Teledyne Drums T200H M User Manual

INSTRUCTION MANUAL  
MODEL T200H/M  
NITROGEN OXIDES ANALYZER  
© TELEDYNE ADVANCED POLLUTION INSTRUMENTATION  
9480 CARROLL PARK DRIVE  
SAN DIEGO, CA 92121-5201  
USA  
Toll-free Phone: 800-324-5190  
Phone: 858-657-9800  
Fax: 858-657-9816  
Website: http://www.teledyne-api.com/  
Copyright 2011-2012  
Teledyne Advanced Pollution Instrumentation  
07270B DCN6512  
20 June 2012  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ABOUT TELEDYNE ADVANCED POLLUTION INSTRUMENTATION (TAPI)  
Teledyne Advanced Pollution Instrumentation, Inc. (TAPI) is a worldwide market  
leader in the design and manufacture of precision analytical instrumentation used  
for air quality monitoring, continuous emissions monitoring, and specialty process  
monitoring applications. Founded in San Diego, California, in 1988, TAPI  
introduced a complete line of Air Quality Monitoring (AQM) instrumentation,  
which comply with the United States Environmental Protection Administration  
(EPA) and international requirements for the measurement of criteria pollutants,  
including CO, SO2, NOX and Ozone.  
Since 1988 TAPI has combined state-of-the-art technology, proven measuring  
principles, stringent quality assurance systems and world class after-sales  
support to deliver the best products and customer satisