section always  
estimates the load inertia moment ratio from the current and speed of the servo motor. The results of  
estimation are written to DRU parameter No. 34 (the ratio of load inertia moment to servo motor). These  
results can be confirmed on the status display screen of the servo amplifier display section.  
If the value of the load inertia moment ratio is already known or if estimation cannot be made properly,  
chose the "auto tuning mode 2" (DRU parameter No.2:  
2
) to stop the estimation of the load inertia  
moment ratio (Switch in above diagram turned off), and set the load inertia moment ratio (DRU  
parameter No. 34) manually.  
From the preset load inertia moment ratio (DRU parameter No. 34) value and response level (The first  
digit of DRU parameter No. 2), the optimum control gains are automatically set on the basis of the  
internal gain tale.  
The auto tuning results are saved in the EEP-ROM of the servo amplifier every 60 minutes since power-  
on. At power-on, auto tuning is performed with the value of each control gain saved in the EEP-ROM  
being used as an initial value.  
POINT  
If sudden disturbance torque is imposed during operation, the estimation  
of the inertia moment ratio may malfunction temporarily. In such a case,  
choose the "auto tuning mode 2" (DRU parameter No. 2: 020 ) and set the  
correct load inertia moment ratio in DRU parameter No. 34.  
When any of the auto tuning mode 1, auto tuning mode 2 and manual  
mode 1 settings is changed to the manual mode 2 setting, the current  
control gains and load inertia moment ratio estimation value are saved in  
the EEP-ROM.  
6 - 4  
6. GENERAL GAIN ADJUSTMENT  
6.2.3 Adjustment procedure by auto tuning  
Since auto tuning is made valid before shipment from the factory, simply running the servo motor  
automatically sets the optimum gains that match the machine. Merely changing the response level  
setting value as required completes the adjustment. The adjustment procedure is as follows.  
Auto tuning adjustment  
Acceleration/deceleration repeated  
Yes  
Load inertia moment ratio  
estimation value stable?  
No  
Auto tuning  
conditions not satisfied.  
(Estimation of load inertia  
moment ratio is difficult)  
No  
Yes  
Choose the auto tuning mode 2  
(DRU parameter No.2 : 020 )and  
set the load inertia moment ratio  
(DRU parameter No.34) manually.  
Adjust response level setting  
so that desired response level is  
achieved on vibration-free level.  
Acceleration/deceleration repeated  
Requested  
No  
performance satisfied?  
Yes  
END  
To manual mode  
6 - 5  
6. GENERAL GAIN ADJUSTMENT  
6.2.4 Response level setting in auto tuning mode  
Set the response (The first digit of DRU parameter No.2) of the whole servo system. As the response level  
setting is increased, the trackability and settling time for a command decreases, but a too high response  
level will generate vibration. Hence, make setting until desired response is obtained within the vibration-  
free range.  
If the response level setting cannot be increased up to the desired response because of machine resonance  
beyond 100Hz, adaptive vibration suppression control (DRU parameter No. 60) or machine resonance  
suppression filter (DRU parameter No. 58 59) may be used to suppress machine resonance. Suppressing  
machine resonance may allow the response level setting to increase. Refer to Section 7.2 for adaptive  
vibration suppression control and machine resonance suppression filter.  
DRU parameter No. 2  
Response level setting  
Auto tuning selection  
Machine characteristic  
Response level setting  
Machine resonance  
frequency guideline  
Machine rigidity  
Guideline of corresponding machine  
1
2
Low  
15Hz  
20Hz  
25Hz  
30Hz  
35Hz  
45Hz  
55Hz  
70Hz  
3
Large conveyor  
4
5
6
Arm robot  
7
General machine  
tool conveyor  
8
Middle  
9
85Hz  
105Hz  
130Hz  
160Hz  
200Hz  
240Hz  
300Hz  
Precision  
working  
machine  
A
B
C
D
E
F
Inserter  
Mounter  
Bonder  
High  
6 - 6  
6. GENERAL GAIN ADJUSTMENT  
6.3 Manual mode 1 (simple manual adjustment)  
If you are not satisfied with the adjustment of auto tuning, you can make simple manual adjustment with  
three DRU parameters.  
6.3.1 Operation of manual mode 1  
In this mode, setting the three gains of position control gain 1 (PG1), speed control gain 2 (VG2) and  
speed integral compensation (VIC) automatically sets the other gains to the optimum values according to  
these gains.  
GD2  
User setting  
PG1  
PG2  
VG2  
VG1  
Automatic setting  
VIC  
Therefore, you can adjust the model adaptive control system in the same image as the general PI control  
system (position gain, speed gain, speed integral time constant). Here, the position gain corresponds to  
PG1, the speed gain to VG2 and the speed integral time constant to VIC. When making gain adjustment  
in this mode, set the load inertia moment ratio (DRU parameter No. 34) correctly.  
6.3.2 Adjustment by manual mode 1  
POINT  
If machine resonance occurs, adaptive vibration suppression control (DRU  
parameter No. 60) or machine resonance suppression filter (DRU  
parameter No. 58 59) may be used to suppress machine resonance. (Refer  
to Section 7.1.)  
(1) DRU parameters  
The following parameters are used for gain adjustment:  
DRU parameter No.  
Abbreviation  
Name  
6
PG1  
Position control gain 1  
34  
37  
38  
GD2  
Ratio of load inertia moment to servo motor inertia moment  
Speed control gain 2  
VG2  
VIC  
Speed integral compensation  
(2) Adjustment procedure  
Step  
Operation  
Description  
Set an estimated value to the ratio of load inertia moment to servo motor  
inertia moment (DRU parameter No. 34).  
1
2
Set a slightly smaller value to the position control gain 1 (DRU parameter No.  
6).  
Increase the speed control gain 2 (DRU parameter No. 37) within the  
vibration- and unusual noise-free range, and return slightly if vibration takes  
place.  
Increase the speed control gain.  
3
Decrease the speed integral compensation (DRU parameter No. 38) within the Decrease the time constant of the  
4
5
vibration-free range, and return slightly if vibration takes place.  
Increase the position control gain 1 (DRU parameter No. 6).  
If the gains cannot be increased due to mechanical system resonance or the  
like and the desired response cannot be achieved, response may be increased  
by suppressing resonance with adaptive vibration suppression control or  
machine resonance suppression filter and then executing steps 3 to 5.  
While checking the settling characteristic and rotational status, fine-adjust  
each gain.  
speed integral compensation.  
Increase the position control gain.  
Suppression of machine resonance.  
Refer to Section 7.1.  
6
7
Fine adjustment  
6 - 7  
6. GENERAL GAIN ADJUSTMENT  
(3) Adjustment description  
(a) Position control gain 1 (DRU parameter No. 6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling.  
1
3
1
5
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Position control  
gain 1 guideline  
to  
)
(
(b) Speed control gain 2 (VG2: DRU parameter No. 37)  
This parameter determines the response level of the speed control loop. Increasing this value  
enhances response but a too high value will make the mechanical system liable to vibrate. The  
actual response frequency of the speed loop is as indicated in the following expression:  
Speed control gain 2 setting  
(1 ratio of load inertia moment to servo motor inertia moment)  
Speed loop response  
frequency(Hz)  
2
(c) Speed integral compensation (DRU parameter No. 38)  
To eliminate stationary deviation against a command, the speed control loop is under proportional  
integral control. For the speed integral compensation, set the time constant of this integral control.  
Increasing the setting lowers the response level. However, if the load inertia moment ratio is large  
or the mechanical system has any vibratory element, the mechanical system is liable to vibrate  
unless the setting is increased to some degree. The guideline is as indicated in the following  
expression:  
2000 to 3000  
Speed integral compensation  
setting(ms)  
Speed control gain 2 setting/  
(1 ratio of load inertia moment to  
servo motor inertia moment setting 0.1)  
6 - 8  
6. GENERAL GAIN ADJUSTMENT  
6.4 Interpolation mode  
The interpolation mode is used to match the position control gains of the axes when performing the  
interpolation operation of servo motors of two or more axes for an X-Y table or the like. In this mode, the  
position control gain 2 and speed control gain 2 which determine command trackability are set manually  
and the other parameter for gain adjustment are set automatically.  
(1) Parameter  
(a) Automatically adjusted parameters  
The following parameters are automatically adjusted by auto tuning.  
DRU parameter No.  
Abbreviation  
Name  
34  
35  
37  
38  
GD2  
PG2  
VG2  
VIC  
Ratio of load inertia moment to servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
Speed integral compensation  
(b) Manually adjusted parameters  
The following parameters are adjustable manually.  
DRU parameter No.  
Abbreviation  
PG1  
Name  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
(2) Adjustment procedure  
Step  
Operation  
Description  
Set 15Hz (DRU parameter No. 2: 010 ) as the machine resonance frequency of  
response in the auto tuning mode 1.  
1
2
Select the auto tuning mode 1.  
During operation, increase the response level setting (DRU parameter No. 2),  
and return the setting if vibration occurs.  
Adjustment in auto tuning mode  
1.  
Check the values of position control gain 1 (DRU parameter No. 6) and speed  
control gain 1 (DRU parameter No. 36).  
3
4
Check the upper setting limits.  
Select the interpolation mode.  
Set the interpolation mode (DRU parameter No. 2: 000 ).  
Using the position control gain 1 value checked in step 3 as the guideline of the  
5
upper limit, set in PG1 the value identical to the position loop gain of the axis to Set position control gain 1.  
be interpolated.  
Using the speed control gain 1 value checked in step 3 as the guideline of the  
upper limit, look at the rotation status and set in speed control gain 1 the value Set speed control gain 1.  
three or more times greater than the position control gain 1 setting.  
6
7
Looking at the interpolation characteristic and rotation status, fine-adjust the  
Fine adjustment.  
gains and response level setting.  
(3) Adjustment description  
(a) Position control gain 1 (DRU parameter No.6)  
This parameter determines the response level of the position control loop. Increasing position  
control gain 1 improves trackability to a position command but a too high value will make  
overshooting liable to occur at the time of settling. The droop pulse value is determined by the  
following expression.  
Rotation speed (r/min)  
131072(pulse)  
60  
Droop pulse value (pulse)  
Position control gain set value  
(b) Speed control gain 1 (DRU parameter No. 36)  
Set the response level of the speed loop of the model. Make setting using the following expression  
as a guideline.  
Speed control gain 1 setting Position control gain 1 setting 3  
6 - 9  
6. GENERAL GAIN ADJUSTMENT  
MEMO  
6 - 10  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
The functions given in this chapter need not be used generally. Use them  
if you are not satisfied with the machine status after making adjustment  
in the methods in Chapter 6.  
If a mechanical system has a natural resonance point, increasing the servo system response level may  
cause the mechanical system to produce resonance (vibration or unusual noise) at that resonance  
frequency.  
Using the machine resonance suppression filter and adaptive vibration suppression control functions can  
suppress the resonance of the mechanical system.  
7.1 Function block diagram  
DRU parameter DRU parameter  
DRU parameter  
No.59  
DRU parameter Current  
No.60 command  
Speed  
control  
No.58  
No.60  
00  
00  
0
0
Low-pass  
filter  
Servo  
motor  
Encoder  
Machine resonance  
suppression filter 1  
Machine resonance  
suppression filter 2  
1
00  
00  
except  
except  
Adaptive vibration  
suppression control  
1
or  
2
7.2 Machine resonance suppression filter  
(1) Function  
The machine resonance suppression filter is a filter function (notch filter) which decreases the gain of  
the specific frequency to suppress the resonance of the mechanical system. You can set the gain  
decreasing frequency (notch frequency) and gain decreasing depth.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
Notch frequency  
7 - 1  
7. SPECIAL ADJUSTMENT FUNCTIONS  
You can use the machine resonance suppression filter 1 (DRU parameter No. 58) and machine  
resonance suppression filter 2 (DRU parameter No. 59) to suppress the vibration of two resonance  
frequencies. Note that if adaptive vibration suppression control is made valid, the machine resonance  
suppression filter 1 (DRU parameter No. 58) is made invalid.  
Machine resonance point  
Mechanical  
system  
response  
level  
Frequency  
Notch  
depth  
Frequency  
DRU parameter No. 58 DRU parameter No. 59  
POINT  
The machine resonance suppression filter is a delay factor for the servo  
system. Hence, vibration may increase if you set a wrong resonance  
frequency or a too deep notch.  
(2) Parameters  
(a) Machine resonance suppression filter 1 (DRU parameter No. 58)  
Set the notch frequency and notch depth of the machine resonance suppression filter 1 (DRU  
parameter No. 58)  
When you have made adaptive vibration suppression control selection (DRU parameter No. 60)  
"valid" or "held", make the machine resonance suppression filter 1 invalid (DRU parameter No. 58:  
0000).  
DRU parameter No. 58  
0
Notch frequency  
Setting  
value  
Setting  
value  
Setting  
value  
Setting  
value  
Frequency  
Frequency  
Frequency  
Frequency  
281.3  
264.7  
250  
00  
01  
02  
03  
04  
05  
06  
07  
Invalid  
4500  
2250  
1500  
1125  
900  
08  
09  
562.5  
500  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
187.5  
180  
450  
173.1  
166.7  
160.1  
155.2  
150  
0A  
0B  
0C  
0D  
0E  
0F  
1A  
1B  
1C  
1D  
1E  
1F  
409.1  
375  
236.8  
225  
346.2  
321.4  
300  
214.3  
204.5  
195.7  
750  
642.9  
145.2  
Notch depth  
Setting  
value  
Depth (Gain)  
Deep ( 40dB)  
( 14dB)  
0
1
2
3
( 8dB)  
Shallow( 4dB)  
7 - 2  
7. SPECIAL ADJUSTMENT FUNCTIONS  
POINT  
If the frequency of machine resonance is unknown, decrease the notch  
frequency from higher to lower ones in order. The optimum notch  
frequency is set at the point where vibration is minimal.  
A deeper notch has a higher effect on machine resonance suppression but  
increases a phase delay and may increase vibration.  
The machine characteristic can be grasped beforehand by the machine  
analyzer on the MR Configurator (servo configuration software). This  
allows the required notch frequency and depth to be determined.  
Resonance may occur if DRU parameter No. 58 59 is used to select a  
close notch frequency and set a deep notch.  
(b) Machine resonance suppression filter 2 (DRU parameter No. 59)  
The setting method of machine resonance suppression filter 2 (DRU parameter No. 59) is the same  
as that of machine resonance suppression filter 1 (DRU parameter No. 58). However, the machine  
resonance suppression filter 2 can be set independently of whether adaptive vibration suppression  
control is valid or invalid.  
7.3 Adaptive vibration suppression control  
(1) Function  
Adaptive vibration suppression control is a function in which the drive unit detects machine resonance  
and sets the filter characteristics automatically to suppress mechanical system vibration. Since the  
filter characteristics (frequency, depth) are set automatically, you need not be conscious of the  
resonance frequency of a mechanical system. Also, while adaptive vibration suppression control is  
valid, the servo amplifier always detects machine resonance, and if the resonance frequency changes,  
it changes the filter characteristics in response to that frequency.  
Machine resonance point  
Machine resonance point  
Mechanical  
system  
Mechanical  
system  
response  
level  
response  
level  
Frequency  
Frequency  
Notch  
depth  
Notch  
depth  
Frequency  
Frequency  
Notch frequency  
Notch frequency  
When machine resonance is large and frequency is low When machine resonance is small and frequency is high  
POINT  
The machine resonance frequency which adaptive vibration suppression  
control can respond to is about 150 to 500Hz. Adaptive vibration  
suppression control has no effect on the resonance frequency outside this  
range. Use the machine resonance suppression filter for the machine  
resonance of such frequency.  
Adaptive vibration suppression control may provide no effect on a  
mechanical system which has complex resonance characteristics or which  
has too large resonance.  
Under operating conditions in which sudden disturbance torque is imposed  
during operation, the detection of the resonance frequency may malfunction  
temporarily, causing machine vibration. In such a case, set adaptive  
vibration suppression control to be "held" (DRU parameter No. 60:  
2
)
to fix the characteristics of the adaptive vibration suppression control filter.  
7 - 3  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) Parameters  
The operation of adaptive vibration suppression control selection (DRU parameter No.60).  
DRU parameter No. 60  
Adaptive vibration suppression control selection  
Choosing "valid" or "held" in adaptive vibration suppression  
control selection makes the machine resonance suppression  
filter 1 (DRU parameter No. 58) invalid.  
0: Invalid  
1: Valid  
Machine resonance frequency is always detected to generate  
the filter in response to resonance, suppressing machine vibration.  
2: Held  
Filter characteristics generated so far is held, and detection of  
machine resonance is stopped.  
Adaptive vibration suppression control sensitivity selection  
Select the sensitivity at which machine resonance is detected.  
0: Normal  
1: Large sensitivity  
POINT  
Adaptive vibration suppression control is factory-set to be invalid (DRU  
parameter No. 60: 0000).  
The filter characteristics generated are saved in the EEP-ROM every 60  
minutes since power-on. At next power-on, vibration suppression control is  
performed with this data saved in the EEP-ROM being used as an initial  
value.  
Setting the adaptive vibration suppression control sensitivity can change  
the sensitivity of detecting machine resonance. Setting of "large sensitivity"  
detects smaller machine resonance and generates a filter to suppress  
machine vibration. However, since a phase delay will also increase, the  
response of the servo system may not increase.  
7.4 Low-pass filter  
(1) Function  
When a ballscrew or the like is used, resonance of high frequency may occur as the response level of  
the servo system is increased. To prevent this, the low-pass filter is factory-set to be valid for a torque  
command. The filter frequency of this low-pass filter is automatically adjusted to the value in the  
following expression:  
Speed control gain 2 setting 10  
Filter frequency(Hz)  
(1 Ratio of load inertia moment to servo motor inertia moment setting 0.1)  
2
(2) Parameter  
Set the operation of the low-pass filter (DRU parameter No. 60.)  
DRU parameter No. 60  
Low-pass filter selection  
0: Valid (automatic adjustment) initial value  
1: Invalid  
POINT  
In a mechanical system where rigidity is extremely high and resonance is  
difficult to occur, setting the low-pass filter to be "invalid" may increase  
the servo system response to shorten the settling time.  
7 - 4  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5 Gain changing function  
This function can change the gains. You can change between gains during rotation and gains during stop  
or can use an external signal to change gains during operation.  
7.5.1 Applications  
This function is used when:  
(1) You want to increase the gains during servo lock but decrease the gains to reduce noise during  
rotation.  
(2) You want to increase the gains during settling to shorten the stop settling time.  
(3) You want to change the gains using an external signal to ensure stability of the servo system since the  
load inertia moment ratio varies greatly during a stop (e.g. a large load is mounted on a carrier).  
7.5.2 Function block diagram  
The valid control gains PG2, VG2, VIC and GD2 of the actual loop are changed according to the conditions  
selected by gain changing selection (DRU parameter No. 65) and gain changing condition (DRU  
parameter No. 66).  
CDP  
DRU parameter No.65  
External signal  
CDP  
Command pulse  
frequency  
Droop pulses  
Changing  
Model speed  
Comparator  
CDS  
DRU parameter No.66  
GD2  
DRU parameter No.34  
Valid  
GD2B  
GD2 value  
DRU parameter No.61  
PG2  
DRU parameter No.35  
Valid  
PG2 PG2B  
100  
PG2 value  
VG2  
DRU parameter No.37  
Valid  
VG2 VG2B  
100  
VG2 value  
VIC  
DRU parameter No.38  
Valid  
VIC VICB  
100  
VIC value  
7 - 5  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5.3 Parameters  
When using the gain changing function, always set "  
4
" in DRU parameter No.2 (auto tuning) to  
choose the manual mode of the gain adjustment modes. The gain changing function cannot be used in the  
auto tuning mode.  
DRU  
Abbrevi-  
ation  
Name  
Unit  
Description  
parameter No.  
6
PG1  
VG1  
Position control gain 1  
Speed control gain 1  
rad/s Position and speed gains of a model used to set the  
response level to a command. Always valid.  
Control parameters before changing  
36  
rad/s  
0.1  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
times  
rad/s  
rad/s  
ms  
35  
37  
38  
PG2  
VG2  
VIC  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2 changing  
ratio  
0.1  
Used to set the ratio of load inertia moment to servo  
61  
62  
63  
GD2B  
PG2B  
VG2B  
times motor inertia moment after changing.  
Used to set the ratio (%) of the after-changing position  
%
control gain 2 to position control gain 2.  
Speed control gain 2 changing  
ratio  
Used to set the ratio (%) of the after-changing speed  
%
control gain 2 to speed control gain 2.  
Speed integral compensation  
changing ratio  
Used to set the ratio (%) of the after-changing speed  
64  
65  
VICB  
CDP  
%
integral compensation to speed integral compensation.  
Gain changing selection  
Used to select the changing condition.  
kpps  
pulse  
r/min  
Used to set the changing condition values.  
66  
67  
CDS  
CDT  
Gain changing condition  
You can set the filter time constant for a gain change at  
changing.  
Gain changing time constant  
ms  
7 - 6  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(1) DRU parameters No. 6 34 to 38  
These parameters are the same as in ordinary manual adjustment. Gain changing allows the values of  
ratio of load inertia moment to servo motor inertia moment, position control gain 2, speed control gain  
2 and speed integral compensation to be changed.  
(2) Ratio of load inertia moment to servo motor inertia moment 2 (GD2B: DRU parameter No. 61)  
Set the ratio of load inertia moment to servo motor inertia moment after changing. If the load inertia  
moment ratio does not change, set it to the same value as ratio of load inertia moment to servo motor  
inertia moment (DRU parameter No. 34).  
(3) Position control gain 2 changing ratio (DRU parameter No. 62), speed control gain 2 changing ratio (DRU  
parameter No. 63), speed integral compensation changing ratio (DRU parameter No. 64)  
Set the values of after-changing position control gain 2, speed control gain 2 and speed integral  
compensation in ratio (%). 100% setting means no gain change.  
For example, at the setting of position control gain 2 100, speed control gain 2 2000, speed integral  
compensation 20 and position control gain 2 changing ratio 180%, speed control gain 2 changing  
ratio 150% and speed integral compensation changing ratio 80%, the after-changing values are as  
follows:  
Position control gain 2 Position control gain 2 Position control gain 2 changing ratio /100 180rad/s  
Speed control gain 2 Speed control gain 2  
Speed control gain 2 changing ratio /100 3000rad/s  
Speed integral compensation Speed integral compensation Speed integral compensation changing  
ratio /100 16ms  
(4) Gain changing selection (DRU parameter No. 65)  
Used to set the gain changing condition. Choose the changing condition in the first digit. If you set "1"  
here, you can use the gain changing (CDP ) external input signal for gain changing. The gain  
changing (CDP ) can be assigned to the pins using DRU parameters No. 43 to 48.  
DRU parameter No. 65  
Gain changing (CDP ) selection  
Gains are changed in accordance with the settings of  
DRU parameters No. 61 to 64 under any of the following conditions:  
0: Invalid  
1: Gain changing (CDP ) is ON  
2: Command frequency is equal to higher than DRU parameter No. 66 setting  
3: Droop pulse value is equal to higher than DRU parameter No. 66 setting  
4: Servo motor speed is equal to higher than DRU parameter No. 66 setting  
(5) Gain changing condition (DRU parameter No. 66)  
When you selected "command frequency", "droop pulses" or "servo motor speed" in gain changing  
selection (DRU parameter No.65), set the gain changing level.  
The setting unit is as follows:  
Gain changing condition  
Command frequency  
Droop pulses  
Unit  
kpps  
pulse  
r/min  
Servo motor speed  
(6) Gain changing time constant (DRU parameter No. 67)  
You can set the primary delay filter to each gain at gain changing. This parameter is used to suppress  
shock given to the machine if the gain difference is large at gain changing, for example.  
7 - 7  
7. SPECIAL ADJUSTMENT FUNCTIONS  
7.5.4 Gain changing operation  
This operation will be described by way of setting examples.  
(1) When you choose changing by external input  
(a) Setting  
DRU parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
4
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
GD2B  
PG2B  
VG2B  
VICB  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0001  
(Changed by ON/OFF of  
pin CN1A-8)  
100  
65  
67  
CDP  
CDT  
Gain changing selection  
Gain changing time constant  
ms  
(b) Changing operation  
OFF  
OFF  
ON  
Gain changing  
(CDP  
)
After-changing gain  
Before-changing gain  
Change of  
each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
to servo motor inertia moment  
Position control gain 2  
4.0  
10.0  
4.0  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
Speed control gain 2  
Speed integral compensation  
7 - 8  
7. SPECIAL ADJUSTMENT FUNCTIONS  
(2) When you choose changing by droop pulses  
(a) Setting  
DRU parameter No.  
Abbreviation  
PG1  
Name  
Setting  
100  
Unit  
rad/s  
rad/s  
6
Position control gain 1  
Speed control gain 1  
36  
VG1  
1000  
Ratio of load inertia moment to  
servo motor inertia moment  
Position control gain 2  
Speed control gain 2  
34  
GD2  
40  
0.1 times  
35  
37  
38  
PG2  
VG2  
VIC  
120  
3000  
20  
rad/s  
rad/s  
ms  
Speed integral compensation  
Ratio of load inertia moment to  
servo motor inertia moment 2  
Position control gain 2  
changing ratio  
61  
62  
63  
64  
65  
GD2B  
PG2B  
VG2B  
VICB  
CDP  
100  
70  
0.1 times  
%
%
%
Speed control gain 2 changing  
ratio  
133  
250  
Speed integral compensation  
changing ratio  
0003  
Gain changing selection  
(Changed by droop pulses)  
66  
67  
CDS  
CDT  
Gain changing condition  
50  
pulse  
ms  
Gain changing time constant  
100  
(b) Changing operation  
Command pulse  
Droop pulses  
CDS  
CDS  
Droop pulses [pulses]  
0
After-changing gain  
Before-changing gain  
Change of each gain  
CDT 100ms  
Position control gain 1  
100  
Speed control gain 1  
1000  
Ratio of load inertia moment  
4.0  
10.0  
4.0  
10.0  
to servo motor inertia moment  
Position control gain 2  
120  
3000  
20  
84  
4000  
50  
120  
3000  
20  
84  
4000  
50  
Speed control gain 2  
Speed integral compensation  
7 - 9  
7. SPECIAL ADJUSTMENT FUNCTIONS  
MEMO  
7 - 10  
8. INSPECTION  
8. INSPECTION  
Before starting maintenance and/or inspection, make sure that the charge lamp is  
off more than 15 minutes after power-off. Then, confirm that the voltage is safe in  
the tester or the like. Otherwise, you may get an electric shock.  
WARNING  
Any person who is involved in inspection should be fully competent to do the work.  
Otherwise, you may get an electric shock. For repair and parts replacement,  
contact your safes representative.  
POINT  
Do not test MELSERVO-J2M with a megger (measure insulation  
resistance), or it may become faulty.  
Do not disassemble and/or repair the equipment on customer side.  
(1) Inspection  
It is recommended to make the following checks periodically:  
(a) Check for loose terminal block screws. Retighten any loose screws.  
(b) Check the cables and the like for scratches and cracks. Perform periodic inspection according to  
operating conditions.  
(2) Life  
The following parts must be changed periodically as listed below. If any part is found faulty, it must be  
changed immediately even when it has not yet reached the end of its life, which depends on the  
operating method and environmental conditions. For parts replacement, please contact your sales  
representative.  
Part name  
Life guideline  
Smoothing capacitor  
10 years  
Number of power-on and number of forced  
Stop times:100,000times.  
Relay  
Cooling fan  
10,000 to 30,000hours (2 to 3 years)  
Refer to Section 13.2  
Absolute position battery unit  
(a) Smoothing capacitor  
Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly  
depends on ambient temperature and operating conditions. The capacitor will reach the end of its  
life in 10 years of continuous operation in normal air-conditioned environment.  
(b) Relays  
Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of  
their life when the cumulative number of power-on and forced stop times is 100,000, which depends  
on the power supply capacity.  
(c) Drive unit cooling fan  
The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore,  
the fan must be changed in a few years of continuous operation as a guideline.  
It must also be changed if unusual noise or vibration is found during inspection.  
8 - 1  
8. INSPECTION  
MEMO  
8 - 2  
9. TROUBLESHOOTING  
9. TROUBLESHOOTING  
9.1 Trouble at start-up  
Excessive adjustment or change of parameter setting must not be made as it will  
CAUTION  
make operation instable.  
POINT  
Using the optional MR Configurator (servo configuration software), you can  
refer to unrotated servo motor reasons, etc.  
The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.  
(1) Troubleshooting  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
1
Power on  
LED is not lit.  
LED flickers.  
Not improved if connectors  
1. Power supply voltage fault  
CN1A, CN1B, CN2 and CN3 2. MELSERVO-J2M is faulty.  
are disconnected.  
Improved when connectors  
CN1A and CN1B are  
disconnected.  
Power supply of CNP1 cabling  
is shorted.  
Improved when connector  
CN2 is disconnected.  
1. Power supply of encoder  
cabling is shorted.  
2. Encoder is faulty.  
Power supply of CN3 cabling is  
shorted.  
Improved when connector  
CN3 is disconnected.  
Alarm occurs.  
Alarm occurs.  
Refer to Section 9.2 and remove cause.  
Refer to Section 9.2 and remove cause.  
Section 9.2  
Section 9.2  
Section 4.3.6  
2
Switch on servo-on  
(SON ).  
Servo motor shaft is 1. Check the display to see if 1. Servo-on (SON ) is not  
not servo-locked  
(is free).  
the servo amplifier is  
ready to operate.  
input. (Wiring mistake)  
2. 24VDC power is not  
supplied to VIN.  
2. Check the external I/O  
signal indication to see if  
the servo-on (SON ) is  
ON.  
3
Enter input  
command.  
Servo motor does  
not rotate.  
Check cumulative command 1. Wiring mistake  
pulses. (a) For open collector pulse  
Section 4.3.2  
(Test operation)  
train input, 24VDC  
power is not supplied to  
OPC.  
(b) LSP /LSN -SG are not  
connected.  
2. No pulses is input.  
1. Mistake in wiring to  
controller.  
Servo motor run in  
reverse direction.  
Chapter 5  
2. Mistake in setting of DRU  
parameter No. 54.  
9 - 1  
9. TROUBLESHOOTING  
No.  
Start-up sequence  
Fault  
Investigation  
Possible cause  
Reference  
4
Gain adjustment  
Rotation ripples  
Make gain adjustment in the Gain adjustment fault  
Chapter 6  
(speed fluctuations) following procedure:  
are large at low  
speed.  
1. Increase the auto tuning  
response level.  
2. Repeat acceleration and  
deceleration several times  
to complete auto tuning.  
If the servo motor may be  
run with safety, repeat  
Large load inertia  
moment causes the  
Gain adjustment fault  
Chapter 6  
servo motor shaft to acceleration and  
oscillate side to side. deceleration several times to  
complete auto tuning.  
5
Cyclic operation  
Position shift occurs Confirm the cumulative  
Pulse counting error, etc.  
(2) in this  
section  
command pulses, cumulative due to noise.  
feedback pulses and actual  
servo motor position.  
9 - 2  
9. TROUBLESHOOTING  
(2) How to find the cause of position shift  
Positioning unit  
(a) Output pulse  
MELSERVO-J2M  
Electronic gear (DRU parameters No. 3, 4)  
Machine  
L
counter  
Servo motor  
M
CMX  
Q
P
(d) Machine stop  
position M  
CDV  
(A)  
(B)  
(C) Servo-on (SON ),  
forward rotation stroke  
(b) Cumulative command  
pulses  
end (LSP  
)
reverse  
rotation stroke end  
(LSD ) input  
Encoder  
C
(c) Cumulative  
feedback pulses  
When a position shift occurs, check (a) output pulse counter, (b) cumulative command pulse display, (c)  
cumulative feedback pulse display, and (d) machine stop position in the above diagram.  
(A), (B) and (C) indicate position shift causes. For example, (A) indicates that noise entered the wiring  
between positioning unit and servo amplifier, causing pulses to be mis-counted.  
In a normal status without position shift, there are the following relationships:  
1) Q P (positioning unit's output counter servo amplifier's cumulative command pulses)  
CMX(parameter No.3)  
2)  
P
CDV(parameter No.4)  
C (cumulative command pulses electronic gear cumulative feedback pulses)  
M (cumulative feedback pulses travel per pulse machine position)  
3) C  
Check for a position shift in the following sequence:  
1) When Q  
P
Noise entered the pulse train signal wiring between positioning unit and servo amplifier,  
causing pulses to be miss-counted. (Cause A)  
Make the following check or take the following measures:  
Check how the shielding is done.  
Change the open collector system to the differential line driver system.  
Run wiring away from the power circuit.  
Install a data line filter. (Refer to (2)(a) Section 12.2.6.)  
CMX  
When  
2)  
P
C
CDV  
During operation, the servo-on (SON ) or forward rotation stroke end (LSP ) reverse rotation  
stroke end (LSN ) was switched off or the clear (CR ) and the reset (RES ) switched on.  
(Cause C)  
If a malfunction may occur due to much noise, increase the input filter setting (DRU parameter  
No. 1).  
3) When C  
M
Mechanical slip occurred between the servo motor and machine. (Cause B)  
9 - 3  
9. TROUBLESHOOTING  
9.2 Alarms and warning list  
POINT  
The alarm/warning whose indication is not given does not exist in that  
unit.  
When a fault occurs during operation, the corresponding alarm or warning is displayed. If any alarm or  
warning has occurred, refer to Section 9.3 or 9.4 and take the appropriate action.  
When an alarm occurs in any of slots 1 to 4, ALM_A-SG open. When an alarm occurs in any of slots 5 to 8,  
ALM_B-SG open.  
The alarm can be canceled by turning the power OFF to ON.  
After its cause has been removed, the alarm can be deactivated in any of the methods marked  
alarm deactivation column.  
in the  
When an alarm/warning occurs, the interface unit display shows the corresponding unit and alarm  
number.  
Interface unit display  
Slot number  
Alarm/warning number  
Symbol  
Definition (Slot)  
Interface unit  
First slot  
Second slot  
Third slot  
Fourth slot  
Fifth slot  
Sixth slot  
F
1
2
3
4
5
6
7
8
Seventh slot  
Eight slot  
9 - 4  
9. TROUBLESHOOTING  
Alarm deactivation  
Display  
Name  
Power  
OFF ON  
Press “SET” on  
current alarm screen.  
Reset (RES)  
A.10  
A.12  
A.13  
A.15  
A.16  
A.17  
A.19  
A.1A  
A.1C  
A.1D  
A.1E  
A.20  
A.24  
A.25  
A.30  
A.31  
A.32  
A.33  
A.35  
Undervoltage  
Memory error 1  
Clock error  
Memory error 2  
Encoder error 1  
Board error  
Memory error 3  
Servo motor combination error  
Base unit bus error 1  
Base unit bus error 2  
Drive unit mounting error  
Encoder error 2  
Main circuit error  
Absolute position erase  
Regenerative error  
Overspeed  
Overcurrent  
Overvoltage  
Command pulse frequency error  
IFU parameter error  
DRU parameter error  
Main circuit device overheat  
Servo motor overheat  
Overload 1  
Overload 2  
Error excessive  
Multiple axis overload  
Drive unit alarm  
Option slot fault  
Option slot loading error  
Serial communication time-out  
Serial communication error  
Watchdog  
Open battery cable warning  
Home position setting warning  
Battery warning  
Excessive regenerative warning  
Overload warning  
Absolute position counter warning  
Servo forced stop warning  
Main circuit off warning  
(Note 1)  
(Note 1)  
(Note 1)  
A.37  
A.45  
A.46  
A.50  
A.51  
A.52  
A.53  
A.54  
A.78  
A.79  
A.8A  
A.8E  
88888  
A.92  
A.96  
A.9F  
A.E0  
A.E1  
A.E3  
A.E6  
A.E9  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 2)  
(Note 2)  
(Note 2)  
Removing the cause of occurrence  
deactivates the alarm automatically.  
Note 1. Deactivate the alarm about 30 minutes of cooling time after removing the cause of occurrence.  
2. Automatically deactivated when the alarm of the drive unit is reset.  
9 - 5  
9. TROUBLESHOOTING  
9.3 Remedies for alarms  
When any alarm has occurred, eliminate its cause, ensure safety, then reset the  
alarm, and restart operation. Otherwise, injury may occur.  
If an absolute position erase (A.25) occurred, always make home position setting  
again. Otherwise, misoperation may occur.  
CAUTION  
As soon as an alarm occurs, turn off Servo-on (SON ) and power off the main  
circuit.  
POINT  
When any of the following alarms has occurred, always remove its cause  
and allow about 30 minutes for cooling before resuming operation. If  
operation is resumed by switching control circuit power off, then on to reset  
the alarm, each unit and servo motor may become faulty.  
Regenerative error (A.30)  
Overload 1 (A.50)  
Overload 2 (A.51)  
The alarm can be deactivated by switching power off, then on press the  
“SET” button on the interface unit current alarm screen or by turning on  
the reset (RES ). For details, refer to Section 9.2.  
When an alarm occurs, the dynamic brake is operated to stop the servo motor. At this time, the display  
indicates the alarm No. The servo motor comes to a stop. Remove the cause of the alarm in accordance  
with this section. The optional MR Configurator (servo configuration software) may be used to refer to the  
cause.  
@ in the Indication field denotes the slot number of the base unit.  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
1. Power supply voltage is low.  
2. There was an instantaneous control  
circuit power failure of 30ms or  
longer.  
FA.10  
Undervoltage  
Power supply voltage  
fell to or below  
160VAC.  
Review the power supply.  
3. Shortage of power supply capacity  
caused the power supply voltage to  
drop at start, etc.  
4. Power was restored after the bus  
voltage had dropped to 200VDC.  
(Main circuit power switched on  
within 5s after it had switched off.)  
5. Faulty parts in the base unit.  
Change the base unit.  
Checking method  
Alarm (A.10) occurs if interface unit  
is changed.  
6. Faulty parts in interface unit.  
Change the interface unit.  
Checking method  
Alarm (A.10) occurs if base unit is  
changed.  
7. CNP3 or CNP1B connector  
unplugged.  
Connect properly.  
Faulty parts in the interface unit.  
FA.12  
FA.13  
FA.15  
Memory error 1 RAM, memory fault  
Clock error Printed board fault.  
Memory error 2 EEP-ROM fault  
Change the interface unit.  
Checking method  
Alarm (any of A.11 and 13)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
9 - 6  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.12@ Memory error 1 RAM, memory fault  
@A.13@ Clock error Printed board fault.  
@A.15@ Memory error 2 EEP-ROM fault  
1. Faulty parts in the drive unit  
Change the drive unit.  
Checking method  
Alarm (A.15)  
occurs if power is switched on  
after disconnection of all cables  
but the control circuit power  
supply cables.  
2. The number of write times to EEP-  
ROM exceeded 100,000.  
@A.16@ Encoder error 1 Communication error 1. Encoder connector (CN2)  
Connect correctly.  
occurred between  
encoder and servo  
amplifier.  
disconnected.  
2. Encoder fault.  
Change the servo motor.  
Repair or change cable.  
3. Encoder cable faulty.  
(Wire breakage or shorted)  
1. Faulty parts in the drive unit.  
@A.17@ Board error 2  
CPU/parts fault  
Change the drive unit.  
Checking method  
Alarm (A.17) occurs if power is  
switched on after disconnection of all  
cables but the control circuit power  
supply cables.  
The output terminals 2. The wiring of U, V, W is  
Correctly connect the output  
terminals U, V, W of the drive  
unit and the input terminals U,  
V, W of the servo motor.  
U, V, W of the drive  
unit and the input  
terminals U, V, W of  
the servo motor are  
not connected.  
disconnected or not connected.  
FA.19 @A.19@ Memory error 3 ROM memory fault  
Faulty parts in the interface unit or  
drive unit.  
Change the interface unit or  
drive unit.  
Checking method  
Alarm (A.19) occurs if power is  
switched on after disconnection of all  
cables but the control circuit power  
supply cables.  
@A.1A@ Servo motor  
combination  
error  
Wrong combination of Wrong combination of drive unit and Use correct combination.  
drive unit and servo  
motor.  
servo motor connected.  
FA.1C  
FA.1D  
FA.1E  
Base unit bus  
error 1  
There is error in  
communication  
between interface unit  
and drive unit.  
1. Interface unit connection fault.  
Connect the interface unit to the  
base unit properly.  
2. Interface unit failure.  
3. Base unit failure.  
Change the interface unit.  
Change the base unit.  
Connect the drive unit to the  
base unit properly.  
Base unit bus  
error 2  
There is error in  
communication  
between interface unit  
and drive unit.  
1. Drive unit connection fault.  
2. Drive unit failure.  
Change the drive unit.  
Change the base unit.  
Connect the drive unit to the  
base unit properly.  
3. Base unit failure.  
Drive unit  
mounting error the base unit after  
initialization.  
Drive unit came off  
1. Drive unit connection fault.  
2. Base unit failure.  
Change the base unit.  
Change the drive unit.  
3. Faulty parts in drive unit.  
Checking method  
Alarm (A.1E) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
@A.20@ Encoder error 2 Communication error 1. Encoder connector (CN2) disconnected. Connect correctly.  
occurred between  
encoder and drive  
unit.  
2. Encoder fault.  
Change the servo motor.  
Repair or change cable.  
3. Encoder cable faulty.  
(Wire breakage or shorted)  
9 - 7  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.24@ Main circuit  
error  
Ground fault occurred 1. Power input wires and servo motor Connect correctly.  
at the servo motor  
outputs (U,V and W  
phases) of the drive  
unit.  
output wires are in contact at CNP2.  
2. Sheathes of servo motor power  
cables deteriorated, resulting in  
ground fault.  
Change the cable.  
3. Main circuit of drive unit failed.  
Checking method  
Change the drive unit.  
Alarm (A.24) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
@A.25@ Absolute  
position erase  
Absolute position data 1. Battery voltage low.  
Change battery.  
in error.  
Always make home position  
setting again.  
2. Battery cable or battery is faulty.  
Power was switched  
on for the first time in  
the absolute position  
detection system.  
Permissible  
3. Super capacitor of the absolute  
position encoder is not charged.  
After leaving the alarm occurring  
for a few minutes, switch power  
off, then on again. Always make  
home position setting again.  
Set correctly.  
FA.30  
Regenerative  
alarm  
1. Mismatch between used  
regenerative power of  
regenerative brake option and IFU  
the regenerative brake parameter No. 1 setting.  
option is exceeded.  
2. Regenerative brake option is not  
connected.  
Connect correctly.  
3. High-duty operation or continuous 1. Reduce the frequency of  
regenerative operation caused the  
permissible regenerative power of  
the regenerative brake option to be  
exceeded.  
positioning.  
2. Use the regenerative brake  
option of larger capacity.  
3. Reduce the load.  
Checking method  
Call the status display and check  
the regenerative load ratio.  
4. Power supply voltage rose to or  
above 260VAC.  
Review power supply.  
5. Regenerative brake option faulty.  
Change regenerative brake  
option.  
Regenerative  
6. Regenerative transistor faulty.  
Change the drive unit.  
transistor fault  
Checking method  
1) The regenerative brake option  
has overheated abnormally.  
2) The alarm occurs even after  
removal of the built-in  
regenerative brake resistor or  
regenerative brake option.  
9 - 8  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.31@ Overspeed  
Speed has exceeded  
the instantaneous  
permissible speed.  
1. Input command pulse frequency is Set the command pulse correctly.  
too high.  
2. Small acceleration/deceleration time Increase acceleration/  
constant caused overshoot to be  
large.  
deceleration time constant.  
3. Servo system is instable to cause  
overshoot.  
1. Reset servo gain to proper  
value.  
2. If servo gain cannot be set to  
proper value:  
1) Reduce load inertia moment  
ratio; or  
2) Reexamine acceleration/  
deceleration time constant.  
Set correctly.  
4. Electronic gear ratio is large.  
(DRU parameter No. 3 4)  
5. Encoder faulty.  
Change the servo motor.  
@A.32@ Overcurrent  
Current that flew is  
higher than the  
1. Short occurred in drive unit output Correct the wiring.  
phases U, V and W.  
permissible current of  
the drive unit.  
2. Transistor of the servo drive unit  
faulty.  
Change the drive unit.  
Checking method  
Alarm (A.32) occurs if power is  
switched on after disconnection of  
the U, V, W power cables.  
3. Ground fault occurred in servo  
amplifier output phases U, V and W.  
4. External noise caused the  
overcurrent detection circuit to  
misoperate.  
Correct the wiring.  
Take noise suppression  
measures.  
FA.33  
Overvoltage  
Converter bus voltage 1. Regenerative brake option is not  
Use the regenerative brake  
option.  
exceeded 400VDC.  
used.  
2. Though the regenerative brake  
option is used, the IFU parameter  
Make correct setting.  
No. 1 setting is "  
00 (not used)".  
3. Regenerative brake option is open or 1. Change lead.  
disconnected.  
2. Connect correctly.  
Change drive unit.  
4. Regenerative transistor faulty.  
5. Wire breakage of regenerative brake For wire breakage of regenerative  
option.  
brake option, change regenerative  
brake option.  
6. Power supply voltage high.  
Review the power supply.  
@A.35@ Command pulse Input frequency of  
frequency error command pulse is too  
high.  
1. Command given is greater than the Review operation program.  
maximum speed of the servo motor.  
2. Noise entered bus cable.  
Take action against noise.  
Change the servo system  
controller.  
3. Servo system controller failure.  
9 - 9  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
FA.37  
IFU parameter IFU parameter  
1. Interface unit fault caused the IFU Change the interface unit.  
parameter setting to be rewritten.  
error  
setting is wrong.  
2. The number of write times to EEP- Change the interface unit  
ROM exceeded 100,000 due to  
parameter write, program write,  
etc.  
@A.37@ DRU parameter DRU parameter  
1. Drive unit fault caused the DRU  
parameter setting to be rewritten.  
Change the drive unit.  
error  
setting is wrong.  
2. The number of write times to EEP- Change the drive unit.  
ROM exceeded 100,000 due to  
parameter write, program write,  
etc.  
@A.45@ Main circuit  
Main circuit device  
1. Drive unit faulty.  
Change the drive unit.  
device overheat overheat.  
2. The power supply was turned on  
and off continuously by overloaded  
status.  
The drive method is reviewed.  
3. Air cooling fan of drive unit stops.  
1. Change the drive unit or  
cooling fan.  
2. Reduce ambient temperature.  
@A.46@ Servo motor  
overheat  
Servo motor  
1. Ambient temperature of servo motor Review environment so that  
is over 40 ambient temperature is 0 to  
40  
temperature rise  
actuated the thermal  
sensor.  
.
.
2. Servo motor is overloaded.  
1. Reduce load.  
2. Review operation pattern.  
3. Use servo motor that provides  
larger output.  
3. Thermal sensor in encoder is faulty. Change servo motor.  
@A.50@ Overload 1  
Load exceeded  
1. Drive unit is used in excess of its  
continuous output current.  
1. Reduce load.  
overload protection  
characteristic of servo  
amplifier.  
2. Review operation pattern.  
3. Use servo motor that provides  
larger output.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto  
tuning.  
2. Change auto tuning response  
level setting.  
3. Set auto tuning to OFF and  
make gain adjustment  
manually.  
3. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Connect correctly.  
4. Wrong connection of servo motor.  
Drive unit's output U, V, W do not  
match servo motor's input U, V, W.  
5. Encoder faulty.  
Change the servo motor.  
Checking method  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
9 - 10  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
@A.51@ Overload 2  
Machine collision or  
the like caused max.  
output current to flow  
successively for  
1. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Connect correctly.  
2. Wrong connection of servo motor.  
Drive unit's output terminals U, V,  
W do not match servo motor's input  
terminals U, V, W.  
several seconds.  
Servo motor locked:  
0.3s or more  
3. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration to execute auto  
tuning.  
During rotation:  
2.5s or more  
2. Change auto tuning response  
setting.  
3. Set auto tuning to OFF and  
make gain adjustment  
manually.  
4. Encoder faulty.  
Checking method  
Change the servo motor.  
When the servo motor shaft is  
rotated with the servo off, the  
cumulative feedback pulses do  
not vary in proportion to the  
rotary angle of the shaft but the  
indication skips or returns midway.  
@A.52@ Error excessive The difference  
between the model  
position and the  
1. Acceleration/deceleration time  
constant is too small.  
Increase the acceleration/  
deceleration time constant.  
2. Torque limit value (DRU parameter Increase the torque limit value.  
No.28) is too small.  
actual servo motor  
position exceeds 2.5  
rotations. (Refer to  
the function block  
diagram in Section  
1.2)  
3. Motor cannot be started due to  
torque shortage caused by power  
supply voltage drop.  
1. Review the power supply  
capacity.  
2. Use servo motor which  
provides larger output.  
Increase set value and adjust to  
ensure proper operation.  
1. When torque is limited,  
increase the limit value.  
2. Reduce load.  
4. Position control gain 1 (DRU  
parameter No.36) value is small.  
5. Servo motor shaft was rotated by  
external force.  
3. Use servo motor that provides  
larger output.  
6. Machine struck something.  
1. Review operation pattern.  
2. Install limit switches.  
Change the servo motor.  
Connect correctly.  
7. Encoder faulty.  
8. Wrong connection of servo motor.  
Drive unit's output U, V, W do not  
match servo motor's input U, V, W.  
9 - 11  
9. TROUBLESHOOTING  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
FA.53  
Multiple axis  
overload  
Drive unit whose  
effective load factor is  
85% or more is  
adjacent.  
1. Drive unit having large load is  
adjacent.  
1. Change the slot of the drive  
unit whose load is large.  
2. Reduce the load.  
3. Reexamine the operation  
pattern.  
4. Use a servo motor whose  
output is large.  
2. Servo system is instable and  
hunting.  
1. Repeat acceleration/  
deceleration and perform auto  
tuning.  
2. Change the response setting of  
auto tuning.  
3. Turn off auto tuning and make  
gain adjustment manually.  
Make correct connection.  
3. Encoder cable and power cable (U,  
V, W) coming out of one drive unit  
are connected to the incorrect servo  
motor.  
FA.54  
FA.78  
Drive unit  
alarm  
Alarm occurred in one Alarm occurred in one or more axes of Remove the alarm causes of all  
or more axes of drive drive units installed to the base unit. drive units where alarm has  
units installed to the  
base unit.  
occurred.  
Option slot fault Extension IO unit is  
faulty.  
1. Extension IO unit is not inserted  
properly.  
Insert correctly.  
2. Incompatibility with the extension Change the interface unit for the  
IO unit.  
one compatible with the  
extension IO unit.  
3. Extension IO unit is faulty.  
4. Base unit is faulty.  
Change the extension IO unit.  
Change the base unit.  
FA.79  
FA.8A  
Option slot  
loading error  
Serial  
Extension IO unit is  
connected improperly.  
Extension IO unit is disconnected.  
Switch power off and reinsert the  
extension IO unit.  
Serial communication 1. Communication cable fault.  
(Wire break or short circuit)  
2. Communication cycle is longer than Set the IFU parameter value  
Repair or change the cable.  
communication stopped for longer  
time-out  
than the time set in  
IFU parameter No.20.  
the IFU parameter No.20 setting.  
3. Protocol is incorrect.  
correctly.  
Correct the protocol.  
Repair or change the cable.  
Serial communication  
error occurred  
between interface unit  
and communication  
device (e.g. personal  
computer).  
FA.8E  
88888  
Serial  
1. Communication cable fault.  
(Open cable or short circuit)  
communication  
error  
2. Communication device (e.g. personal Change the communication  
computer) faulty.  
device (e.g. personal computer).  
Watchdog  
CPU, parts faulty  
Fault of parts in interface unit.  
Change interface unit.  
Checking method  
Alarm (8888) occurs if power is  
switched on after disconnection  
of all cables but the control  
circuit power supply cables.  
9 - 12  
9. TROUBLESHOOTING  
9.4 Remedies for warnings  
If an absolute position counter warning (A.E3) occurred, always make home  
position setting again. Otherwise, misoperation may occur.  
CAUTION  
POINT  
When any of the following alarms has occurred, do not resume operation by  
switching power of the servo amplifier OFF/ON repeatedly. The servo  
amplifier and servo motor may become faulty. If the power of the servo  
amplifier is switched OFF/ON during the alarms, allow more than 30  
minutes for cooling before resuming operation.  
Excessive regenerative warning (A.E0)  
Overload warning 1 (A.E1)  
If servo forced stop warning (A.E6) or main circuit off warning (A.E9) occurs, the servo off status is  
established. If any other warning occurs, operation can be continued but an alarm may take place or  
proper operation may not be performed. Eliminate the cause of the warning according to this section. Use  
the optional MR Configurator (servo configuration software) to refer to the cause of warning.  
@ in the Indication field denotes the slot number of the base unit.  
Display  
Name  
Definition  
Cause  
Action  
IFU  
DRU  
1. Battery cable is open.  
Repair cable or changed.  
@A.92@  
Absolute position  
detection system  
battery voltage is low.  
Open battery  
cable warning  
2. Battery voltage supplied from the Change battery unit.  
battery unit to the encoder fell to  
about 3.2V or less.  
(Detected with the encoder)  
3. Encoder cable is open.  
Change the encoder cable.  
@A.96@ Home position Home position return 1. Droop pulses remaining are greater Remove the cause of droop pulse  
setting warning could not be made in  
the precise position.  
than the in-position range setting.  
occurrence.  
2. Home position return was executed Reduce creep speed.  
during operation command.  
3. Creep speed high.  
Battery  
warning  
Voltage of battery for Battery voltage fell to 3.2V or less. Change the battery unit.  
FA.9F  
FA.E0  
absolute position  
detection system  
reduced.  
(Detected with the servo amplifier)  
Excessive  
regenerative  
warning  
There is a possibility Regenerative power increased to 85% 1. Reduce frequency of  
that regenerative  
power may exceed  
permissible  
regenerative power of  
regenerative brake  
option.  
or more of permissible regenerative  
power of regenerative brake option.  
positioning.  
2. Change regenerative brake  
option for the one with larger  
capacity.  
Checking method  
Call the status display and check  
regenerative load ratio.  
3. Reduce load.  
@A.E1@ Overload  
There is a possibility Load increased to 85% or more of  
that overload alarm 1 overload alarm 1 or 2 occurrence level.  
Refer to A.50, A.51.  
warning  
or 2 may occur.  
Cause, checking method  
Refer to A.50, A.51.  
@A.E3@ Absolute  
Absolute position  
1. Noise entered the encoder.  
Take noise suppression  
measures.  
Change servo motor.  
Make home position setting  
again.  
position counter encoder pulses faulty.  
warning  
2. Encoder faulty.  
The multi-revolution 3. The movement amount from the  
counter value of the  
absolute position  
encoder exceeded the  
maximum revolution  
range.  
home position exceeded a 32767  
rotation or -37268 rotation in  
succession.  
Servo forced  
stop warning  
Main circuit off Servo-on (SON ) was  
EMG_  
-
are open. External forced stop was made valid. Ensure safety and deactivate  
SG  
FA.E6  
FA.E9  
(EMG_ -SG opened.)  
forced stop.  
Switch on main circuit power.  
warning  
turned on with main  
circuit power off.  
9 - 13  
9. TROUBLESHOOTING  
MEMO  
9 - 14  
10. OUTLINE DRAWINGS  
10. OUTLINE DRAWINGS  
10.1 MELSERVO-J2M configuration example  
The following diagram shows the MR-J2M-BU8 base unit where one interface unit and eight drive units  
are installed.  
[Unit: mm]  
([Unit: in])  
30  
35  
25  
(1.12)  
(1.38)  
240 (9.45)  
50 (1.67)  
(0.98)  
350 (13.78)  
6 (0.24)  
6 (0.24)  
338 (13.31)  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
SON  
ALM  
MITSUBISHIMMRE-LJ2SME-JR2VMO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
MELSERVO  
CC  
NN  
PP  
11  
AB  
C
N
1
C
N
1
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
MITSUBISHI ELECTRIC  
A
B
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
2
C
N
P
3
C
N
5
C
N
3
CON4  
CON5  
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
C
N
P
2
CHARGE  
(80 (3.15))  
(70 (2.76))  
NAME  
PLATE  
NAME  
PLATE  
10 - 1  
10. OUTLINE DRAWINGS  
10.2 Unit outline drawings  
10.2.1 Base unit (MR-J2M-BU )  
[Unit: mm]  
([Unit: in])  
Variable Dimensions  
Mass  
[kg]([lb])  
Base Unit  
A
B
MR-J2M-BU4 230 (9.06) 218 (8.58)  
1.1 (2.43)  
MR-J2M-BU6 290 (11.42) 278 (10.95) 1.3 (2.87)  
MR-J2M-BU8 350 (13.78) 338 (13.307) 1.5 (3.31)  
A
B
6 (0.24)  
6 (0.24)  
Connector layout  
NAME  
PLATE  
CNP3  
CNP1A, CNP1B  
PE  
CC  
NN  
P P  
1 1  
A B  
A
B
3 L3  
2 L2  
1 L1  
1 N L11  
2 P L21  
3 C  
C
N
P
3
Terminal screw : M4  
2 (0.08)  
Tightening torque : 3.24 [N m]  
(28.7 [lb in])  
2- 6 ( 0.24) mounting hole  
Mounting screw : M5  
Tightening torque : 3.24 [N m]  
(28.7 [lb in])  
10.2.2 Interface unit (MR-J2M-P8A)  
[Unit: mm]  
([Unit: in])  
5 (0.2)  
mounting hole  
Approx.80 (3.15)  
139 (5.47)  
50 (1.97)  
130 (5.12)  
25  
(0.98)  
6.5 (0.26)  
Display/setting  
cover  
MELSERVO  
MITSUBISHIMR-J2M-J2M  
C
N
1
C
N
1
A
B
NAME PLATE  
NAME PLATE  
C
N
5
C
N
3
CHARG  
Mounting screw : M4  
Tightening torque : 1.5 [N m]  
(13.3 [lb in])  
Mass: 0.5kg (1.10lb)  
10 - 2  
10. OUTLINE DRAWINGS  
10.2.3 Drive unit (MR-J2M- DU)  
(1) MR-J2M-10DU to MR-J2M-40DU  
[Unit: mm]  
([Unit: in])  
Approx.70 (2.76)  
30  
(1.18)  
138.5 (5.45)  
130 (4.72)  
5
Connector layout  
CNP2  
4.5 ( 0.18)  
mounting hole  
(0.20)  
6.5 (0.26)  
2
V
1
4
SON  
ALM  
MITSUBISHI  
MELSERVO  
3
NAME  
U
W
PLATE  
MITSUBISHI  
Mounting screw : M4  
Tightening torque : 1.5 [N m]  
(13.3 [lb in])  
NAME PLATE  
C
N
2
C
N
P
2
Mass: 0.4kg (0.88lb)  
(2) MR-J2M-70DU  
[Unit: mm]  
([Unit: in])  
2- 5 ( 0.2)  
mounting hole  
30 (1.18)  
Approx.70 (2.76)  
60 (2.36)  
138.5 (5.47)  
130 (4.72)  
Connector layout  
CNP2  
5 (0.20)  
6.5 (0.26)  
2
V
1
4
SON  
ALM  
MITSUBISHI  
MELSERVO  
3
NAME  
PLATE  
U
W
MITSUBISHI  
Mounting screw : M4  
Tightening  
torque : 1.5 [N m]  
(13.3 [lb in])  
NAME PLATE  
C
N
2
C
N
P
2
Mass: 0.7kg (1.54lb)  
10 - 3  
10. OUTLINE DRAWINGS  
10.2.4 Extension IO unit (MR-J2M-D01)  
[Unit: mm]  
([Unit: in])  
Approx.80 (3.15)  
138.5 (5.45)  
130 (4.72)  
25  
(0.89)  
5 (0.20)  
6.5 (0.26)  
2- 4.5 ( 0.18)  
mounting hole  
Mounting screw : M4  
Tightening torque : 1.5 [N m]  
(13.3 [lb in])  
C
N
4
A
C
N
4
B
NAME PLATE  
Mass: 0.2kg (1.10lb)  
10.2.5 Battery unit (MR-J2M-BT)  
[Unit: mm]  
([Unit: in])  
25(0.89)  
Approx.70 (2.76)  
130 (5.45)  
5 (0.20)  
6.5 (0.26)  
2- 4.5 ( 0.18)  
mounting hole  
Mounting screw : M4  
Tightening torque : 1.5 [N m]  
(13.3 [lb in])  
C
N
1
C
NAME PLATE  
Mass: 0.3kg (0.66lb)  
10 - 4  
10. OUTLINE DRAWINGS  
10.3 Connectors  
(1) CN1A CN1B CN4A CN4B connector  
<3M>  
(a) Soldered type  
Model Connector : 10150-3000VE  
Shell kit  
: 10350-52F0-008  
[Unit: mm]  
([Unit: in])  
17.0 (0.67)  
46.5 (1.83)  
18.0 (0.71)  
41.1 (1.62)  
Logo, etc. are  
indicated here.  
52.4 (2.06)  
12.7  
(0.50)  
(b) Threaded type  
Model Connector : 10150-3000VE  
Shell kit : 10350-52A0-008  
Note. This is not available as option and should be user-prepared.  
[Unit: mm]  
([Unit: in])  
17.0 (0.67)  
46.5 (1.83)  
18.0 (0.71)  
41.1 (1.62)  
Logo, etc. are  
indicated here.  
52.4 (2.06)  
12.7  
(0.50)  
10 - 5  
10. OUTLINE DRAWINGS  
(2) CN2 CN3 connector  
<3M>  
(a) Soldered type  
Model Connector : 10120-3000VE  
Shell kit  
: 10320-52F0-008  
[Unit: mm]  
([Unit: in])  
12.0 (0.47)  
22.0 (0.87)  
14.0 (0.55)  
Logo, etc. are  
indicated here.  
33.3 (1.31)  
12.7  
(0.50)  
(b) Threaded type  
Model Connector : 10120-3000VE  
Shell kit : 10320-52A0-008  
Note. This is not available as option and should be user-prepared.  
[Unit: mm]  
([Unit: in])  
12.0 (0.47)  
14.0 (0.55)  
22.0 (0.87)  
27.4  
Logo, etc. are  
indicated here.  
(1.08)  
33.3  
(1.31)  
12.7  
(0.50)  
10 - 6  
10. OUTLINE DRAWINGS  
(c) Insulation displacement type  
Model Connector : 10120-6000EL  
Shell kit  
: 10320-3210-000  
[Unit: mm]  
([Unit: in])  
6.7 ( 0.26)  
Logo, etc. are  
indicated here.  
20.9 (0.82)  
2- 0.5  
(
0.02)  
29.7  
(1.17)  
(3) CN5 connector  
<3M>  
[Unit: mm]  
([Unit: in])  
12.0 (0.47)  
27.4  
(1.08)  
Logo, etc. are  
indicated here.  
22.0 (0.87)  
14.0 (0.55)  
R
R
3.0 (0.12)  
4.0 (0.16)  
7.6  
A
4.0  
4.0  
(0.16)  
(0.16)  
(0.3)  
10.7 0.2  
23.35 (0.92)  
33.3 (1.31)  
(0.42 0.08)  
12.7  
(0.50)  
Details A  
10 - 7  
10. OUTLINE DRAWINGS  
(4) CNP1A/CNP1B connector  
<Tyco Electronics>  
Model CNP1A housing  
CNP1B housing  
: 1-178128-3  
: 2-178128-3  
Contact  
: 917511-2 (max. sheath OD: 2.8 [mm] ( 0.11 [in]))  
353717-2 (max. sheath OD: 3.4 [mm] ( 0.13 [in]))  
: 91560-1 (for 917511-2)  
Applicable tool  
937315-1 (for 353717-2)  
[Unit: mm]  
([Unit: in])  
5.08 (0.2)  
7.15 (0.28)  
29.7 (0.12)  
3
2
1
P
A M  
3 0 -  
X
19.24 (0.76)  
6.55  
(0.26)  
(5) CNP3 connector  
<AMP>  
Model Housing  
Contact  
: 1-179958-3  
: 316041-2  
: 234171-1  
Applicable tool  
[Unit: mm]  
10.16 (0.4)  
([Unit: in)  
9.8 (0.39)  
45.29 (1.79)  
3
2
1
P
A M  
5 0 -  
Y
33.92 (1.33)  
10 - 8  
10. OUTLINE DRAWINGS  
(6) Connectors for CNP2  
<molex>  
[Unit: mm]  
([Unit: in])  
0.6 (0.024)  
1
2
3
4
5
6
7
9
0 1  
R0.3  
Circuit number  
3 (0.118)  
1.2  
Layout diagrams classified by the number of poles  
(0.047)  
5.4 (0.213)  
1
3
2
4
11.6  
(0.457)  
5.4 (0.213)  
4 poles  
1.5  
(0.059)  
3
Variable Dimensions  
3.5  
(0.138)  
(0.118)  
Model  
5557-04R  
A
B
4.2 (0.165)  
9.6 (0.378)  
(Pitch)  
4.2  
(0.165)  
2.7 (0.106)  
2.7 (0.106)  
A
B
Terminal  
[Unit: mm]  
([Unit: in])  
Model: 5556  
1.9 (0.075)  
14.7 (0.579)  
6.6 (0.26)  
5.5 (0.217)  
4.3 (0.169)  
2.6  
(0.102)  
1.2 (0.047)  
OMIN  
1
(0.039)  
Applicable wire  
2
(0.079)  
Core size : AWG#18 to #24 (5556-PBTL)  
AWG28 (5556-PBT2L)  
Sheath OD: 3.1mm ( 0.122 in) max.  
Strip length: 3.0 to 3.5 [mm] (0.118 to 0.138 [in])  
Exclusive tools  
Wire specifications  
Sheath OD [mm(inch)]  
Terminal  
Tool number  
Core size  
1.5 to 2.2 (0.06 to 0.09)  
2.3 to 3.1 (0.06 to 0.12)  
57026-5000  
57027-5000  
57064-5000  
57022-5300  
5556-PBL  
AWG18 to AWG24  
5556-PBT2L  
5556-PBT3L  
AWG28  
AWG16  
10 - 9  
10. OUTLINE DRAWINGS  
MEMO  
10 - 10  
11. CHARACTERISTICS  
11. CHARACTERISTICS  
11.1 Overload protection characteristics  
An electronic thermal relay is built in the drive unit to protect the servo motor and drive unit from  
overloads.  
Overload 1 alarm (A.50) occurs if overload operation performed is above the electronic thermal relay  
protection curve shown in any of Figs 11.1. Overload 2 alarm (A.51) occurs if the maximum current flows  
continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side  
area of the continuous or broken line in the graph.  
In a machine like the one for vertical lift application where unbalanced torque will be produced, it is  
recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.  
The overload protection characteristic is about 20% lower than that of the MELSERVO-J2-Super series.  
However, operation at the 100% continuous rating can be performed.  
1000  
1000  
During rotation  
100  
100  
During rotation  
During servo lock  
10  
1
10  
1
During servo lock  
0.1  
0
0.1  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
Load ratio [%]  
200  
250  
300  
Load ratio [%]  
a. MR-J2M-10DU to MR-J2M-40DU  
Fig 11.1 Electronic thermal relay protection characteristics  
b. MR-J2M-70DU  
Note. If operation that generates torque more than 100% of the rating is performed with an abnormally high frequency in a servo motor stop  
status (servo lock status) or in a 30r/min or less low-speed operation status, the servo amplifier may fail even when the electronic  
thermal relay protection is not activated.  
11 - 1  
11. CHARACTERISTICS  
11.2 Power supply equipment capacity and generated loss  
(1) Amount of heat generated by the drive unit  
Table 11.1 indicates drive unit's power supply capacities and losses generated under rated load. For  
thermal design of an enclosure, use the values in Table 11.1 in consideration for the worst operating  
conditions. The actual amount of generated heat will be intermediate between values at rated torque  
and servo off according to the duty used during operation. When the servo motor is run at less than  
the maximum speed, the power supply capacity will be smaller than the value in the table, but the  
drive unit's generated heat will not change.  
Table 11.1 Power supply capacity and generated heat at rated output  
(Note 2)  
(Note 1)  
Area required for heat dissipation  
Generated heat[W]  
Unit  
Servo motor  
Power supply  
capacity[kVA]  
At rated torque  
At servo off  
[m2]  
0.2  
0.2  
0.2  
0.3  
0.3  
0.3  
0.4  
0.4  
0.7  
0.7  
0.7  
0.2  
0.1  
0.1  
0.1  
[ft2]  
HC-KFS053 13  
HC-MFS053 13  
HC-UFS13  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.9  
0.9  
1.3  
1.3  
1.3  
0.1  
0
11  
11  
11  
14  
14  
14  
20  
20  
40  
40  
40  
9
6
6
6
6
6
6
6
6
6
6
6
9
4
4
4
2.16  
2.16  
2.16  
3.24  
3.24  
3.24  
4.32  
4.32  
7.54  
7.54  
7.54  
2.16  
1.08  
1.08  
1.08  
MR-J2M-10DU  
HC-KFS23  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
HC-MFS23  
HC-UFS23  
HC-KFS43  
HC-MFS43  
HC-KFS73  
HC-MFS73  
HC-UFS73  
MR-J2M-P8A  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
4
0
4
0
4
Note 1. Note that the power supply capacity will vary according to the power supply impedance.  
This value applies to the case where the power factor improving reactor is not used.  
2. Heat generated during regeneration is not included in the drive unit-generated heat. To calculate heat generated by the  
regenerative brake option, use Equation 12.1 in Section 12.1.1.  
11 - 2  
11. CHARACTERISTICS  
(2) Heat dissipation area for enclosed drive unit  
The enclosed control box (hereafter called the control box) which will contain the drive unit should be  
designed to ensure that its temperature rise is within 10  
at the ambient temperature of  
(50 )  
40 . (With a 5 (41 ) safety margin, the system should operate within a maximum 55 (131 )  
limit.) The necessary enclosure heat dissipation area can be calculated by Equation 11.1:  
P
............................................................................................................................................. (11.1)  
A
K
T
where, A  
P
: Heat dissipation area [m2]  
: Loss generated in the control box [W]  
T : Difference between internal and ambient temperatures [  
: Heat dissipation coefficient [5 to 6]  
]
K
When calculating the heat dissipation area with Equation 11.1, assume that P is the sum of all losses  
generated in the enclosure. Refer to Table 11.1 for heat generated by the drive unit. "A" indicates the  
effective area for heat dissipation, but if the enclosure is directly installed on an insulated wall, that  
extra amount must be added to the enclosure's surface area.  
The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the  
enclosure is poor and heat builds up, effective heat dissipation will not be possible. Therefore,  
arrangement of the equipment in the enclosure and the use of a fan should be considered.  
Table 11.1 lists the enclosure dissipation area for each drive unit when the drive unit is operated at  
the ambient temperature of 40 (104 ) under rated load.  
(Outside)  
(Inside)  
Air flow  
Fig. 11.2 Temperature distribution in enclosure  
When air flows along the outer wall of the enclosure, effective heat exchange will be possible, because  
the temperature slope inside and outside the enclosure will be steeper.  
11 - 3  
11. CHARACTERISTICS  
11.3 Dynamic brake characteristics  
Fig. 11.4 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated.  
Use Equation 11.2 to calculate an approximate coasting distance to a stop. The dynamic brake time  
constant varies with the servo motor and machine operation speeds. (Refer to Fig. 11.4)  
ON  
OFF  
Forced stop(EMG_  
)
Time constant  
V0  
Machine speed  
Time  
te  
Fig. 11.3 Dynamic brake operation diagram  
JL  
JM  
V0  
60  
Lmax  
te  
....................................................................................................................... (11.2)  
1
Lmax  
Vo  
: Maximum coasting distance .................................................................................................[mm][in]  
: Machine rapid feedrate......................................................................................... [mm/min][in/min]  
: Servo motor inertial moment.................................................................................[kg cm2][oz in2]  
: Load inertia moment converted into equivalent value on servo motor shaft.....[kg cm2][oz in2]  
: Brake time constant........................................................................................................................[s]  
M
J
L
J
te  
: Delay time of control section ..........................................................................................................[s]  
(There is internal relay delay time of about 30ms.)  
11 - 4  
11. CHARACTERISTICS  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
16  
14  
12  
23  
10  
8
6
73  
23  
053  
0.008  
0.006  
0.004  
0.002  
0
43  
73  
4
2
0
053  
43  
13  
13  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
0
500 1000 1500 2000 2500 3000  
Speed [r/min]  
a. HC-KFS series  
b. HC-MFS series  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
73  
43  
23  
13  
0
50  
500  
1000 1500 2000 2500 3000  
Speed [r/min]  
c. HC-UFS3000r/min series  
Fig. 11.4 Dynamic brake time constant  
Use the dynamic brake at the load inertia moment indicated in the following table. If the load inertia  
moment is higher than this value, the built-in dynamic brake may burn. If there is a possibility that the  
load inertia moment may exceed the value, contact Mitsubishi.  
Drive unit  
Load inertia moment ratio [times]  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
30  
11 - 5  
11. CHARACTERISTICS  
11.4 Encoder cable flexing life  
The flexing life of the cables is shown below. This graph calculated values. Since they are not guaranteed  
values, provide a little allowance for these values.  
1
5
108  
107  
a
1
5
107  
106  
a : Long flexing-life encoder cable  
MR-JCCBL M-H  
MR-JC4CBL M-H  
1
5
106  
105  
b : Standard encoder cable  
MR-JCCBL M-L  
1
5
105  
104  
1
5
104  
103  
b
1
103  
4
7
10  
20  
40  
70 100  
200  
Flexing radius [mm]  
11 - 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Before connecting any option or auxiliary equipment, make sure that the charge  
lamp is off more than 15 minutes after power-off, then confirm the voltage with a  
tester or the like. Otherwise, you may get an electric shock.  
WARNING  
CAUTION  
Use the specified auxiliary equipment and options. Unspecified ones may lead to a  
fault or fire.  
12.1 Options  
12.1.1 Regenerative brake options  
The specified combinations of regenerative brake options and base units may only  
be used. Otherwise, a fire may occur.  
CAUTION  
(1) Combinations and regenerative powers  
The power values in the table are resistor-generated powers and not rated powers.  
Regenerative power [W]  
Base unit  
MR-RB032  
[40  
MR-RB14  
[26  
MR-RB34  
[26  
MR-RB54  
[26  
]
]
]
]
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
30  
100  
300  
500  
(2) Selection of regenerative brake option  
(a) Simple judgment of regenerative brake option necessity  
The MELSERVO-J2M series does not contain a regenerative brake resistor. Check whether the  
regenerative brake option is needed or not in the following method.  
1) Requirements  
The drive units mounted to the same base unit are all horizontal axes.  
The operation pattern is clear and the load inertia moments of the axes to be decelerated  
simultaneously are clear.  
2) Checking method  
The following table gives the permissible load inertia moment that does not require the  
regenerative brake option when speed is reduced from 3000r/min.  
Drive unit  
Permissible Load Inertia Moment  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
2
1.42kg cm  
2
4.94kg cm  
Calculate the 3000r/min-equivalent inertia moment of each drive unit.  
(Load inertia moment equivalent for 3000r/min) (JL JM) (running speed/3000)2  
12 - 1  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Calculate the total of the 3000r/min-equivalent inertia moments of the axes to be decelerated  
simultaneously, and find the maximum total of 3000r/min-equivalent inertia moments.  
Also find the sum total of permissible load inertia moments of the drive units installed on the  
same base unit.  
(Maximum total of 3000r/min-equivalent inertia moments) (Sum total of permissible load  
inertia moments of drive units) 1.42  
Regenerative brake option is unnecessary.  
(Maximum total of 3000r/min-equivalent inertia moments) (Sum total of permissible load  
inertia moments of drive units) 1.42  
Regenerative brake option is necessary.  
3) Confirmation example  
In the following 8-axis system, the total 3000r/min-equivalent inertia moment is maximum  
(9.75kg cm2) at the timing of 7). The permissible inertia moment of this 8-axis system is  
11.36[kg cm2] as indicated by the following expression.  
8 [axes] 1.42[kg cm2] 11.36[kg cm2]  
Hence,  
(Maximum total of 3000r/min-equivalent load inertia moments 9.75) 11.36[kg cm2]  
The regenerative brake option is unnecessary.  
Speed  
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13)  
First slot  
Second slot  
Third slot  
Fourth slot  
Fifth slot  
Operation pattern  
Sixth slot  
Seventh slot  
Eighth slot  
Servo  
Load Inertia  
Total  
Running 3000r/min-  
Servo  
Motor  
Model  
Moment  
equivalent  
Total Inertia  
Moment  
kg cm2  
Motor  
inertia  
moment  
speed  
Axis  
No.  
Inertia  
Moment  
kg cm2  
(Servo motor  
shaft equivalent)  
kg cm2  
kg cm2  
r/min  
HC-KFS13  
HC-KFS23  
HC-KFS43  
HC-KFS13  
HC-MFS13  
HC-MFS23  
HC-KFS13  
HC-KFS43  
0.084  
0.42  
1.3  
2.1  
2.0  
0.8  
0.9  
2.5  
0.4  
5.83  
1.384  
2.52  
3000  
3000  
3000  
2500  
2500  
3000  
3300  
3000  
1.38  
2.52  
2.67  
0.61  
0.65  
2.59  
0.59  
6.5  
1.38  
2.52  
2.67  
1.38  
2.52  
2.67  
1.38  
2.52  
2.67  
First slot  
Second slot  
Third slot  
Fourth slot  
Fifth slot  
0.67  
2.67  
0.084  
0.03  
0.884  
0.93  
0.61  
0.65  
0.61  
0.65  
0.088  
0.084  
0.67  
2.588  
0.484  
6.5  
2.59  
0.59  
Sixth slot  
Seventh slot  
Eighth slot  
6.5  
6.5 6.57  
kg cm2  
3000r/min-equivalent total inertia moment  
6.57 1.26  
9.75  
1.26  
Simultaneous deceleration total inertia moment maximum value  
12 - 2  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) To make selection according to regenerative energy  
Use the following method when regeneration occurs continuously in vertical motion applications or  
when it is desired to make an in-depth selection of the regenerative brake option:  
1) Regenerative energy calculation  
Use the following table to calculate the regenerative energy.  
Formulas for calculating torque and energy in operation  
Regenerative power  
Torque applied to servo motor [N m]  
Energy [J]  
(JL JM)  
1
0.1047  
2
No  
No  
No  
No  
E1  
No  
T1 Tpsa1  
T1  
TF  
TF  
TU  
1)  
2)  
104  
Tpsa1  
9.55  
T2 TU TF  
E2 0.1047 No T2 t1  
0.1047  
(JL JM)  
1
E3  
No T3 Tpsd1  
T3  
TU  
3)  
104  
2
Tpsd1  
9.55  
4), 8)  
5)  
T4 TU  
E4 0 (No regeneration)  
0.1047  
(JL JM)  
1
E5  
No  
T5 Tpsa2  
T5  
TU TF  
104  
2
Tpsa2  
9.55  
T6 TU TF  
(JL JM)  
6)  
E6 0.1047 No T6 t3  
0.1047  
1
E7  
No  
T7 Tpsd2  
T7  
TU TF  
7)  
104  
2
Tpsd2  
9.55  
From the calculation results in 1) to 8), find the absolute value (Es) of the sum total of negative  
energies.  
2) Losses of servo motor and drive unit in regenerative mode  
The following table lists the efficiencies and other data of the servo motor and drive unit in the  
regenerative mode.  
Drive unit  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
Inverse efficiency [%]  
C charging [J]  
55  
70  
85  
80  
5.5  
18  
Using the following expression, find the total of C charging [J] of the MELSERVO-J2M.  
Number of drive unit axes 5.5J  
Then, find the energy at each timing in a single-cycle operation pattern. The energy is positive in  
the driving mode and negative in the regenerative mode. Enter signed driving/regenerative  
energy values into the following calculation table. The shaded areas indicate negative values.  
12 - 3  
12. OPTIONS AND AUXILIARY EQUIPMENT  
<Entry example>  
Timing  
First slot  
1)  
E1  
E1  
E1  
E4  
E4  
E1  
E1  
E1  
E 1)  
2)  
E2  
E2  
E2  
E4  
E4  
E2  
E2  
E2  
E 2)  
3)  
E3  
4)  
E4  
5)  
E1  
E1  
E5  
E3  
E4  
E4  
E4  
E4  
E 5)  
6)  
E2  
E2  
E6  
E4  
E1  
E4  
E4  
E4  
E 6)  
7)  
E3  
E3  
E7  
E4  
E2  
E1  
E1  
E1  
E 7)  
8)  
E4  
E4  
E8  
E4  
E3  
E2  
E2  
E2  
E 8)  
Second slot  
Third slot  
Fourth slot  
Fifth slot  
E3  
E4  
E3  
E4  
E1  
E2  
E4  
E4  
Sixth slot  
Seventh slot  
Eighth slot  
Total  
E2  
E3  
E2  
E3  
E2  
E3  
E 3)  
ES 3)  
ER  
E 4)  
ES 4)  
ER  
Regenerative ES  
|ES|-EC  
PR(W)  
ER/t  
f
Calculate the total of energies at each timing. Only when the total is negative (timings 3, 4 in  
the example), use the following expression for calculation.  
Energy total ER regenerative energy ES (absolute value) C charging total (EC)  
If the subtraction results are negative at all timings, the regenerative brake option is not  
needed. From the total of ER's whose subtraction results are positive and a single-cycle period,  
the power consumption of the regenerative brake option can be calculated with the following  
expression.  
Power consumption PR [W] (total of positive ER's)/1-cycle operation period (tf)  
12 - 4  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Connection of the regenerative brake option  
POINT  
When using the MR-RB54, cooling by a fan is required. Please obtain a  
cooling fan at your discretion.  
Set IFU parameter No.1 according to the option to be used. The regenerative brake option will  
generate heat of about 100  
. Fully examine heat dissipation, installation position, used cables,  
(212 )  
etc. before installing the option. For wiring, use flame-resistant cables and keep them clear of the  
regenerative brake option body. Always use twisted cables of max. 5m(16.4ft) length for connection  
with the base unit.  
The G3 and G4 terminals act as a thermal sensor. G3-G4 are disconnected when the regenerative  
brake option overheats abnormally.  
DRU parameter No.2  
Selection of regenerative  
0: Not used.  
2: MR-RB032  
5: MR-RB14  
6: MR-RB34  
7: MR-RB54  
Base unit  
Regenerative brake option  
CNP1A  
P
2
3
P
C
C
G3  
G4  
(Note)  
5m (16.4 ft) max.  
Note. Make up a sequence which will switch off the magnetic contactor (MC) when abnormal heating occurs.  
G3-G4 contact specifications  
Maximum voltage: 120V AC/DC  
Maximum current: 0.5V/4.8VDC  
Maximum capacity: 2.4VA  
12 - 5  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Outline drawing  
(a) MR-RB032 MR-RB14  
[Unit: mm (in)]  
LA  
6 (0.24) mounting hole  
LB  
MR-RB  
TE1  
Terminal block  
5 (0.20)  
G3  
G4  
P
G3  
G4  
TE1  
P
C
C
Terminal screw: M3  
Tightening torque:  
0.5 to 0.6 [N m](4 to 5 [lb in])  
Mounting screw  
1.6 (0.06)  
6 (0.23)  
Screw size: M5  
20  
(0.79)  
LD  
LC  
Tightening torque:  
3.2 [N m](28.32 [lb in])  
Variable dimensions  
LB LC  
Mass  
[kg] [lb]  
Regenerative  
brake option  
LA  
LD  
MR-RB032  
MR-RB14  
30 (1.18) 15 (0.59) 119 (4.69) 99 (3.9) 0.5 1.1  
40 (1.57) 15 (0.59) 169 (6.69) 149 (5.87) 1.1 2.4  
(b) MR-RB34  
[Unit: mm (in)]  
Terminal block  
P
Terminal screw: M4  
C
G3 Tightening torque: 1.2 [N m] (10.6 [lb in])  
G4  
7(0.28)  
318 (12.52)  
335 (13.19)  
17  
(0.67)  
90 (3.54)  
10 (0.39)  
Mounting screw  
100 (3.94)  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
Regenerative Brake Option  
Mass [kg(lb)]  
MR-RB34  
2.9 (6.393)  
12 - 6  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(c) MR-RB54  
[Unit: mm (in)]  
Terminal block  
P
Fan mounting screw  
(2-M3 screw)  
On opposite side  
82.5  
(3.25)  
49  
(1.93)  
C
Terminal screw: M4  
G3  
G4  
Tightening torque: 1.2 [N m](10.6 [lb in])  
7
14 slot  
Mounting screw  
Screw : M6  
Tightening torque: 5.4 [N m](47.79 [lb in])  
Wind blows in the  
arrow direction.  
7 (0.28)  
2.3  
(0.09)  
Approx.30 (1.18)  
17 (0.67)  
200 (7.87)  
223 (8.78)  
108 (4.25)  
120 (4.73)  
12  
(0.47)  
8 (0.32)  
Regenerative Brake Option  
Mass [kg(lb)]  
MR-RB54  
5.6 (12.346)  
12 - 7  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.2 Cables and connectors  
(1) Cable make-up  
The following cables are used for connection with the servo motor and other models.  
The broken line areas in the diagram are not options.  
5)  
5)  
Operation  
panel  
Operation  
panel  
16)  
Programmable  
controller  
Programmable  
controller  
14)  
Battery unit  
MR-J2M-BT  
Inhancin IO unit  
MR-J2M-D01  
BU  
IFU  
DRU  
DRU  
CN1C  
CNP1A CNP1B  
CN4A  
To regenerative  
brake option  
CN1A CN1B  
To control circuit  
power supply  
CN2  
CN2  
12)  
CN3  
CN4B  
To main circuit  
power supply  
CN5 CN3  
CON5  
13)  
CNP2  
CNP2  
Supplied with interface unit  
17)  
10)  
9) 10)  
HC-KFS  
HC-MFS  
HC-UFS 3000r/min  
15)  
Programmable  
controller  
1) 2) 3)  
Personal  
computer  
7)  
4)  
8)  
6)  
12 - 8  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Housing: 1-172161-9  
Pin: 170359-1  
Application  
1) Standard encoder MR-JCCBL M-L  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Standard  
cable  
Refer to (2) (a) in  
this section.  
flexing life  
(Tyco Electronics or equivalent) IP20  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
2) Long flexing life MR-JCCBL M-H  
Long flexing  
encoder cable  
Refer to (2) (a) in  
this section.  
life  
IP20  
3)  
MR-JC4CBL M-H  
Refer to (2) (b) in  
this section.  
4 line type  
Long flexing  
life  
IP20  
4) Encoder  
connector set  
MR-J2CNM  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
Housing: 1-172161-9  
Pin: 170359-1  
IP20  
(Tyco Electronics or equivalent)  
Cable clamp: MTI-0002  
(Toa Electric Industry)  
5) Connector set  
6) Bus cable  
MR-J2MCN1  
Connector: 10150-3000VE  
Shell kit: 10350-52F0-008  
(3M or equivalent)  
Qty: 2 each  
MR-J2HBUS M  
Refer to section  
12.1.4 (4).  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
7) Maintenance  
junction card  
MR-J2CN3TM  
Refer to Section 12.1.4.  
8) Communication MR-CPCATCBL3M Connector: DE-9SF-N  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
(3M or equivalent)  
For  
cable  
Refer to (3) in this Case: DE-C1-J6-S6  
connection  
with PC-AT-  
compatible  
personal  
computer  
IP20  
section.  
(Japan Aviation Electronics)  
9) Power supply  
connector set  
MR-PWCNK1  
MR-PWCNK2  
Plug: 5559-04P-210  
Terminal: 5558PBT3L (For AWG16)(6 pcs.)  
(Molex)  
10) Power supply  
connector set  
Plug: 5559-06P-210  
For motor  
with brake  
IP20  
Terminal: 5558PBT3L (For AWG16)(8 pcs.)  
(Molex)  
12 - 9  
12. OPTIONS AND AUXILIARY EQUIPMENT  
No.  
Product  
Model  
Description  
Application  
11) Power supply  
connector  
MR-PWCNK3  
Plug: 5557-04R-210  
Servo motor  
power cable  
Terminal: 5556PBT3L (for AWG16) (6 pcs.)  
(Molex)  
12) Base unit  
connector set  
MR-J2MCNM  
Housing: 2-178128-3 (5 pcs.)  
Contact: 917511-2 (max. sheath OD 2.8 [mm]  
For CNP1B  
For CNP1A  
For CNP3  
Y
X
(
0.11[in]) 15 pcs.)  
(Tyco Electronics)  
Housing: 1-178128-3 (5 pcs.)  
Contact: 917511-2 (max. sheath OD 2.8 [mm]  
(
0.11[in]) 15 pcs.)  
(Tyco Electronics)  
Housing: 1-179958-3 (5 pcs.)  
Contact: 316041-2 (20 pcs.)  
(Tyco Electronics)  
13) Battery cable  
MR-J2MBTCBL M Housing: 51030-0230  
Terminal: 50083-8160  
(molex)  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
(3M or equivalent)  
14) Junction terminal MR-J2M-CN1TBL M Junction terminal block connector  
Interface unit connector  
(3M or equivalent)  
For MR-TB50  
For MR-TB20  
block cable  
Cable length  
(3M)  
0.5, 1m D7950-B500FL (connector)  
10150-6000EL(connector)  
10350-3210-000(shell kit)  
(1.64, 3.28ft)  
15)  
MR-J2TBL M-1A Junction terminal block connector  
Interface unit connector  
(3M or equivalent)  
Cable length  
(3M)  
0.5, 1m D7920-B500FL (connector)  
10120-6000EL(connector)  
10320-52F0-F08-M1A(shell kit)  
(1.64, 3.28ft)  
16) Junction terminal MR-TB50  
17) MR-TB20  
Refer to Section 12.1.3  
Refer to Section 12.1.4  
12 - 10  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Encoder cable  
If you have fabricated the encoder cable, connect it correctly.  
CAUTION  
Otherwise, misoperation or explosion may occur.  
POINT  
The encoder cable is not oil resistant.  
Refer to Section 11.4 for the flexing life of the encoder cable.  
When the encoder cable is used, the sum of the resistance values of the  
cable used for P5 and the cable used for LG should be within 2.4 .  
When soldering the wire to the connector pin, insulate and protect the  
connection portion using heat-shrinkable tubing.  
Generally use the encoder cable available as our options. If the required length is not found in the  
options, fabricate the cable on the customer side.  
(a) MR-JCCBL M-L/H  
1) Model explanation  
Model: MR-JCCBL M-  
Symbol  
Specifications  
Standard flexing life  
Long flexing life  
L
H
Symbol  
Cable length [m(ft)]  
2
5
2 (6.56)  
5 (16.4)  
10  
20  
10 (32.8)  
20 (65.6)  
2) Connection diagram  
The signal assignment of the encoder connector is as viewed from the pin side. For the pin  
assignment on the drive unit side, refer to Section 3.5.3  
Encoder cable  
supplied to servo motor  
Drive unit  
Encoder connector  
Encoder connector  
1-172169-9  
(Tyco Electronics)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR  
Less than 30m(98ft)  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
12 - 11  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JCCBL10M-L  
MR-JCCBL20M-L  
MR-JCCBL10M-H  
MR-JCCBL20M-H  
MR-JCCBL2M-L  
MR-JCCBL5M-L  
MR-JCCBL2M-H  
MR-JCCBL5M-H  
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
Drive unit side  
Encoder side  
7
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
P5  
LG  
P5  
LG  
P5  
LG  
19  
11  
20  
12  
18  
2
8
1
2
4
5
3
8
1
2
4
5
3
8
1
2
4
5
3
MR  
7
MR  
7
MR  
7
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
MRR 17  
MD  
MDR 16  
6
6
6
BAT  
LG  
9
1
BAT  
LG  
9
1
BAT  
LG  
9
1
(Note)  
(Note)  
(Note)  
Plate  
Plate  
Plate  
SD  
9
SD  
9
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of less than 30m(98ft) length including the length of the encoder cable supplied to the servo  
motor.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG22  
Drive unit side  
(3M)  
Encoder side  
19  
11  
20  
12  
18  
2
7
P5  
LG  
P5  
LG  
P5  
LG  
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 12  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) MR-JC4CBL M-H  
POINT  
When using this encoder cable, set "1  
" in DRU parameter No. 20.  
1) Model explanation  
Model: MR-JC4CBL M- H  
Long flexing life  
Symbol  
Cable length [m(ft)]  
30  
40  
50  
30 (98.4)  
40 (131.2)  
50 (164.0)  
2) Connection diagram  
The signal assignment of the encoder connector is as viewed from the pin side. For the pin  
assignment on the drive unit side, refer to Section 3.5.3.  
Encoder cable  
supplied to servo motor  
Drive unit  
Encoder connector  
Encoder connector  
1-172169-9  
(Tyco Electronics)  
Servo motor  
Encoder  
Encoder cable  
(option or fabricated)  
1
2
3
MR MRR BAT  
CN2  
4
5
6
MD MDR CNT  
50m(164ft) max.  
30cm  
(0.98ft)  
7
8
9
P5  
LG SHD  
12 - 13  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MR-JC4CBL30M-H  
to  
MR-JC4CBL50M-H  
Drive unit side  
Encoder side  
7
P5  
19  
11  
20  
12  
18  
2
LG  
P5  
LG  
P5  
LG  
8
1
2
4
5
3
MR  
7
MRR 17  
MD  
MDR 16  
6
BAT  
LG  
9
1
(Note)  
Plate  
SD  
9
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
When fabricating an encoder cable, use the recommended wires given in Section 12.2.1 and the  
MR-J2CNM connector set for encoder cable fabrication, and fabricate an encoder cable as shown  
in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder  
cable of up to 50m(164.0ft) length.  
When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not  
required.  
Refer to Chapter 3 of the servo motor instruction manual and choose the encode side connector  
according to the servo motor installation environment.  
For use of AWG22  
Drive unit side  
(3M)  
Encoder side  
19  
11  
20  
12  
18  
2
7
P5  
LG  
P5  
LG  
P5  
LG  
6
8
1
2
7
MR  
17  
MRR  
9
1
3
BAT  
LG  
(Note)  
9
Plate  
SD  
Note. Always make connection for use in an absolute position detection system.  
This wiring is not needed for use in an incremental system.  
12 - 14  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(3) Communication cable  
POINT  
This cable may not be used with some personal computers. After fully  
examining the signals of the RS-232C connector, refer to this section and  
fabricate the cable.  
(a) Model definition  
Model : MR-CPCATCBL3M  
Cable length 3[m](10[ft])  
(b) Connection diagram  
MR-CPCATCBL3M  
Personal computer side  
Interface unit side  
Plate FG  
TXD  
3
2
1
RXD  
LG  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
12  
11  
TXD  
LG  
D-SUB9 pins  
Half-pitch 20 pins  
When fabricating the cable, refer to the connection diagram in this section.  
The following must be observed in fabrication:  
1) Always use a shielded, multi-core cable and connect the shield with FG securely.  
2) The optional communication cable is 3m(10ft) long. When the cable is fabricated, its maximum  
length is 15m(49ft) in offices of good environment with minimal noise.  
12 - 15  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Battery cable  
When fabricating, use the recommended wire given in Section 12.2.1 and fabricate as in the  
connection diagram shown in this section.  
(a) Definition of model  
Model: MR-J2MBTCBL M  
Symbol Cable Length L [m(ft)]  
03  
1
0.3 (0.1)  
1 (3.28)  
(b) Outline drawing  
L
(c) Connection diagram  
Base unit side  
Battery unit side  
Housing: 51030-0230  
Terminal: 50083-8160  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
LG  
1
2
1
LG  
BAT  
BAT  
SD  
9
Plate  
12 - 16  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.3 Junction terminal block (MR-TB50)  
(1) How to use the junction terminal block  
Always use the junction terminal block (MR-TB50) with the junction terminal block cable (MR-J2M-  
CN1TBL M) as a set. A connection example is shown below:  
Interface unit  
Junction terminal block  
MR-TB50  
CN1A  
or  
CN1B  
Junction terminal  
block cable  
(MR-J2M-CN1TBL M)  
Ground the junction terminal block cable on the junction terminal block side with the standard  
accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section  
12.2.6, (2)(c).  
(2) Terminal labels  
Use the following junction terminal block labels.  
(a) For CN1A  
ALM  
_A  
OP_  
VIN  
SG  
RES2  
PP4  
NG2 NG1  
P5  
SON4 CR3  
RD1  
PP3 PP2 PP1 LG OP3 OP1  
CR4 RES3 RD2 INP1SON1 NG4 NG3  
INP4  
OP_  
COM  
OPC RES4  
INP2 SON2  
NP4 NP3 NP2 NP1 OP4 OP2 VIN RD4 INP3 SON3CR2  
RES1  
PG4 PG3 PG2 PG1 LG  
RD3  
CR1  
(b) For CN1B  
ALM  
_B  
OP_  
VIN  
SON5  
SG INP8 SON8 CR7 RES6 RD5 PP8 PP7 PP6 PP5 LG OP7 OP5  
CR8RES7 RD6 INP5  
NG8 NG7 NG6 NG5  
P5  
OP_  
COM  
OPC  
INP6  
NP8 NP7 NP6 NP5 OP8 OP6 VIN RD8  
CR6 RES5 PG8 PG7 PG6 PG5  
LG  
RES8 RD7  
SON6  
CR5  
INP7 SON7  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
235(9.25)  
2- 4.5(0.18)  
2
1
50  
49  
MITSUBISHI  
MR-TB50  
244(9.61)  
46.5(1.83)  
Terminal screw: M3.5  
Applicable cable: 2mm2  
Crimping terminal width: 7.2mm (0.283 in) max.  
12 - 17  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Junction terminal block cable (MR-J2M-CN1TBL  
M)  
(a) Model explanation  
Model: MR-J2M-CN1TBL  
M
Symbol Cable length[m(ft)]  
05  
1
0.5 (1.64)  
1 (3.28)  
(b) Connection diagram  
PCR-S50FS(Servo amplifier side)  
JE1S-501(Junction terminal side)  
Pin No.  
Symbol  
Pin No.  
CN1A CN1B  
SG  
SG  
1
2
3
4
5
6
7
8
9
1
OPC OPC  
INP4 INP8  
RES4 RES8  
SON4 SON8  
2
3
4
5
6
7
8
9
RD3  
CR3  
INP2 INP6  
RES2 RES6  
RD7  
CR7  
SON2 SON6 10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
RD1  
CR1  
PP4  
NP4  
PP3  
NP3  
PP2  
NP2  
PP1  
NP1  
LG  
RD5  
CR5  
PP8  
NP8  
PP7  
NP7  
PP6  
NP6  
PP5  
NP5  
LG  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
OP4  
OP3  
OP2  
OP8  
OP7  
OP6  
OP1  
VIN  
OP5  
VIN  
ALM_A  
ALM_B  
RD4  
CR4  
INP3 INP7  
RES3 RES7 31  
SON3 SON7 32  
RD2  
CR2  
INP1 INP5  
RES1 RES5 36  
SON1 SON5 37  
RD8  
CR8  
RD6  
CR6  
33  
34  
35  
PG4  
NG4  
PG3  
NG3  
PG2  
NG2  
PG1  
NG1  
LG  
PG8  
NG8  
PG7  
NG7  
PG6  
NG6  
PG5  
NG5  
LG  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
OP_VIN OP_VIN  
OP_COM OP_COM  
P5  
LG  
SD  
P5  
LG  
SD  
49  
50  
plate  
12 - 18  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.4 Junction terminal block (MR-TB20)  
(1) How to use the junction terminal block  
Always use the junction terminal block (MR-TB20) with the junction terminal block cable (MR-  
J2TBL M-1A) as a set. A connection example is shown below:  
Servo amplifier  
Junction terminal block  
Cable clamp  
MR-TB20  
(AERSBAN-ESET)  
CN5  
Junction terminal  
block cable  
(MR-J2TBL M-1A)  
Ground the junction terminal block cable on the junction terminal block side with the standard  
accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section  
13.2.6, (2)(c).  
(2) Terminal labels  
Use the following junction terminal block label designed for CN5. When changing the input signals in  
parameters No. 43 to 48, refer to (4) in this section and Section 3.2.1 and apply the accessory signal  
seals to the labels.  
LSN1 LSN2 LSN3 SG LSP5  
LSP7 LSP8 EMG_B SD  
LSP6  
LSP1 LSP2 LSP3 LSP4 LSN4 LSN5 LSN6 LSN7 LSN8 EMG_A  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
126(4.96)  
117(4.61)  
MITSUBISHI  
MR-TB20  
10  
19  
0
9
2- 4.5(0.18)  
Terminal screw: M3.5  
Applicable cable: Max. 2mm2  
(Crimping terminal width: 7.2mm (0.283 in) max.)  
12 - 19  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Junction terminal block cable (MR-J2TBL  
M-1A)  
(a) Model explanation  
Model: MR-J2TBL M-1A  
Symbol Cable length[m(ft)]  
05  
1
0.5 (1.64)  
1 (3.28)  
(b) Connection diagram  
Junction terminal block side connector(3M)  
D7920-B500FL(Connector)  
Servo amplifierside(CN5)connector(3M)  
10120-6000EL(Connector)  
10320-52F0-R08-M1A(Shell kit)  
Junction  
Symbol  
Pin No.  
Pin No.  
Terminal  
CN5  
Block No.  
LSP1  
LSN1  
LSP2  
LSN2  
LSP3  
LSN3  
LSP4  
0
10  
1
11  
2
12  
3
13  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9
SG  
8
LSN4  
4
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
plate  
LSP5  
LSN5  
LSP6  
LSN6  
LSP7  
LSN7  
LSP8  
LSN8  
EMG_B  
14  
5
15  
6
16  
7
17  
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
18  
9
19  
EMG_A  
SD  
12 - 20  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.5 Maintenance junction card (MR-J2CN3TM)  
(1) Usage  
The maintenance junction card (MR-J2CN3TM) is designed for use when a personal computer and  
analog monitor are used at the same time.  
Interface unit  
Maintenance junction card (MR-J2CN3TM)  
Communication cable  
Bus cable  
MR-J2HBUS  
M
CN3B  
CN3A  
A1 A2 A3 A4 B4 B3 B2 B1 B5 B6 A5 A6  
CN3  
CN3C  
TRE RDP P5 SDN LG  
Not used.  
LG PE  
LG LG MO1  
MO2  
Analog monitor 2  
Analog monitor 1  
(2) Connection diagram  
TE1  
B5  
B6  
A5  
A6  
LG  
LG  
CN3A  
1
CN3B  
CN3C  
1
LG  
RXD  
LG  
MO1  
RDP  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
MO1  
MO2  
2
3
4
5
6
7
8
9
3
4
5
MO3  
SDP  
9
9
10  
A1  
A2  
A3  
A4  
B4  
B3  
B2  
B1  
TRE 10  
LG 11  
TXD 12  
13  
MO2 14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TRE  
RDP  
13  
14  
15  
LG  
P5  
15  
16  
17  
SDN  
Not used.  
LG  
18  
19  
20  
SDN 19  
P5  
20  
LG  
PE  
Shell  
Shell  
Shell  
(3) Outline drawing  
[Unit: mm]  
([Unit: in.])  
CN3A  
CN3B  
CN3C  
2- 5.3(0.21)(mounting hole)  
A1  
B1  
A6  
B6  
TE1  
3 (0.12)  
41.5 (1.63)  
88 (3.47)  
100 (3.94)  
Mass: 110g (0.24lb)  
12 - 21  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(4) Bus cable (MR-J2HBUS M)  
(a) Model explanation  
Model: MR-J2HBUS  
M
Symbol  
Cable length [m(ft)]  
05  
1
5
0.5 (1.64)  
1 (3.28)  
5 (16.4)  
(b) Connection diagram  
MR-J2HBUS05M  
MR-J2HBUS1M  
MR-J2HBUS5M  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
10120-6000EL (connector)  
10320-3210-000 (shell kit)  
1
1
11  
2
11  
2
12  
3
12  
3
13  
4
13  
4
14  
5
14  
5
15  
6
15  
6
16  
7
16  
7
17  
8
17  
8
18  
9
18  
9
19  
10  
20  
19  
10  
20  
Plate  
Plate  
12 - 22  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.1.6 MR Configurator (servo configurations software)  
POINT  
Required to assign devices to the pins of CN4A and CN4B of the MR-  
J2M-D01 extension IO unit.  
The MR Configurator (servo configuration software) uses the communication function of the interface unit  
to perform parameter setting changes, graph display, test operation, etc. on a personal computer.  
(1) Specifications  
Item  
Description  
Communication signal Conforms to RS-232C.  
Baudrate [bps]  
System  
57600, 38400, 19200, 9600  
Station selection, automatic demo  
Display, high speed monitor, trend graph  
Minimum resolution changes with the processing speed of the personal computer.  
Display, history, amplifier data  
Monitor  
Alarm  
Digital I/O, function device display no motor rotation, total power-on time, amplifier version info,  
motor information, tuning data, absolute encoder data, Axis name setting, unit composition  
listing.  
Diagnostic  
Parameters  
Test operation  
Advanced function  
File operation  
Others  
Turning, change list, detailed information, IFU parameter, DRU parameter, device setting.  
Jog operation, positioning operation, operation w/o motor, forced output, demo mode.  
Machine analyzer, gain search, machine simulation.  
Data read, save, print  
Automatic demo, help display  
(2) System configuration  
(a) Components  
To use this software, the following components are required in addition to MELSERVO-J2M and  
servo motor:  
Model  
(Note 1) Description  
IBM PC-AT compatible where the English version of Windows® 95, Windows® 98, Windows® Me,  
Windows NT® Workstation 4.0 or Windows® 2000 Professional operates  
Processor: Pentium® 133MHz or more (Windows® 95, Windows® 98, Windows NT® Workstation 4.0,  
Windows® 2000 Professional)  
(Note 2)  
Personal computer  
Pentium® 150MHz or more (Windows® Me)  
Memory: 16MB or more (Windows® 95), 24MB or more (Windows® 98)  
32MB or more (Windows® Me, Windows NT® Workstation 4.0, Windows® 2000 Professional)  
Free hard disk space: 60MB or more  
Serial port used  
Windows® 95, Windows® 98, Windows® Me, Windows NT® Workstation 4.0, Windows® 2000  
Professional (English version)  
OS  
One whose resolution is 800 600 or more and that can provide a high color (16 bit) display.  
Connectable with the above personal computer.  
Display  
Keyboard  
Mouse  
Printer  
Connectable with the above personal computer.  
Connectable with the above personal computer. Note that a serial mouse is not used.  
Connectable with the above personal computer.  
MR-CPCATCBL3M  
When this cannot be used, refer to (3) Section 12.1.2 and fabricate.  
Communication cable  
Note 1. Windows and Windows NT are the registered trademarks of Microsoft Corporation in the United State and other countries.  
Pentium is the registered trademarks of Intel Corporation.  
2. On some personal computers, this software may not run properly.  
(b) Configuration diagram  
BU  
Personal computer  
DRU (First slot)  
CN2  
IFU  
CN3  
Communication cable  
Servo motor  
To RS-232C  
connector  
DRU (Eighth slot)  
CN2  
Servo motor  
12 - 23  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2 Auxiliary equipment  
Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-  
UL (CSA) Standard, use the products which conform to the corresponding standard.  
12.2.1 Recommended wires  
(1) Wires for power supply wiring  
The following diagram shows the wires used for wiring. Use the wires given in this section or  
equivalent.  
1) Main circuit power supply lead  
3) Motor power supply lead  
Base unit  
Drive unit  
Servo motor  
Power supply  
L1  
U
V
U
V
L2  
L3  
Motor  
W
W
(Earth)  
L11  
5) Electromagnetic  
brake lead  
L21  
2) Control circuit power supply lead  
Regenerative brake option  
Electro-  
magnetic  
brake  
B1  
B2  
CN2  
C
P
Encoder  
Encoder cable (refer to Section 12.1.2(2))  
4) Regenerative brake option lead  
The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the  
wiring distance is 30m(98.4ft) max. If the wiring distance is over 30m(98.4ft), choose the wire size in  
consideration of voltage drop.  
The servo motor side connection method depends on the type and capacity of the servo motor. Refer to  
Section 3.5.3.  
To comply with the UL/C-UL (CSA) Standard, use UL-recognized copper wires rated at 60 (140 ) or  
more for wiring.  
Table 12.1 Recommended wires  
2
Wires [mm ]  
Unit  
1) L1 L2 L3  
2 (AWG14)  
2) L11 L21  
3) U  
V
W
4) P  
C
5) B1 B2  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
MR-J2M-10DU  
MR-J2M-20DU  
MR-J2M-40DU  
MR-J2M-70DU  
3.5 (AWG12)  
5.5 (AWG10)  
2 (AWG14)  
2 (AWG14)  
1.25 (AWG16)  
1.25 (AWG16)  
12 - 24  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(2) Wires for cables  
When fabricating a cable, use the wire models given in the following table or equivalent:  
Table 12.2 Wires for option cables  
Characteristics of one core  
(Note 3)  
Finishing  
OD [mm]  
Length  
[m(ft)]  
Core size Number  
Type  
Model  
Wire model  
Structure  
Conductor  
Insulation coating  
[mm2]  
of Cores  
[Wires/mm] resistance[ /mm] ODd[mm] (Note 1)  
2 to 10  
(6.56 to 32.8)  
20 30  
12  
(6 pairs)  
12  
(6 pairs)  
12  
(6 pairs)  
14  
(7 pairs)  
14  
(7 pairs)  
6
UL20276 AWG#28  
6pair (BLACK)  
UL20276 AWG#22  
6pair (BLACK)  
(Note 2)  
A14B2343 6P  
(Note 2)  
A14B0238 7P  
(Note 2)  
0.08  
0.3  
7/0.127  
12/0.18  
40/0.08  
40/0.08  
40/0.08  
7/0.127  
222  
62  
0.38  
1.2  
5.6  
8.2  
7.2  
8.0  
8.0  
4.6  
MR-JCCBL M-L  
(65.6 98.4)  
2 5  
(6.56 16.4)  
10 to 20  
(32.8 to 65.6)  
30 to 50  
Encoder cable  
0.2  
105  
105  
105  
222  
0.88  
0.88  
0.88  
0.38  
MR-JCCBL M-H  
0.2  
MR-JC4CBL M-H  
MR-CPCATCBL3M  
0.2  
(98.4 to 164)  
A14B0238 7P  
UL20276 AWG#28  
3pair (BLACK)  
Communication  
cable  
3 (9.84)  
0.08  
(3 pairs)  
0.5 to 5  
(1.64 to 16.4)  
20  
(10 pairs)  
UL20276 AWG#28  
10pair (CREAM)  
Bus cable  
MR-J2HBUS  
M
0.08  
0.3  
7/0.127  
12/0.18  
222  
63  
0.38  
1.5  
6.1  
5.1  
Battery unit  
cable  
0.3 1  
(0.98 3.28)  
2
2
MR-J2MBATCBL  
M
MVVS IP 0.3mm  
(1 pairs)  
Note 1. d is as shown below:  
d
Conductor Insulation sheath  
2. Purchased from Toa Electric Industry  
3. Standard OD. Max. OD is about 10% greater.  
12 - 25  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.2 No-fuse breakers, fuses, magnetic contactors  
Always use one no-fuse breaker and one magnetic contactor with one drive unit. Make selection as  
indicated below according to the total output value of the servo motors connected to one base unit. When  
using a fuse instead of the no-fuse breaker, use the one having the specifications given in this section.  
(1) No-fuse breaker  
Servo motor output total  
550W max.  
No-fuse breaker  
30A frame 5A  
30A frame 10A  
30A frame 15A  
30A frame 20A  
30A frame 30A  
Rated current [A]  
5
More than 550W to 1100W max.  
More than 1100W to 1650W max.  
More than 1650W to 2200W max.  
More than 2200W to 3300W max.  
10  
15  
20  
30  
(2) Fuse  
Fuse  
Servo motor output total  
Class  
K5  
Current [A]  
Voltage [V]  
AC250  
AC250  
AC250  
AC250  
AC250  
800W max.  
15  
20  
30  
40  
70  
More than 800W to 1100W max.  
More than 1100W to 1650W max.  
More than 1650W to 2200W max.  
More than 2200W to 3300W max.  
K5  
K5  
K5  
K5  
(3) Magnetic contactor  
Servo motor output total  
1700W max.  
Magnetic contactor  
S-N10  
More than 1700W to 2800W max.  
More than 2800W to 3300W max.  
S-N18  
S-N20  
12 - 26  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.3 Power factor improving reactors  
The input power factor is improved to be about 90%. Make selection as described below according to the  
sum of the outputs of the servo motors connected to one base unit.  
[Unit : mm]  
([Unit : in])  
Base unit  
MR-J2M-BU  
NFB  
MC  
FR-BAL  
R
S
T
X
L1  
L2  
L3  
Y
Z
3-phase  
200 to 230VAC  
Base unit  
MR-J2M-BU  
W
D1  
NFB  
Installation screw  
MC  
FR-BAL  
X
(Note)  
1-plase  
200 to 230VAC  
R
S
T
L1  
L2  
L3  
Y
Z
RXSYT Z  
W1  
C
Note. Connect a 1-phase 200 to 230VAC power supply to L1/L2 and keep L3 open.  
Dimensions [mm (in) ]  
Servo motor  
output total  
Mounting Terminal  
screw size screw size  
Mass  
Model  
[kg (lb)]  
W
W1  
H
D
D1  
C
0
0
300W max.  
FR-BAL-0.4K 135 (5.31) 120 (4.72) 115 (4.53) 59 (2.32) 45 2.5(1.77  
)
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
7.5 (0.29)  
10 (0.39)  
10 (0.39)  
10 (0.39)  
M4  
M4  
M4  
M4  
M5  
M5  
M5  
M3.5  
M3.5  
M3.5  
M3.5  
M4  
2.0 (4.4)  
2.8 (6.17)  
3.7 (8.16)  
5.6 (12.35)  
8.5 (18.74)  
9.5 (20.94)  
14.5 (32.0)  
0.098  
More than 300W to  
450W max.  
0
0
FR-BAL-0.75K 135 (5.31) 120 (4.72) 115 (4.53) 69 (2.72) 57 2.5(2.24  
)
)
)
)
)
)
0.098  
More than 450W to  
750W max.  
0
0
FR-BAL-1.5K 160 (6.30) 145 (5.71) 140 (5.51) 71 (2.79) 55 2.5(2.17  
0.098  
More than 750W to  
1100W max.  
0
0
75 2.5(2.95  
FR-BAL-2.2K 160 (6.30) 145 (5.71) 140 (5.51) 91 (3.58)  
FR-BAL-3.7K 220 (8.66) 200 (7.87) 192 (7.56) 90 (3.54)  
0.098  
More than 1100W to  
1900W max.  
0
0
70 2.5(2.76  
0.098  
More than 1900W to  
2500W max.  
0
0
FR-BAL-5.5K 220 (8.66) 200 (7.87) 192 (7.56) 96 (3.78) 75 2.5(2.95  
M4  
0.098  
More than 2500W to  
3800W max.  
0
0
FR-BAL-7.5K 220 (8.66) 200 (7.87) 194 (7.64) 120 (4.72) 100 2.5(3.94  
M5  
0.098  
12 - 27  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.4 Relays  
The following relays should be used with the interfaces:  
Interface  
Selection example  
Relay used for digital input signals (interface DI-1)  
To prevent defective contacts , use a relay for small signal  
(twin contacts).  
(Ex.) Omron : type G2A , MY  
Relay used for digital output signals (interface DO-1)  
Small relay with 12VDC or 24VDC of 40mA or less  
(Ex.) Omron : type MY  
12.2.5 Surge absorbers  
A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent.  
Insulate the wiring as shown in the diagram.  
Maximum rating  
Static  
capacity  
(reference  
value)  
Maximum  
Varistor voltage  
Permissible circuit  
voltage  
Surge  
Energy  
Rated  
power  
limit voltage  
rating (range) V1mA  
immunity  
immunity  
AC[Vma]  
140  
DC[V]  
180  
[A]  
[J]  
5
[W]  
0.4  
[A]  
25  
[V]  
[pF]  
[V]  
220  
(Note)  
360  
300  
500/time  
(198 to 242)  
Note. 1 time  
8
20 s  
(Example) ERZV10D221 (Matsushita Electric Industry)  
TNR-10V221K (Nippon Chemi-con)  
Outline drawing [mm] ( [in] ) (ERZ-C10DK221)  
13.5 (0.53)  
4.7 1.0 (0.19 0.04)  
Vinyl tube  
Crimping terminal  
for M4 screw  
0.8 (0.03)  
12.2.6 Noise reduction techniques  
Noises are classified into external noises which enter MELSERVO-J2M to cause it to malfunction and  
those radiated by MELSERVO-J2M to cause peripheral devices to malfunction. Since MELSERVO-J2M  
is an electronic device which handles small signals, the following general noise reduction techniques are  
required.  
Also, the drive unit can be a source of noise as its outputs are chopped by high carrier frequencies. If  
peripheral devices malfunction due to noises produced by the drive unit, noise suppression measures  
must be taken. The measures will vary slightly with the routes of noise transmission.  
(1) Noise reduction techniques  
(a) General reduction techniques  
Avoid laying power lines (input cables) and signal cables side by side or do not bundle them  
together. Separate power lines from signal cables.  
Use shielded, twisted pair cables for connection with the encoder and for control signal  
transmission, and connect the shield to the SD terminal.  
Ground the base unit, servo motor, etc. together at one point (refer to Section 3.8).  
12 - 28  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Reduction techniques for external noises that cause MELSERVO-J2M to malfunction  
If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many  
relays which make a large amount of noise) near MELSERVO-J2M and MELSERVO-J2M may  
malfunction, the following countermeasures are required.  
Provide surge absorbers on the noise sources to suppress noises.  
Attach data line filters to the signal cables.  
Ground the shields of the encoder connecting cable and the control signal cables with cable clamp  
fittings.  
(c) Techniques for noises radiated by MELSERVO-J2M that cause peripheral devices to malfunction  
Noises produced by MELSERVO-J2M are classified into those radiated from the cables connected  
to MELSERVO-J2M and its main circuits (input and output circuits), those induced  
electromagnetically or statically by the signal cables of the peripheral devices located near the  
main circuit cables, and those transmitted through the power supply cables.  
Noises produced  
by MELSERVO-J2M  
Noise radiated directly  
from MELSERVO-J2M  
Noises transmitted  
in the air  
Route 1)  
Route 2)  
Route 3)  
Noise radiated from the  
power supply cable  
Noise radiated from  
servo motor cable  
Magnetic induction  
noise  
Routes 4) and 5)  
Static induction  
noise  
Route 6)  
Noises transmitted  
through electric  
channels  
Noise transmitted through  
power supply cable  
Route 7)  
Route 8)  
Noise sneaking from  
grounding cable due to  
leakage current  
5)  
7)  
7)  
2)  
7)  
Sensor  
power  
supply  
1)  
MELSERVO-  
J2M  
2)  
Instrument  
Receiver  
3)  
8)  
6)  
Sensor  
4)  
3)  
Servo motor  
M
12 - 29  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Noise transmission route  
Suppression techniques  
When measuring instruments, receivers, sensors, etc. which handle weak signals and may  
malfunction due to noise and/or their signal cables are contained in a control box together with the  
MELSERVO-J2M or run near MELSERVO-J2M, such devices may malfunction due to noises  
transmitted through the air. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and MELSERVO-J2M.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of  
MELSERVO-J2M.  
1) 2) 3)  
3. Avoid laying the power lines (I/O cables of MELSERVO-J2M) and signal cables side by side or  
bundling them together.  
4. Insert a line noise filter to the I/O cables or a radio noise filter on the input line.  
5. Use shielded wires for signal and power cables or put cables in separate metal conduits.  
When the power lines and the signal cables are laid side by side or bundled together, magnetic  
induction noise and static induction noise will be transmitted through the signal cables and  
malfunction may occur. The following techniques are required.  
1. Provide maximum clearance between easily affected devices and MELSERVO-J2M.  
2. Provide maximum clearance between easily affected signal cables and the I/O cables of  
MELSERVO-J2M.  
4) 5) 6)  
3. Avoid laying the power lines (I/O cables of MELSERVO-J2M) and signal cables side by side or  
bundling them together.  
4. Use shielded wires for signal and power cables or put the cables in separate metal conduits.  
When the power supply of peripheral devices is connected to the power supply of MELSERVO-J2M  
system, noises produced by MELSERVO-J2M may be transmitted back through the power supply  
cable and the devices may malfunction. The following techniques are required.  
1. Insert the radio noise filter (FR-BIF) on the power cables (input cables) of MELSERVO-J2M.  
2. Insert the line noise filter (FR-BSF01 FR-BLF) on the power cables of MELSERVO-J2M.  
When the cables of peripheral devices are connected to MELSERVO-J2M to make a closed loop  
circuit, leakage current may flow to malfunction the peripheral devices. If so, malfunction may be  
prevented by disconnecting the grounding cable of the peripheral device.  
7)  
8)  
(2) Noise reduction products  
(a) Data line filter  
Noise can be prevented by installing a data line filter onto the encoder cable, etc.  
For example, the ZCAT3035-1330 of TDK and the ESD-SR-25 of NEC TOKIN are available as data  
line filters.  
As a reference example, the impedance specifications of the ZCAT3035-1330 (TDK) are indicated  
below.  
This impedances are reference values and not guaranteed values.  
[Unit: mm]([Unit: in.])  
Impedance[ ]  
10 to 100MHZ  
80  
100 to 500MHZ  
150  
39 1(1.54 0.04)  
Loop for fixing the  
cable band  
34 1  
(1.34 0.04)  
TDK  
Product name Lot number  
Outline drawing (ZCAT3035-1330)  
12 - 30  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(b) Surge suppressor  
The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic  
brake or the like near MELSERVO-J2M is shown below. Use this product or equivalent.  
MC  
Relay  
Surge suppressor  
Surge suppressor  
This distance should be short  
Surge suppressor  
(within 20cm(0.79 in.)).  
(Ex.) 972A.2003 50411  
(Matsuo Electric Co.,Ltd. 200VAC rating)  
Outline drawing [Unit: mm] ([Unit: in.])  
Rated  
voltage  
AC[V]  
Vinyl sheath  
C [ F]  
R [ ]  
Test voltage AC[V]  
18 1.5  
(0.71 0.06)  
Blue vinyl cord  
Red vinyl cord  
50  
Across  
6(0.24)  
200  
0.5  
(1W)  
T-C 1000(1 to 5s)  
10(0.39)or less 10(0.39)or less  
15 1(0.59 0.04)  
4(0.16)  
10 3  
(0.39  
0.12)  
10 3  
(0.39  
0.15)  
31(1.22)  
200(7.87)  
48 1.5  
200(7.87)  
or more (1.89 0.06) or more  
Note that a diode should be installed to a DC relay, DC valve or  
the like.  
RA  
Maximum voltage: Not less than 4 times the drive voltage of  
the relay or the like  
Maximum current: Not less than twice the drive current of  
the relay or the like  
Diode  
(c) Cable clamp fitting (AERSBAN -SET)  
Generally, the earth of the shielded cable may only be connected to the connector's SD terminal.  
However, the effect can be increased by directly connecting the cable to an earth plate as shown  
below.  
Install the earth plate near the drive unit for the encoder cable. Peel part of the cable sheath to  
expose the external conductor, and press that part against the earth plate with the cable clamp. If  
the cable is thin, clamp several cables in a bunch.  
The clamp comes as a set with the earth plate.  
Cable  
Cable clamp  
Earth plate  
(A,B)  
Strip the cable sheath of  
the clamped area.  
cutter  
cable  
External conductor  
Clamp section diagram  
12 - 31  
12. OPTIONS AND AUXILIARY EQUIPMENT  
Outline drawing  
[Unit: mm]  
([Unit: in])  
Earth plate  
Clamp section diagram  
2- 5(0.20) hole  
installation hole  
17.5(0.69)  
L or less  
10(0.39)  
22(0.87)  
6
(Note) M4 screw  
35(1.38)  
(0.24)  
Note. Screw hole for grounding. Connect it to the earth plate of the control box.  
Type  
A
B
C
Accessory fittings  
Clamp fitting  
L
100  
86  
30  
70  
(2.76)  
45  
AERSBAN-DSET  
clamp A: 2pcs.  
A
(3.94) (3.39) (1.18)  
70 56  
(2.76) (2.20)  
AERSBAN-ESET  
clamp B: 1pc.  
B
(1.77)  
12 - 32  
12. OPTIONS AND AUXILIARY EQUIPMENT  
(d) Line noise filter (FR-BLF, FR-BSF01)  
This filter is effective in suppressing noises radiated from the power supply side and output side of  
MELSERVO-J2M and also in suppressing high-frequency leakage current side (zero-phase  
current) especially within 0.5MHz to 5MHz band.  
Connection diagram  
Outline drawing [Unit: mm] ([Unit: in])  
Wind the 3-phase wires by the equal number of times in the  
same direction, and connect the filter to the power supply side  
and output side of the base unit.  
FR-BSF01  
110 (4.33)  
2- 5 (0.20)  
95 0.5 (3.74 0.02)  
The effect of the filter on the power supply side is higher as the  
number of winds is larger. The number of turns is generally four.  
If the wires are too thick to be wound, use two or more filters  
and make the total number of turns as mentioned above.  
On the output side, the number of turns must be four or less.  
Do not wind the grounding wire together with the 3-phase wires.  
The filter effect will decrease. Use a separate wire for grounding.  
65 (2.56)  
33 (1.3)  
Example 1  
NFB MC  
Base unit  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
(Number of turns: 4)  
NFB MC  
Example 2  
Base unit  
Power  
supply  
L1  
L2  
L3  
Line noise  
filter  
Two filters are used  
(Total number of turns: 4)  
(e) Radio noise filter (FR-BIF)...for the input side only  
This filter is effective in suppressing noises radiated from the power supply side of MELSERVO-  
J2M especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the input  
only.  
Connection diagram  
Outline drawing (Unit: mm) ([Unit: in])  
Leakage current: 4mA  
Make the connection cables as short as possible.  
Grounding is always required.  
Red WhiteBlue  
Green  
When using the FR-BIF with a single-phase wire,  
always insulate the wires that are not used for wiring.  
NFB  
MC  
Base unit  
29 (1.14)  
L1  
L2  
L3  
Power  
supply  
5 (0.20)  
hole  
29 (1.14)  
44 (1.73)  
58 (2.28)  
7 (0.28)  
Radio noise  
filter FR-BIF  
12 - 33  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.7 Leakage current breaker  
(1) Selection method  
High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits.  
Leakage currents containing harmonic contents are larger than those of the motor which is run with a  
commercial power supply.  
Select a leakage current breaker according to the following formula, and ground the base unit, servo  
motor, etc. securely.  
Make the input and output cables as short as possible, and also make the grounding cable as long as  
possible (about 30cm (11.8 in)) to minimize leakage currents.  
Rated sensitivity current 10 {Ig1 Ign Iga K (Ig2 Igm)} [mA] ..........(12.1)  
K: Constant considering the harmonic contents  
Cable  
Leakage current breaker  
K
1
3
Mitsubishi  
products  
Noise  
filter  
Type  
NV  
MELSERVO  
-J2M  
Cable  
Ig2  
M
NV-SP  
NV-SW  
NV-CP  
NV-CW  
NV-HW  
BV-C1  
NFB  
Models provided with  
harmonic and surge  
reduction techniques  
Ig1 Ign  
Iga  
Igm  
General models  
NV-L  
Ig1:  
Ig2:  
Leakage current on the electric channel from the leakage current breaker to the input terminals  
of the base unit (Found from Fig. 12.1.)  
Leakage current on the electric channel from the output terminals of the drive unit to the  
servo motor (Found from Fig. 12.1.)  
Ign:  
Iga:  
Igm:  
Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)  
Leakage current of the drive unit (Found from Table 12.4.)  
Leakage current of the servo motor (Found from Table 12.3.)  
Table 12.3 Servo motor's  
leakage current  
Table 12.4 Drive unit's  
leakage current  
example (Iga)  
Leakage current  
120  
100  
80  
60  
40  
20  
0
example (Igm)  
Servo motor  
output [kW]  
Leakage  
Drive unit  
current [mA]  
capacity [kW]  
[mA]  
0.3  
0.05 to 0.4  
0.1  
0.1 to 0.4  
0.75  
0.6  
[mA]  
2
3.5 8 1422 38 80 150  
5.5 30 60 100  
Cable size[mm2]  
Fig. 12.1 Leakage current example  
(Ig1, Ig2) for CV cable run  
in metal conduit  
12 - 34  
12. OPTIONS AND AUXILIARY EQUIPMENT  
12.2.8 EMC filter  
For compliance with the EMC directive of the EN standard, it is recommended to use the following filter:  
Some EMC filters are large in leakage current.:  
(1) Combination with the base unit  
Recommended filter  
Base unit  
Mass [kg(lb)]  
Model  
Leakage current [mA]  
MR-J2M-BU4  
MR-J2M-BU6  
MR-J2M-BU8  
SF1253  
57  
1.37 (3.02)  
(2) Connection example  
EMC filter  
LOAD  
Base unit  
MC  
NFB LINE  
L1  
L2  
L3  
L1  
L2  
L3  
L1  
L2  
L3  
(Note 2)  
Power supply  
(Note 1)  
L11  
L21  
Note 1. Connect when the power supply has earth.  
2. Connect a 1-phase 200 to 230VAC power supply to L1/L2 and keep L3 open.  
(3) Outline drawing  
[Unit: mm(in)]  
6.0(0.236)  
SF1253  
209.5(8.248)  
L1  
L2  
L3  
LINE  
(input side)  
L1'  
L2'  
L3'  
LOAD  
(output side)  
23.0(0.906)  
8.5  
(0.335)  
49.0  
(1.929)  
12 - 35  
12. OPTIONS AND AUXILIARY EQUIPMENT  
MEMO  
12 - 36  
13. COMMUNICATION FUNCTIONS  
13. COMMUNICATION FUNCTIONS  
MELSERVO-J2M has the RS-422 and RS-232C serial communication functions. These functions can be  
used to perform servo operation, parameter changing, monitor function, etc.  
However, the RS-422 and RS-232C communication functions cannot be used together. Select between RS-  
422 and RS-232C with IFU parameter No.0. (Refer to Section 13.2.2.)  
13.1 Configuration  
13.1.1 RS-422 configuration  
(1) Outline (Example)  
The interface unit and drive units of stations 0 to 31 can be run/operated on the same bus.  
Similarly, any servo amplifiers that enable station number setting can be connected on the same bus.  
It should be noted that the commands/data should be handled without mistakes since they are specific  
to each servo amplifier.  
Station StationStationStation StationStationStationStationStation  
Controller such as  
personal computer  
0
1
2
3
4
5
6
7
8
To CN3  
RS-422  
RS-232C/  
RS-422  
converter  
MELSERVO-J2M  
(General-purpose interface type)  
Unavailable as option.  
To be prepared by customer.  
MITSUBISHI  
Station  
9
RS-422  
To CN3  
CHARGE  
MELSERVO-J2S-A  
Station StationStationStation StationStation Station  
10 11 12 13 14 15 16  
RS-422  
To CN3  
MELSERVO-J2M  
(General-purpose interface type)  
13 - 1  
13. COMMUNICATION FUNCTIONS  
(2) Cable connection diagram  
Wire as shown below:  
(Note 1)  
(Note 3) 30m(98.4ft) max.  
Interface unit or Servo amplifier  
CN3 connector  
(Note 1)  
(Note 1)  
Interface unit or Servo amplifier  
CN3 connector  
Plate SD  
Interface unit or Servo amplifier  
CN3 connector  
Plate  
9
SD  
Plate  
9
SD  
SDP  
SDN  
RDP  
RDN  
TRE  
LG  
SDP  
9
19  
5
SDP  
19 SDN  
RDP  
19 SDN  
RDP  
5
5
15 RDN  
10 TRE  
11 LG  
15  
10  
11  
1
15 RDN  
10 TRE  
11 LG  
(Note 2)  
LG  
1
LG  
1
LG  
RS-422  
output unit  
RDP  
RDN  
SDP  
SDN  
GND  
GND  
Note 1. Connector set MR-J2CN1 (3M or equivalent)  
Connector: 10120-3000VE  
Shell kit: 10320-52F0-008  
2. In the last axis, connect TRE and RDN.  
3. 30m (98.4ft) max. in environment of little noise.  
13 - 2  
13. COMMUNICATION FUNCTIONS  
13.1.2 RS-232C configuration  
(1) Outline (Example)  
Run operate.  
/
MELSERVO-J2M  
Controller such as  
personal computer  
Station StationStationStation StationStation Station Station Station  
0
1
2
3
4
5
6
7
8
To CN3  
(2) Cable connection diagram  
Wire as shown below. The communication cable for connection with the personal computer (MR-  
CPCATCBL3M) is available. (Refer to Section 12.1.2 (3))  
(Note 1)  
Interface unit  
CN3 connector  
Personal computer  
connector D-SUB9 (socket)  
(Note 2) 15m(49.2ft) max.  
Plate FG  
2
1
RXD  
GND  
TXD  
3
12 TXD  
11 GND  
RXD  
GND  
RTS  
CTS  
DSR  
DTR  
2
5
7
8
6
4
Note 1. For CN3 connector (3M)  
Connector: 10120-6000EL  
Shell kit: 10320-3210-000  
2. 15m(49.2ft) max. in environment of little noise. However, this distance should be 3m(9.84ft) max. for use at  
38400bps or more baudrate.  
13 - 3  
13. COMMUNICATION FUNCTIONS  
13.2 Communication specifications  
13.2.1 Communication overview  
This servo amplifier is designed to send a reply on receipt of an instruction. The device which gives this  
instruction (e.g. personal computer) is called a master station and the device which sends a reply in  
response to the instruction (drive unit) is called a slave station. When fetching data successively, the  
master station repeatedly commands the slave station to send data.  
Item  
Description  
Baudrate  
9600/19200/38400/57600 asynchronous system  
Start bit : 1 bit  
Data bit : 8 bits  
Transfer code  
Parity bit: 1 bit (even)  
Stop bit : 1 bit  
Transfer protocol  
Character system, half-duplex communication system  
(LSB)  
(MSB)  
7
Next  
start  
Start  
Parity  
Stop  
0
1
2
3
4
5
6
Data  
1 frame (11bits)  
13 - 4  
13. COMMUNICATION FUNCTIONS  
13.2.2 Parameter setting  
When the RS-422/RS-232C communication function is used to operate the servo, set the communication  
specifications of the servo amplifier in the corresponding parameters.  
After setting the values of these parameters, they are made valid by switching power off once, then on  
again.  
(1) Serial communication baudrate  
Choose the communication speed. Match this value to the communication speed of the sending end  
(master station).  
IFU parameter No. 0  
Communication baudrate selection  
0: 9600[bps]  
1: 19200[bps]  
2: 38400[bps]  
3: 57600[bps]  
(2) Serial communication selection  
Select the RS-422 or RS-232C communication standard. RS-422 and RS-232C cannot be used together.  
IFU parameter No. 0  
Serial communication standard selection  
0: RS-232C used  
1: RS-422 used  
(3) Serial communication response delay time  
Set the time from when the servo amplifier (slave station) receives communication data to when it  
sends back data. Set "0" to send back data in less than 800 s or "1" to send back data in 800 s or more.  
IFU parameter No. 0  
Serial communication response delay time selection  
0: Invalid  
1: Valid, reply sent in 800 s or more  
(4) Station number setting  
In IFU parameter No. 10 to 18, set the station numbers of the units connected to the slots. Do not use  
the station numbers used by the other units.  
IFU parameter No.  
Slot Whose Station Number Is Set  
Default Station Number  
Usable Station Numbers  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Interface unit slot  
Slot 1  
0
1
2
3
4
5
6
7
8
0 to 31  
Slot 2  
Slot 3  
Slot 4  
Slot 5  
Slot 6  
Slot 7  
Slot 8  
13 - 5  
13. COMMUNICATION FUNCTIONS  
13.3 Protocol  
POINT  
Whether station number setting will be made or not must be selected if  
the RS-232C communication function is used.  
Since up to 32 axes may be connected to the bus, add a station number to the command, data No., etc. to  
determine the destination unit of data communication. Set the station number per unit using the IFU  
parameters. Send data are valid for the unit of the specified station number.  
(1) Transmission of data from the controller to the servo  
10 frames (data)  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Master station  
Slave station  
Data*  
S
T
X
E
T
Check  
sum  
Station number  
X
6 frames  
Positive response: Error code  
A
Negative response: Error code other than A  
(2) Transmission of data request from the controller to the servo  
10 frames  
S
O
H
S
T
X
E
T
X
Data  
No.  
Check  
sum  
Station number  
Master station  
Slave station  
S
T
X
E
T
X
Check  
sum  
Station number  
Data*  
6 frames (data)  
(3) Recovery of communication status by time-out  
EOT causes the servo to return to  
E
O
T
the receive neutral status.  
Master station  
Slave station  
(4) Data frames  
The data length depends on the command.  
or  
Data  
Data  
or 12 frames or 16 frames  
4 frames  
8 frames  
13 - 6  
13. COMMUNICATION FUNCTIONS  
13.4 Character codes  
(1) Control codes  
Hexadecimal  
Personal computer terminal key operation  
(General)  
Code name  
Description  
(ASCII code)  
SOH  
STX  
ETX  
EOT  
01H  
02H  
03H  
04H  
start of head  
start of text  
ctrl  
ctrl  
ctrl  
ctrl  
A
B
C
D
end of text  
end of transmission  
(2) Codes for data  
ASCII unit codes are used.  
b
b
b
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
8
7
6
b5  
b to  
C
8
b4 b3 b2 b1  
0
1
2
3
4
5
6
7
b5  
R
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NUL DLE Space  
0
1
2
3
4
5
6
7
8
9
:
@
A
B
C
D
E
F
G
H
I
P
Q
R
S
`
a
b
c
p
SOH DC  
STX DC  
ETX DC  
!
q
1
2
3
2
r
3
#
$
%
&
s
4
T
U
V
W
X
Y
Z
d
e
f
t
5
u
6
v
7
g
h
i
w
8
(
x
9
)
y
10  
11  
12  
13  
14  
15  
J
j
z
;
K
L
M
N
O
[
k
l
{
,
|
]
m
n
o
}
.
/
^
_
?
DEL  
(3) Station numbers  
You may set 32 station numbers from station 0 to station 31 and the ASCII unit codes are used to  
specify the stations.  
Station number  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
ASCII code  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Station number  
ASCII code  
16  
G
17  
H
18  
I
19  
J
20  
K
21  
L
22  
M
23  
N
24  
O
25  
P
26  
Q
27  
R
28  
S
29  
T
30  
U
31  
V
For example, "30H" is transmitted in hexadecimal for the station number of "0".  
13 - 7  
13. COMMUNICATION FUNCTIONS  
13.5 Error codes  
Error codes are used in the following cases and an error code of single-code length is transmitted.  
On receipt of data from the master station, the slave station sends the error code corresponding to that  
data to the master station.  
The error code sent in upper case indicates that the MELSERVO-J2M is normal and the one in lower case  
indicates that an alarm occurred.  
Error code  
Error name  
Description  
Remarks  
Servo normal  
Servo alarm  
[A]  
[B]  
[C]  
[a]  
[b]  
[c]  
Normal operation  
Parity error  
Data transmitted was processed properly.  
Parity error occurred in the transmitted data.  
Checksum error occurred in the transmitted data.  
Character not existing in the specifications was  
transmitted.  
Positive response  
Checksum error  
[D]  
[E]  
[F]  
[d]  
[e]  
[f]  
Character error  
Command error  
Data No. error  
Negative response  
Command not existing in the specifications was  
transmitted.  
Data No. not existing in the specifications was  
transmitted.  
13.6 Checksum  
The check sum is a ASCII-coded hexadecimal representing the lower two digits of the sum of ASCII-coded  
hexadecimal numbers up to ETX, with the exception of the first control code (STX or S0H).  
(Example)  
Station number  
S
T
X
E
T
X
[0] [A] [1] [2] [5] [F]  
[5] [2]  
STX or  
SOH  
ETX Check  
02H 30H 41H 31H 32H 35H 46H 03H  
30H 41H 31H 32H 35H 46H 03H  
152H  
Checksum range  
Lower 2 digits 52 is sent after conversion into ASCII code [5][2].  
13 - 8  
13. COMMUNICATION FUNCTIONS  
13.7 Time-out operation  
The master station transmits EOT when the slave station does not start reply operation (STX is not  
received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the  
master station retransmits the message. Time-out occurs if the slave station does not answer after the  
master station has performed the above operation three times. (Communication error)  
100ms  
100ms  
100ms  
*Time-out  
300ms  
300ms  
300ms  
300ms  
E
O
T
E
O
T
E
O
T
Master station  
Slave station  
13.8 Retry operation  
When a fault occurs in communication between the master and slave stations, the error code in the  
response data from the slave station is a negative response code ([B] to [F], [b] to [f]). In this case, the  
master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A  
communication error occurs if the above operation is repeated and results in the error three or more  
consecutive times.  
*Communication error  
Master station  
Slave station  
S
T
X
S
T
X
S
T
X
Station number  
Station number  
Station number  
Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the  
slave station, the master station retransmits the message which was sent at the occurrence of the fault. A  
communication error occurs if the retry operation is performed three times.  
13 - 9  
13. COMMUNICATION FUNCTIONS  
13.9 Initialization  
After the slave station is switched on, it cannot reply to communication until the internal initialization  
processing terminates. Hence, at power-on, ordinary communication should be started after:  
(1) 1s or more time has elapsed after the slave station is switched on; and  
(2) Making sure that normal communication can be made by reading the parameter or other data which  
does not pose any safety problems.  
13.10 Communication procedure example  
The following example reads the set value of DRU parameter No.2 "function selection 1" from the drive  
unit of station 0:  
Data item  
Station number  
Command  
Value  
0
Description  
Interface unit station 0  
Read command  
05  
Data No.  
02  
DRU parameter No.2  
Axis No. Command  
Data No.  
Start  
Data [0] 0 5 STX 0 2 ETX  
[0][0][5] [0][2]  
Data make-up  
STX  
ETX  
Checksum 30H 30H 35H 02H 30H 32H 03H FCH  
Checksum calculation and  
addition  
Transmission data SOH  
0 5 STX 0 2 ETX F C 46H 43H  
Master station slave station  
0
Addition of SOH to make  
up transmission data  
Data transmission  
Data receive  
Master station slave station  
No  
Is there receive data?  
Yes  
No  
300ms elapsed?  
Yes  
No  
3 consecutive times?  
Yes  
Master station slave station  
Yes  
Other than error code  
[A] [a]?  
100ms after EOT transmission  
No  
3 consecutive times?  
No  
Error processing  
Yes  
Receive data analysis  
Error processing  
End  
13 - 10  
13. COMMUNICATION FUNCTIONS  
13.11 Command and data No. list  
POINT  
If the command/data No. is the same, its data may be different from the  
interface and drive units and other servo amplifiers.  
The commands/data No. of the respective interface unit and drive units are those marked in the Unit  
field.  
13.11.1 Read commands  
(1) Status display (Command [0][1])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Display item  
IFU  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[0][1]  
[8][0]  
[8][1]  
[8][2]  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
[8][5]  
[8][6]  
[8][7]  
[8][8]  
[8][9]  
[8][A]  
Status display data value and  
processing information  
regenerative load ratio  
Bus voltage  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
Peak Bus voltage  
Status display data value and  
processing information  
cumulative feedback pulses  
Servo motor speed  
droop pulses  
cumulative command pulses  
command pulse frequency  
effective load ratio  
peak load ratio  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
(2) Parameter (Command [0][5])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
IFU  
[0][5]  
[0][0]  
to  
Current value of each parameter  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the parameter number.  
8
8
[1][D]  
[0][5]  
[0][0]  
to  
Current value of each parameter  
The decimal equivalent of the data No. value (hexadecimal) corresponds  
to the parameter number.  
[5][4]  
(3) External I/O signals (Command [1][2])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
IFU  
[1][2]  
[1][2]  
[1][2]  
[1][2]  
[1][2]  
[4][0]  
[4][1]  
[4][3]  
[C][0]  
[C][1]  
External input pin statuses  
External input pin statuses  
External input pin statuses  
External output pin statuses  
External output pin statuses  
8
8
8
8
8
13 - 11  
13. COMMUNICATION FUNCTIONS  
(4) Alarm history (Command [3][3])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Alarm occurrence sequence  
IFU  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[3][3]  
[1][0]  
[1][1]  
[1][2]  
[1][3]  
[1][4]  
[1][5]  
[2][0]  
[2][1]  
[2][2]  
[2][3]  
[2][4]  
[2][5]  
Alarm number in alarm history  
most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
4
4
4
4
4
4
4
4
4
4
4
4
Alarm occurrence time in alarm history most recent alarm  
first alarm in past  
second alarm in past  
third alarm in past  
fourth alarm in past  
fifth alarm in past  
(5) Current alarm (Command [0][2] [3][5])  
Unit  
IFU DRU  
Frame  
length  
Command  
Data No.  
Description  
[0][2]  
[0][0]  
Current alarm number  
4
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Display item  
IFU  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[3][5]  
[8][0]  
[8][1]  
[8][2]  
[8][0]  
[8][1]  
[8][2]  
[8][3]  
[8][4]  
[8][5]  
[8][6]  
[8][7]  
[8][8]  
[8][9]  
Status display data value and processing regenerative load ratio  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
information at alarm occurrence  
Bus voltage  
Peak Bus voltage  
Status display data value and processing cumulative feedback pulses  
information at alarm occurrence  
Servo motor speed  
droop pulses  
cumulative command pulses  
command pulse frequency  
effective load ratio  
peak load ratio  
Instantaneous torque  
within one-revolution position  
ABS counter  
load inertia moment ratio  
[3][5]  
[8][A]  
(6) Others  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
IFU  
[0][2]  
[0][2]  
[0][2]  
[0][0]  
[9][0]  
[9][1]  
[7][0]  
[8][0]  
Servo motor end pulse unit absolute position  
Command unit absolute position  
Software version  
8
8
16  
8
Read of slot connection status  
13 - 12  
13. COMMUNICATION FUNCTIONS  
13.11.2 Write commands  
(1) Status display (Command [8][1])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Description  
Setting range  
IFU  
IFU  
[8][1]  
[0][0]  
Status display data clear  
1EA5  
4
(2) Parameter (Command [8][4])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Setting range  
[8][4]  
[0][0]  
to  
Each parameter write  
Depends on the  
parameter.  
The decimal equivalent of the data No. value  
8
8
[1][D]  
(hexadecimal) corresponds to the parameter number.  
[8][4]  
[0][0]  
to  
Each parameter write  
Depends on the  
parameter.  
The decimal equivalent of the data No. value  
(hexadecimal) corresponds to the parameter number.  
[5][4]  
(3) Alarm history (Command [8][2])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Description  
Setting range  
IFU  
IFU  
[8][2]  
[2][0]  
Alarm history clear  
1EA5  
4
(4) Current alarm (Command [8][2])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Setting range  
[8][2]  
[0][0]  
Alarm reset  
1EA5  
4
(5) Operation mode selection (Command [8][B])  
Unit  
DRU  
Frame  
length  
Command  
Data No.  
Description  
Setting range  
IFU  
[8][B]  
[0][0]  
Exit from test operation mode  
Jog operation  
0000  
0001  
0002  
0003  
0004  
Positioning operation  
4
Motor-less operation  
Output signal (DO) forced output  
13 - 13  
13. COMMUNICATION FUNCTIONS  
(6) External input signal disable (Command [9][0])  
Unit  
DRU  
Frame  
length  
Command Data No.  
Description  
Setting range  
IFU  
[9][0]  
[0][0]  
Turns off the external input signals (DI), external input  
signals and pulse train inputs with the exception of EMG_  
LSP and LSN , independently of the external ON/OFF  
statuses.  
,
1EA5  
1EA5  
4
4
[9][0]  
[9][0]  
[0][3]  
[1][0]  
Changes the external output signals (DO) into the value of  
command [8][B] or command [A][0] data No. [0][1].  
Enables the disabled external input signals (DI), external  
input signals and pulse train inputs with the exception of  
1EA5  
1EA5  
4
4
EMG_ , LSP and LSN  
.
[9][0]  
[1][3]  
Enables the disabled external output signals (DO).  
(7) Data for test operation mode (Command [9][2] [A][0])  
Unit  
DRU  
Frame  
length  
Command Data No.  
Description  
Input signal for test operation  
Forced output from signal pin  
Setting range  
IFU  
[9][2]  
[9][2]  
[0][0]  
[A][0]  
Refer to section  
13.12.6  
8
8
Refer to section  
13.12.8  
Unit  
DRU  
Frame  
length  
Command Data No.  
Description  
Setting range  
IFU  
[A][0]  
[1][0]  
Writes the speed of the test operation mode (jog operation,  
positioning operation).  
0000 to  
Permissible  
instantaneous  
speed  
4
[A][0]  
[1][1]  
Writes the acceleration/deceleration time constant of the  
test operation mode (jog operation, positioning operation).  
00000000  
to  
8
4
8
4
20000  
[A][0]  
[A][0]  
[1][2]  
[1][3]  
Clears the acceleration/deceleration time constant of the test  
operation mode (jog operation, positioning operation).  
Writes the moving distance (in pulses) of the test operation  
mode (jog operation, positioning operation).  
1EA5  
80000000  
to  
7FFFFFFF  
[A][0]  
[1][5]  
Temporary stop command of the test operation mode (jog  
operation, positioning operation)  
1EA5  
13 - 14  
13. COMMUNICATION FUNCTIONS  
13.12 Detailed explanations of commands  
13.12.1 Data processing  
When the master station transmits a command data No. or a command data No. data to a slave  
station, a reply or data is returned from the slave station according to the purpose.  
When numerical values are represented in these send data and receive data, they are represented in  
decimal, hexadecimal, etc.  
Therefore, data must be processed according to the application.  
Since whether data must be processed or not and how to process data depend on the monitoring,  
parameters, etc., follow the detailed explanation of the corresponding command.  
The following methods are how to process send and receive data when reading and writing data.  
(1) Processing the read data  
When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a  
decimal point is placed according to the decimal point position information.  
When the display type is 1, the eight-character data is used unchanged.  
The following example indicates how to process the receive data "003000000929" given to show.  
The receive data is as follows.  
0 0 3 0 0 0 0 0 0 9 2 9  
Data 32-bit length (hexadecimal representation)  
(Data conversion is required as indicated in the display type)  
Display type  
0: Data must be converted into decimal.  
1: Data is used unchanged in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit (normally not used)  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
6: Sixth least significant digit  
Since the display type is "0" in this case, the hexadecimal data is converted into decimal.  
00000929H 2345  
As the decimal point position is "3", a decimal point is placed in the third least significant digit.  
Hence, "23.45" is displayed.  
13 - 15  
13. COMMUNICATION FUNCTIONS  
(2) Writing the processed data  
When the data to be written is handled as decimal, the decimal point position must be specified. If it is  
not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the  
decimal point position.  
The data to be sent is the following value.  
0
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: First least significant digit  
2: Second least significant digit  
3: Third least significant digit  
4: Forth least significant digit  
5: Fifth least significant digit  
By way of example, here is described how to process the set data when a value of "15.5" is sent. Since  
the decimal point position is the second digit, the decimal point position data is "2".As the data to be  
sent is hexadecimal, the decimal data is converted into hexadecimal.  
155 9B  
Hence, "0200009B" is transmitted.  
13 - 16  
13. COMMUNICATION FUNCTIONS  
13.12.2 Status display  
(1) Status display data read  
When the master station transmits the data No. (refer to the following table for assignment) to the  
slave station, the slave station sends back the data value and data processing information.  
1) Transmission  
Transmit command [0][1] and the data No. corresponding to the status display item to be read.  
Refer to Section 13.11.1.  
2) Reply  
The slave station sends back the status display data requested.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(2) Status display data clear  
The cumulative feedback pulse data of the status display is cleared. Send this command immediately  
after reading the status display item. The data of the status display item transmitted is cleared to  
zero.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[8][1]  
[0][0]  
1EA5  
For example, after sending command [0][1] and data No. [8][0] and receiving the status display data,  
send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to  
zero.  
13 - 17  
13. COMMUNICATION FUNCTIONS  
13.12.3 Parameter  
(1) Parameter read  
Read the parameter setting.  
1) Transmission  
Transmit command [0][5] and the data No. corresponding to the parameter No.  
The data No. is expressed in hexadecimal equivalent of the data No. value corresponds to the  
parameter number.  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][5]  
[0][0] to  
[1][D]  
[0][5]  
[0][0] to  
[5][4]  
2) Reply  
The slave station sends back the data and processing information of the requested parameter No.  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
0
Display type  
0: Used unchanged in hexadecimal  
1: Conversion into decimal required  
Parameter write type  
0: Valid after write  
1: Valid when power is switched on again after write  
Read enable/disable  
0: Read enable  
1: Read disable  
Enable/disable information changes according to the setting of parameter No.19 "parameter  
write inhibit". When the enable/disable setting is read disable, ignore the parameter data part  
and process it as unreadable.  
13 - 18  
13. COMMUNICATION FUNCTIONS  
(2) Parameter write  
POINT  
The number of write times to the EEP-ROM is limited to 100,000.  
Write the parameter setting.  
Write the value within the setting range. Refer to Section 5.1 for the setting range.  
Transmit command [8][4], the data No., and the set data.  
The data No. is expressed in hexadecimal. The decimal equivalent of the data No. value corresponds to  
the parameter number.  
When the data to be written is handled as decimal, the decimal point position must be specified. If it  
is not specified, data cannot be written. When the data is handled as hexadecimal, specify "0" as the  
decimal point position.  
Write the data after making sure that it is within the upper/lower limit value range given in Section  
5.1.2. Read the parameter data to be written, confirm the decimal point position, and create  
transmission data to prevent error occurrence. On completion of write, read the same parameter  
data to verify that data has been written correctly.  
Unit  
Command  
Data No.  
Set data  
IFU  
DRU  
[8][4]  
[0][0] to  
[1][D]  
See below.  
[8][4]  
[0][0] to  
[5][4]  
Data is transferred in hexadecimal.  
Decimal point position  
0: No decimal point  
1: Lower first digit  
2: Lower second digit  
3: Lower third digit  
4: Lower forth digit  
5: Lower fifth digit  
Write mode  
0: Write to EEP-ROM  
3: Write to RAM  
When the parameter data is changed frequently through communication,  
set "3" to the write mode to change only the RAM data in the servo amplifier.  
When changing data frequently (once or more within one hour),  
do not write it to the EEP-ROM.  
13 - 19  
13. COMMUNICATION FUNCTIONS  
13.12.4 External I/O pin statuses (DIO diagnosis)  
(1) External input pin status read (CN1A CN1B)  
Read the ON/OFF statuses of the external input pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[1][2]  
[4][0]  
(b) Reply  
The ON/OFF statuses of the input pins are sent back.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
External input pin  
CN1A-4  
bit  
8
External input pin  
CN1A-32  
CN1A-34  
CN1A-36  
CN1A-37  
CN1B-4  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External input pin  
CN1B-10  
CN1B-12  
CN1B-29  
CN1B-31  
CN1B-32  
CN1B-34  
CN1B-36  
CN1B-37  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External input pin  
1
CN1A-5  
9
2
CN1A-7  
10  
11  
12  
13  
14  
15  
3
CN1A-9  
4
CN1A-10  
CN1A-12  
CN1A-29  
CN1A-31  
5
CN1B-5  
6
CN1B-7  
7
CN1B-9  
(2) External input pin status read (CN5)  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][1].  
Unit  
Command  
Data No.  
IFU  
DRU  
[1][2]  
[4][1]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal data.  
bit  
0
External input pin  
bit  
8
External input pin  
CN5-11  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External input pin  
CN5-20  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External input pin  
CN5-1  
CN5-2  
CN5-3  
CN5-4  
CN5-5  
CN5-6  
CN5-7  
CN5-10  
1
9
CN5-12  
CN5-19  
2
10  
11  
12  
13  
14  
15  
CN5-13  
3
CN5-14  
4
CN5-15  
5
CN5-16  
6
CN5-17  
7
CN5-18  
13 - 20  
13. COMMUNICATION FUNCTIONS  
(3) External input pin status read (CN4A CN4B)  
Read the ON/OFF statuses of the external input pins.  
(a) Transmission  
Transmit command [1][2] and data No. [4][3].  
Unit  
Command  
Data No.  
IFU  
DRU  
[1][2]  
[4][3]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b1b0  
b31  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal date.  
bit  
0
External input pin  
bit  
8
External input pin  
CN4A-26  
CN4A-27  
CN4A-28  
CN4A-29  
CN4A-30  
CN4A-31  
CN4A-32  
CN4A-33  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External input pin  
CN4B-1  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External input pin  
CN4B-26  
CN4B-27  
CN4B-28  
CN4B-29  
CN4B-30  
CN4B-31  
CN4B-32  
CN4B-33  
CN4A-1  
CN4A-2  
CN4A-3  
CN4A-4  
CN4A-5  
CN4A-6  
CN4A-7  
CN4A-8  
1
9
CN4B-2  
2
10  
11  
12  
13  
14  
15  
CN4B-3  
3
CN4B-4  
4
CN4B-5  
5
CN4B-6  
6
CN4B-7  
7
CN4B-8  
(4) External output pin status read (CN1A CN1B)  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[1][2]  
[C][0]  
(b) Reply  
The slave station sends back the ON/OFF statuses of the output pins.  
b1b0  
b31  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal date.  
bit  
0
External output pin  
CN1A-3  
bit  
8
External output pin  
CN1B-6  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
CN1A-27  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
CN1B-23  
1
CN1A-6  
9
CN1B-8  
CN1B-27  
CN1B-22  
2
CN1A-8  
10  
11  
12  
13  
14  
15  
CN1B-11  
CN1A-11  
CN1A-28  
CN1A-30  
CN1A-32  
CN1A-35  
CN1A-25  
3
CN1A-11  
CN1A-28  
CN1A-30  
CN1A-33  
CN1B-3  
CN1A-24  
4
CN1A-23  
5
CN1A-22  
6
CN1B-25  
7
CN1B-24  
13 - 21  
13. COMMUNICATION FUNCTIONS  
(5) External output pin status read (CN4A CN4B)  
Read the ON/OFF statuses of the external output pins.  
(a) Transmission  
Transmit command [1][2] and data No. [C][1].  
Unit  
Command  
Data No.  
IFU  
DRU  
[1][2]  
[C][1]  
(b) Reply  
The slave station sends back the statuses of the output pins.  
b1b0  
b31  
1: ON  
0: OFF  
Command of each bit is transmitted to the master  
station as hexadecimal date.  
bit  
0
External output pin  
CN4A-9  
bit  
8
External output pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
1
CN4A-10  
CN4A-34  
CN4A-35  
CN4B-9  
9
2
10  
11  
12  
13  
14  
15  
3
4
5
CN4B-10  
CN4B-34  
CN4B-35  
6
7
13 - 22  
13. COMMUNICATION FUNCTIONS  
13.12.5 Disable/enable of external I/O signals (DIO)  
Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the  
input signals are recognized as follows. Among the external input signals, forced stop (EMG_ , forward  
)
rotation stroke end (LSP  
and reverse rotation stroke end (LSN  
cannot be disabled.  
)
)
Signal  
Status  
External input signals (DI)  
Pulse train inputs  
OFF  
None  
(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train  
inputs with the exception of forced stop (EMG_ , forward rotation stroke end (LSP and reverse  
)
)
rotation stroke end (LSN  
.
)
Transmit the following communication commands:  
(a) Disable  
Unit  
Command  
Data No.  
Data  
IFU  
IFU  
DRU  
DRU  
[9][0]  
[0][0]  
1EA5  
(b) Enable  
Unit  
Command  
Data No.  
Data  
[9][0]  
[1][0]  
1EA5  
(2) Disabling/enabling the external output signals (DO)  
Transmit the following communication commands:  
(a) Disable  
Unit  
Command  
Data No.  
Data  
IFU  
IFU  
DRU  
DRU  
[9][0]  
[0][3]  
1EA5  
(b) Enable  
Unit  
Command  
Data No.  
Data  
[9][0]  
[1][3]  
1EA5  
13 - 23  
13. COMMUNICATION FUNCTIONS  
13.12.6 External input signal ON/OFF (test operation)  
Each input signal can be turned on/off for test operation. Turn off the external input signals.  
Send command [9] [2], data No. [0] [0] and data.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[9][2]  
[0][0]  
See below  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is transmitted to the slave  
station as hexadecimal data.  
bit  
0
Signal abbreviation  
bit  
8
Signal abbreviation  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
Signal abbreviation  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
Signal abbreviation  
SON  
LSP  
LSN  
TL  
1
9
2
10  
11  
12  
13  
14  
15  
3
ST1  
ST2  
4
5
PC  
RES  
CR  
6
7
13 - 24  
13. COMMUNICATION FUNCTIONS  
13.12.7 Test operation mode  
(1) Instructions for test operation mode  
The test operation mode must be executed in the following procedure. If communication is interrupted  
for longer than 0.5s during test operation, the servo amplifier causes the motor to be decelerated to a  
stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the  
status display.  
(a) Execution of test operation  
1) Turn off all external input signals.  
2) Disable the external input signals.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[9][2]  
[0][0]  
1EA5  
3) Choose the test operation mode.  
Unit  
Command  
Data No.  
Transmission data  
Selection of test operation mode  
IFU  
DRU  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[8][B]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
[0][0]  
0000  
0001  
0002  
0003  
0004  
Test operation mode cancel  
Jog operation  
Positioning operation  
Motor-less operation  
DO forced output  
4) Set the data needed for test operation.  
5) Start.  
6) Continue communication using the status display or other command.  
(b) Termination of test operation  
To terminate the test operation mode, complete the corresponding operation and:  
1) Clear the test operation acceleration/deceleration time constant.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[A][0]  
[1][2]  
1EA5  
2) Cancel the test operation mode.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[8][B]  
[0][0]  
0000  
3) Enable the disabled external input signals.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[9][0]  
[1][0]  
1EA5  
13 - 25  
13. COMMUNICATION FUNCTIONS  
(2) Jog operation  
Transmit the following communication commands:  
(a) Setting of jog operation data  
Unit  
DRU  
Item  
Command  
Data No.  
Data  
IFU  
Speed  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
Write the speed [r/min] in hexadecimal.  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
Acceleration/deceleration  
time constant  
(b) Start  
Turn on the external input signals servo-on (SON  
forward rotation stroke end (  
LSP )  
)
reverse rotation stroke end (  
LSN )  
and ST1/ST2 by using command [9][2] data No. [0][0].  
Unit  
Item  
Command  
Data No.  
Data  
IFU  
DRU  
Forward rotation start  
[9][2]  
[0][0]  
00000807: Turns on SON  
LSP  
LSP  
LSP  
and ST1.  
00001007: Turns on SON  
LSN  
Reverse rotation start  
Stop  
[9][2]  
[9][2]  
[0][0]  
[0][0]  
and ST2.  
LSN  
00000007: Turns on SON  
.
LSN  
and  
(3) Positioning operation  
Transmit the following communication commands:  
(a) Setting of positioning operation data  
Unit  
DRU  
Item  
Command  
Data No.  
Data  
IFU  
Speed  
[A][0]  
[A][0]  
[1][0]  
[1][1]  
Write the speed [r/min] in hexadecimal.  
Write the acceleration/deceleration time constant  
[ms] in hexadecimal.  
Acceleration/decelera-tion  
time constant  
Moving distance  
[A][0]  
[1][3]  
Write the moving distance [pulse] in  
hexadecimal.  
(b)  
Input of servo-on stroke end  
Turn on the external input signals servo-on (SON  
forward rotation stroke end (  
)
LSP )  
and  
reverse rotation stroke end (  
LSN )  
by using command [9][2] data No. [0][0].  
Unit  
Item  
Command  
[9][2]  
Data No.  
[0][0]  
Data  
IFU  
DRU  
Servo-on  
00000001: Turns on SON  
00000006: Turns off SON and turns on  
LSP LSN  
Servo OFF  
[9][2]  
[0][0]  
Stroke end ON  
Servo-on  
.
[9][2]  
[0][0]  
00000007: Turns on SON  
LSP  
LSN  
.
Stroke end ON  
13 - 26  
13. COMMUNICATION FUNCTIONS  
(c) Start of positioning operation  
Transmit the speed and acceleration/deceleration time constant, turn on the servo-on (SON ) and  
forward rotation stroke end (LSP  
reverse rotation stroke end (LSN , and then send the  
)
)
moving distance to start positioning operation. After that, positioning operation will start every  
time the moving distance is transmitted. To start opposite rotation, send the moving distance of a  
negative value.  
When the servo-on (SON ) and forward rotation stroke end (LSP  
reverse rotation stroke end  
)
(LSN ) are off, the transmission of the moving distance is invalid. Therefore, positioning operation  
will not start if the servo-on (SON ) and forward rotation stroke end (LSP  
stroke end (LSN ) are turned on after the setting of the moving distance.  
reverse rotation  
)
(d) Temporary stop  
A temporary stop can be made during positioning operation.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[A][0]  
[1][5]  
1EA5  
Retransmit the same communication commands as at the start time to resume operation.  
To stop positioning operation after a temporary stop, retransmit the temporary stop communication  
command. The remaining moving distance is then cleared.  
13 - 27  
13. COMMUNICATION FUNCTIONS  
13.12.8 Output signal pin ON/OFF (output signal (DO) forced output)  
In the test operation mode, the output signal pins can be turned on/off independently of the servo status.  
Using command [9][0], disable the output signals in advance.  
(1) Choosing DO forced output in test operation mode  
Transmit command [8][B] data No. [0][0] data "0004" to choose DO forced output.  
0 0 0 4  
Selection of test operation mode  
4: DO forced output (output signal forced output)  
(2) External output signal ON/OFF  
Transmit the following communication commands:  
Command  
Data No.  
Setting data  
[9][2]  
[A][0]  
See below.  
b31  
b1 b0  
1: ON  
0: OFF  
Command of each bit is sent to the slave station in hexadecimal.  
bit  
0
External output pin  
CN1A-19  
CN1A-18  
CN1B-19  
CN1B-6  
bit  
8
External output pin  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
External output pin  
bit  
24  
25  
26  
27  
28  
29  
30  
31  
External output pin  
1
9
2
10  
11  
12  
13  
14  
15  
3
4
CN1B-4  
5
CN1B-18  
CN1A-14  
6
7
13 - 28  
13. COMMUNICATION FUNCTIONS  
13.12.9 Alarm history  
(1) Alarm No. read  
Read the alarm No. which occurred in the past. The alarm numbers and occurrence times of No. 0 (last  
alarm) to No. 5 (sixth alarm in the past) are read.  
(a) Transmission  
Send command [3][3] and data No. [1][0] to [1][5]. Refer to Section 13.11.1(4).  
(b) Reply  
The alarm No. corresponding to the data No. is provided.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means A.32 and “00FF” means A._ (no alarm).  
(2) Alarm occurrence time read  
Read the occurrence time of alarm which occurred in the past.  
The alarm occurrence time corresponding to the data No. is provided in terms of the total time  
beginning with operation start, with the minute unit omitted.  
(a) Transmission  
Send command [3][3] and data No. [2][0] to [2][5].  
Refer to Section 13.11.1(4).  
(b) Reply  
The alarm occurrence time is transferred in decimal.  
Hexadecimal must be converted into decimal.  
For example, data “01F5” means that the alarm occurred in 501 hours after start of operation.  
(3) Alarm history clear  
Erase the alarm history.  
Send command [8][2] and data No. [2][0].  
Unit  
Command  
Data No.  
Data  
IDU  
DRU  
[8][2]  
[2][0]  
1EA5  
13 - 29  
13. COMMUNICATION FUNCTIONS  
13.12.10 Current alarm  
(1) Current alarm read  
Read the alarm No. which is occurring currently.  
(a) Transmission  
Send command [0][2] and data No. [0][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][2]  
[0][0]  
(b) Reply  
The slave station sends back the alarm currently occurring.  
0 0  
Alarm No. is transferred in decimal.  
For example, “0032” means A.32 and “00FF” means A._ (no alarm).  
(2) Read of the status display at alarm occurrence  
Read the status display data at alarm occurrence. When the data No. corresponding to the status  
display item is transmitted, the data value and data processing information are sent back.  
(a) Transmission  
Send command [3][5] and any of data No. [8][0] to [8][A] corresponding to the status display item to  
be read. Refer to Section 13.11.1 (5).  
(b) Reply  
The slave station sends back the requested status display data at alarm occurrence.  
0 0  
Data 32 bits long (represented in hexadecimal)  
(Data conversion into display type is required)  
Display type  
0: Conversion into decimal required  
1: Used unchanged in hexadecimal  
Decimal point position  
0: No decimal point  
1: Lower first digit (usually not used)  
2: Lower second digit  
3: Lower third digit  
4: Lower fourth digit  
5: Lower fifth digit  
6: Lower sixth digit  
(3) Current alarm clear  
As by the entry of the reset (RES , reset the servo amplifier alarm to make the servo amplifier ready  
)
to operate. After removing the cause of the alarm, reset the alarm with no command entered.  
Unit  
Command  
Data No.  
Data  
IFU  
DRU  
[8][2]  
[0][0]  
1EA5  
13 - 30  
13. COMMUNICATION FUNCTIONS  
13.12.11 Other commands  
(1) Servo motor end pulse unit absolute position  
Read the absolute position in the servo motor end pulse unit.  
Note that overflow will occur in the position of 16384 or more revolutions from the home position.  
(a) Transmission  
Send command [0][2] and data No. [9][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][2]  
[9][0]  
(b) Reply  
The slave station sends back the requested servo motor end pulses.  
Absolute value is sent back in hexadecimal in  
the servo motor end pulse unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the motor end pulse unit.  
(2) Command unit absolute position  
Read the absolute position in the command unit.  
(a) Transmission  
Send command [0][2] and data No. [9][1].  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][2]  
[9][1]  
(b) Reply  
The slave station sends back the requested command pulses.  
Absolute value is sent back in hexadecimal in the  
command unit.  
(Must be converted into decimal)  
For example, data "000186A0" is 100000 [pulse] in the command unit.  
(3) Software version  
Reads the software version of the servo amplifier.  
(a) Transmission  
Send command [0][2] and data No.[7][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][2]  
[7][0]  
(b) Reply  
The slave station returns the software version requested.  
Space  
Software version (15 digits)  
13 - 31  
13. COMMUNICATION FUNCTIONS  
(4) Read of slot connection status  
Read the absolute position in the command unit.  
(a) Transmission  
Send command [0][0] and data No.[8][0].  
Unit  
Command  
Data No.  
IFU  
DRU  
[0][0]  
[8][0]  
(b) Reply  
The slave stations send back the statuses of the units connected to the slots.  
b1b0  
b31  
1: Connected  
0: Not connected  
Command of each bit is sent to the slave station in hexadecimal.  
bit  
0
Slot  
1
bit  
8
Slot  
bit  
16  
17  
18  
19  
20  
21  
22  
23  
Slot  
Option  
bit  
Slot  
24  
25  
26  
27  
28  
29  
30  
31  
1
2
9
2
3
10  
11  
12  
13  
14  
15  
3
4
4
5
5
6
6
7
7
8
13 - 32  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14. ABSOLUTE POSITION DETECTION SYSTEM  
If an absolute position erase (A.25) or an absolute position counter warning  
(A E3) has occurred, always perform home position setting again. Not doing so  
can cause runaway.  
CAUTION  
14.1 Outline  
14.1.1 Features  
For normal operation, as shown below, the encoder consists of a detector designed to detect a position  
within one revolution and a cumulative revolution counter designed to detect the number of revolutions.  
The absolute position detection system always detects the absolute position of the machine and keeps it  
battery-backed, independently of whether the controller power is on or off. Therefore, once the home  
position is defined at the time of machine installation, home position return is not needed when power is  
switched on thereafter.  
If a power failure or a fault occurs, restoration is easy.  
Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be  
retained within the specified period (cumulative revolution counter value retaining time) if the cable is  
unplugged or broken.  
Controller  
Battery unit  
Drive unit  
Pulse train  
command  
Home position data  
EEP-ROM memory  
LSO  
Current  
position data  
Current  
position data  
1XO  
Backed up  
in the case of  
power failure  
Changing the  
current position  
data  
LS  
1X  
Detecting the  
number of  
Detecting the  
position within  
one revolutions  
Serial  
revolutions  
communication  
RS-422/  
RS-232C  
High speed serial communication  
Within-one-revolution counter  
Servo motor  
1pulse/rev Accumulative  
revolution counter  
Super capacitor  
14.1.2 Restrictions  
The absolute position detection system cannot be configured under the following conditions. Test  
operation cannot be performed in the absolute position detection system, either. To perform test  
operation, choose incremental in DRU parameter No.1.  
(1) Stroke-less coordinate system, e.g. rotary shaft, infinitely long positioning.  
(2) Changing of electronic gear after home position setting.  
14 - 1  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.2 Specifications  
(1) Specification of battery unit MR-J2M-BT  
POINT  
The revision (Edition 44) of the Dangerous Goods Rule of the  
International Air Transport Association (IATA) went into effect on  
January 1, 2003 and was enforced immediately. In this rule, "provisions of  
the lithium and lithium ion batteries" were revised to tighten the  
restrictions on the air transportation of batteries. However, since this  
battery is dangerous goods (Class 9), requires packing compliant with the  
Packing Standard 903. When a self-certificate is necessary for battery  
safety tests, contact our branch or representative. For more information,  
consult our branch or representative. (As of October, 2005).  
Item  
Description  
MR-J2M-BT  
Model  
System  
Electronic battery backup system  
Lithium battery (primary battery, nominal 3.6V)  
Home position 32767 rev.  
Battery unit  
Maximum revolution range  
(Note 1) Maximum speed at power failure  
(Note 2) Battery backup time  
(Note 3) Data holding time during battery  
replacement  
500r/min  
Approx. 10,000 hours (battery life with power off)  
2 hours at delivery, 1 hour in 5 years after delivery  
Battery storage period  
5 years from date of manufacture  
Note 1. Maximum speed available when the shaft is rotated by external force at the time of power failure or the like.  
2. Time to hold data by a battery with power off. It is recommended to replace the battery in three years  
independently of whether power is kept on or off.  
3. Period during which data can be held by the super capacitor in the encoder after power-off, with the battery  
voltage low or the battery removed, or during which data can be held with the encoder cable disconnected.  
Battery replacement should be finished within this period.  
(2) Configuration  
Controller  
CN1A  
Pulse train  
command IO  
Interface  
unit  
Base unit Drive unit  
RS-422  
/RS-232C  
CN1B  
CN3  
Servo motor  
Battery  
unit  
14 - 2  
14. ABSOLUTE POSITION DETECTION SYSTEM  
(3) DRU parameter setting  
Set " 1  
" in DRU parameter No.1 to make the absolute position detection system valid.  
DRU parameter No. 1  
Selection of absolute position detection system  
0: Used in incremental system  
1: Used in absolute position detection system  
14.3 Signal explanation  
The following is the signal used in an absolute position detection system. For the I/O interfaces (symbols  
in the I/O category column in the table), refer to section 3.2.5.  
Signal name  
Code  
Functions/Applications  
I/O category  
Clear  
(home position setting)  
CR  
Shorting CR -SG clears the position control counter and stores the  
home position data into the non-volatile memory (backup memory).  
DI-1  
14.4 Serial communication command  
The following commands are available for reading absolute position data using the serial communication  
function. When reading data, take care to specify the correct station number of the drive unit from where  
the data will be read.  
When the master station sends the data No. to the slave station (drive unit), the slave station returns the  
data value to the master station.  
(1) Transmission  
Transmit command [0][2] and data No. [9][1].  
(2) Reply  
The absolute position data in the command pulse unit is returned in hexadecimal.  
Data 32-bit length (hexadecimal representation)  
14 - 3  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.5 Startup procedure  
(1) Connection of a battery unit  
(2) Parameter setting  
Set "1  
"in DRU parameter No. 1 of the servo amplifier and switch power off, then on.  
(3) Resetting of absolute position erase (A.25)  
After connecting the encoder cable, the absolute position erase (A.25) occurs at first power-on. Leave  
the alarm as it is for a few minutes, then switch power off, then on to reset the alarm.  
(4) Confirmation of absolute position data transfer  
After making sure that the ready (RD ) output after the servo-on (SON ) had turned on has turned  
on, read the absolute value data with the serial communication function.  
(5) Home position setting  
The home position must be set if:  
(a) System setup is performed;  
(b) When the drive unit or interface unit is replaced;  
(c) The servo motor has been changed; or  
(d) The absolute position erase (A.25) occurred.  
In the absolute position system, the absolute position coordinates are made up by making home  
position setting at the time of system setup.  
The motor shaft may misoperate if positioning operation is performed without home position setting.  
Always make home position setting before starting operation.  
For the home position setting method and types, refer to Section 14.6.3.  
14 - 4  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.6 Absolute position data transfer protocol  
14.6.1 Data transfer procedure  
Every time the servo-on (SON  
turns on at power-on or like, the controller must read the current  
)
position data in the drive unit. Not performing this operation will cause a position shift.  
Time-out monitoring is performed by the controller.  
Controller  
MELSERVO-J2M  
SON ON  
RD ON  
Absolute position data  
command transmission  
Command [0][2] data No.[9][1]  
Absolute position  
data acquisition  
Watch dog timer  
Absolute position data return  
Current position  
acquisition  
Current value  
change  
Position command start  
14 - 5  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.6.2 Transfer method  
The sequence in which the base circuit is turned ON (servo-on) when it is in the OFF state due to the  
servo-on (SON ) going OFF, a forced stop, or alarm, is explained below. In the absolute position  
detection system, always give the serial communication command to read the current position in the drive  
unit to the controller every time the ready (RD ) turns on. The drive unit sends the current position to  
the controller on receipt of the command. At the same time, this data is set as a position command value  
in the drive unit.  
(1) Sequence processing at power-on  
ON  
Power  
supply  
OFF  
ON  
Servo-on  
OFF  
(SON  
)
100ms  
20ms  
ON  
Base  
circuit  
OFF  
Ready  
(RD  
ON  
)
OFF  
Absolute position data  
command transmission  
Absolute position data  
receive  
Current position change  
Current position  
ABS data  
Pulse train command  
During this period, get absolute position data.  
1) 100ms after the servo-on (SON ) has turned on, the base circuit turns on.  
2) After the base circuit has turned on, the ready (RD ) turns on.  
3) After the ready (RD ) turned on and the controller acquired the absolute position data, give  
command pulses to the drive unit. Providing command pulses before the acquisition of the  
absolute position data can cause a position shift.  
(2) Communication error  
If a communication error occurs between the controller and MELSERVO-J2M, the MELSERVO-J2M  
sends the error code. The definition of the error code is the same as that of the communication  
function. Refer to Section 13.5 for details.  
If a communication error has occurred, perform retry operation. If several retries do not result in a  
normal termination, perform error processing.  
14 - 6  
14. ABSOLUTE POSITION DETECTION SYSTEM  
(3) At the time of alarm reset  
If an alarm has occurred, detect the trouble (ALM_ ) and turn off the servo-on (SON ). After  
removing the alarm occurrence factor and deactivating the alarm, get the absolute position data again  
from the drive unit in accordance with the procedure in (1) of this section.  
ON  
Servo-on  
(SON  
)
OFF  
ON  
Reset  
(RES  
)
OFF  
100ms  
20ms  
ON  
Base circuit  
OFF  
Trouble  
ON  
(ALM_  
Ready  
)
OFF  
ON  
(RD  
)
OFF  
Absolute position data  
command transmission  
Absolute position  
data receive  
Current position change  
ABS data  
Current position  
Pulse train command  
During this period, get absolute position data.  
14 - 7  
14. ABSOLUTE POSITION DETECTION SYSTEM  
(4) At the time of forced stop reset  
200ms after the forced stop is deactivated, the base circuit turns on, and further 20ms after that, the  
ready (RD ) turns on. Always get the current position data from when the ready (RD ) is triggered  
until before the position command is issued.  
(a) When power is switched on in a forced stop status  
ON  
Power  
OFF  
supply  
ON  
Servo-on  
(SON  
)
OFF  
ON(Valid)  
Forced stop  
(EMG_  
)
OFF(Invalied)  
200ms  
20ms  
ON  
Base circuit  
Ready  
OFF  
ON  
(RD  
)
OFF  
Absolute position data  
command transmission  
Absolute position  
data receive  
Current position change  
Current position  
ABS data  
Pulse train command  
During this period, get absolute position data.  
(b) When a forced stop is activated during servo on  
ON  
Servo-on  
(SON  
)
OFF  
ON(Valid)  
Forced stop  
(EMG_  
)
OFF(Invalid)  
100ms  
ON  
Base circuit  
OFF  
20ms  
ON  
Ready  
(RD  
)
OFF  
Absolute position data  
command transmission  
Absolute position  
data receive  
Current position change  
Current position  
ABS data  
Pulse train command  
During this period, get absolute position data.  
14 - 8  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.6.3 Home position setting  
(1) Dog type home position return  
Preset a home position return creep speed at which the machine will not be given impact. On detection  
of a zero pulse, the home position setting (CR ) is turned from off to on. At the same time, the servo  
amplifier clears the droop pulses, comes to a sudden stop, and stores the stop position into the non-  
volatile memory as the home position ABS data.  
The home position setting (CR ) should be turned on after it has been confirmed that the in-position  
(INP ) is on. If this condition is not satisfied, the home position setting warning (A.96) will occur, but  
that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 100,000 times.  
Servo motor  
Near-zero point dog  
ON  
Dog signal  
OFF  
Zero pulse signal  
ON  
Completion of positioning  
(INP  
)
OFF  
ON  
Home position setting  
(CR  
)
OFF  
20ms or more  
20ms or more  
Home position  
ABS data  
Update  
14 - 9  
14. ABSOLUTE POSITION DETECTION SYSTEM  
(2) Data set type home position return  
POINT  
Never make home position setting during command operation or servo motor  
rotation. It may cause home position sift.  
It is possible to execute data set type home position return when the servo off.  
Perform manual operation such as JOG operation to move to the position where the home position is  
to be set. When the home position setting (CR ) is on for longer than 20ms, the stop position is stored  
into the non-volatile memory as the home position ABS data.  
When the servo on, set home position setting (CR ) to ON after confirming that the in-position  
(INP ) is ON. If this condition is not satisfied, the home position setting warning (A.96) will occur,  
but that warning will be reset automatically by making home position return correctly.  
The number of home position setting times is limited to 100,000 times.  
Manual feed (JOG, etc.)  
(more than 1 revolution  
of the motor shaft)  
Servo Motor  
Completion of  
ON  
positioning  
OFF  
( INP  
Home position  
setting (CR  
)
ON  
)
OFF  
20 [ms] or more  
Home position  
ABS data  
Update  
14.6.4 How to process the absolute position data at detection of stroke end  
The drive unit stops the acceptance of the command pulse when forward rotation stroke end  
(LSP reverse rotation stroke end (LSN ) is detected, clears the droop pulses to 0 at the same time,  
)
and stops the servo motor rapidly.  
At this time, the controller keeps outputting the command pulse. Since this causes a discrepancy between  
the absolute position data of the servo amplifier and the controller, a difference will occur between the  
position data of the servo amplifier and that of the controller.  
When the stroke end is detected, therefore, perform JOG operation or like to return to the position where  
stroke end detection can be deactivated, and read the current position data in the drive unit again.  
14 - 10  
14. ABSOLUTE POSITION DETECTION SYSTEM  
14.7 Confirmation of absolute position detection data  
You can confirm the absolute position data with MR Configurator (servo configuration software MRZJW3-  
SETUP151E).  
Clicking "Diagnostics" on the menu bar and click "Absolute encoder data" in the menu.  
(1)  
(2) By clicking "Absolute encoder data" in the sub-menu, the absolute encoder data display window  
appears.  
(3) Click the "Close" button to close the absolute encoder data display window.  
14 - 11  
14. ABSOLUTE POSITION DETECTION SYSTEM  
MEMO  
14 - 12  
APPENDIX  
App 1. Status indication block diagram  
App - 1  
APPENDIX  
MEMO  
App - 2  
REVISIONS  
*The manual number is given on the bottom left of the back cover.  
Print Data  
*Manual Number  
Revision  
Jan., 2002 SH(NA)030014-A First edition  
Sep., 2002 SH(NA)030014-B Safety Instructions: Addition of Note to 4. (1)  
Deletion of (7) in 4. Additional instructions  
Addition of About processing of waste  
Addition of EEP-ROM life  
Section 1.5 (2) (a): Partial change of rating plate  
Section 2.7: Partial change of CAUTION sentences  
Section 2.7 (8): Change of POINT  
Section 3.1: Partial change of drawing  
Section 3.2.1: Partial change of drawing  
Section 3.2.2: Addition of forced stop B text  
Section 3.2.4: Partial change of drawing  
Section 3.3.1: Partial change of drawing  
Section 3.4.2: Change of table  
Section 3.5.1: Addition of POINT  
Section 3.6: Addition of NOTE  
Section 5.1.2: Partial change of DRU parameter No. 20 data  
Section 5.2.1: Partial addition of text, change of table  
Section 6.2.2: Addition of POINT sentences  
Section 6.4 (3) (a): Change of expression  
Section 9.2: Deletion of A. 7A  
Section 9.3: Deletion of 4. in A. 16A  
Deletion of A. 7A  
Section 10.3 (4): Partial addition of contacts and applicable tools  
Section 11.1: Reexamination  
Section 11.2: Partial addition of NOTE sentences  
Section 11.4: Addition of MR-JC4CBL M-H  
Section 12.1.1 (1): Addition of text  
Section 12.1.2: Addition of cable  
Section 12.1.2 (2): Addition of POINT sentences  
Section 12.1.2 (2) (a): Addition and change of items, partial change of drawing  
Section 12.1.2 (2) (b): Addition of item  
Section 12.1.3 (2): Change of text  
Section 12.1.4: Deletion of POINT  
Section 12.1.4 (2): Change of terminal label sketch  
Section 12.1.4 (4) (b): Partial change of connection diagram  
Section 12.1.6 (1): Reexamination of table  
Section 12.1.6 (2): Partial change of contents  
Section 12.2.1 (2): Addition of cable  
Section 12.2.8: Partial addition of text  
Section 13.10: Partial addition of drawing  
Section 13.12.3 (2): Partial change of drawing  
Section 14.7: Partial reexamination of text  
Reexamination of description on configuration software  
Safety Instructions 1. To prevent electric shock: Addition of sentence  
Mar., 2004 SH(NA)030014-C  
Print Data  
*Manual Number  
Revision  
Mar., 2004 SH(NA)030014-C  
3. To prevent injury: Reexamination of sentence  
4. Additional instructions (1): Addition of Note/Reexamination of  
sentence  
(5): Reexamination of wiring drawing  
COMPLIANCE WITH EC DIRECTIVES 2. PRECAUTIONS FOR  
COMPLIANCE: IEC664-1 is modified to IEC60664-1 in (3) and (4).  
CONFORMANCE WITH UL/C-UL STANDARD (2): Reexamination of sentence  
Section 1.3 (1): Addition of Inrush current”  
Section 2.4 (2): Reexamination of sentence  
Section 2.7: Reexamination and addition of NOTE sentence  
Section 2.7 (8): Addition of POINT  
Section 3.1: The following modification is made to the diagram:  
CLEAR COMPULSE COM of positioning module QD70 is  
connected to SG (24G).  
Section 3.2.5 (1): Reexamination of diagram  
Section 3.2.5 (2) (c) 2): Reexamination of diagram  
Section 3.3.5 (2): Addition of NOTE  
Section 3.7 (3) (a): Partial change of diagram  
Section 5.3.1 (1) (b): Addition of POINT sentence  
Section 9.2: Reexamination of sentence  
Section 9.3: A.12 to 15: Reexamination of occurrence cause  
A.37: Addition of occurrence cause  
A.51: Rotation: 2.5s or moreis added.  
A.52: Change of content  
Section 12.1.1 (4): Addition of terminal block and mounting screw  
Section 12.1.6 (2) (a): Reexamination of Windows trademark  
Section 12.1.6 (2) (b): Change of FR-BSF01 outline drawing  
Section 14.2 (1): Addition of POINT  
Section 14.6.2 (4): Reexamination of forced stop  
Section 14.2 (1): Error in writing correction of POINT  
Feb., 2005 SH(NA)030014-D  
Oct., 2005  
SH(NA)030014-E Reexamination of description on configuration software  
Safety Instructions: 1. To prevent electric shock: Change of description from 10  
minutes to 15 minutes  
4. Additional instructions (2), (4): Addition of instructions  
COMPLIANCE WITH EC DIRECTIVES: Partial change of sentence  
CONFORMANCE WITH UL/C-UL STANDARD (4): Partial change of sentence  
Chapter 2: Addition of CAUTION sentence  
Chapter 3: Partial change of WARNING sentences  
Section 3.2.2 (4): Deletion of open collector power input  
Section 3.2.5 (2) (d) 2): Modification of servo motor CCW rotation  
Section 3.3.4 (2): Limiting torque: Partial change of sentences  
Warning Battery warning: Modification of description from  
within 3 seconds to after approximately 3 seconds  
Section 3.6: Addition of CAUTION sentences  
Section 3.6 (3): Change of sentences  
Section 3.7: Addition of CAUTION sentences  
Change of sentences  
Section 3.7(3): Modification of drawing (d), (e)  
Print Data  
*Manual Number  
Revision  
Oct., 2005  
SH(NA)030014-E Section 5.1.2 (2): Correction of DRU parameter No.38  
Section 5.3.2: Partial reexamination of sentences  
Section 5.3.2 (2): Addition of Note in table  
Chapter 8: Partial change of WARNING sentences  
Section 9.2: Alarm code No.A. 45 A.46: Addition of Note in table  
Section 9.3: Addition of CAUTION sentence  
DRU parameter [email protected]@: Addition of contents  
Section 9.4: Addition of CAUTION sentence  
Addition of POINT  
DRU parameter [email protected]@: Reexamination of Cause 2  
IFU parameter No.FA.9F: Partial addition of Cause  
IFU parameter [email protected]@: Addition of contents  
Section 10.2: Addition of Mounting screw Tightening torque  
Section 11.1: Partial change of CAUTION sentences  
Chapter 12: Partial change of WARNING sentences  
Section 12.1.1 (3): Addition of POINT  
Section 12.1.1 (4): Reexamination of Outline drawing (b), (c)  
Section 12.1.6 (2) (a): Partial reexamination of table and Note  
Section 12.2.3: Correction of Dimensions for D1 in table  
Section 12.2.6 (2) (d): Reexamination of Outline drawing for FR-BSF01  
Section 12.2.6 (2) (e): Addition of sentences  
Section 13.12.7 (3) (b): Correction in table  
Chapter 14: Reexamination of CAUTION sentences  
MEMO  
MODEL  
MODEL  
CODE  
HEAD OFFICE:TOKYO BLDG MARUNOUCHI TOKYO 100-8310  
This Instruction Manual uses recycled paper.  
Specifications subject to change without notice.  
SH (NA) 030014-E (0510) MEE  
Printed in Japan  

Philips Food Processor HR7740 User Manual
Philips CAM100 User Manual
PhatNoise KDC X8529 User Manual
Panasonic Digital Camcorder Bsi Mos Full Hd HXA100K User Manual
Panasonic CQ C800U User Manual
Orion Car Audio CO5001 User Manual
Orion Car Audio 230SX User Manual
Kenwood SK SYTL1 User Manual
Kenwood Car Stereo System KDC DAB41U User Manual
JVC KD G140 User Manual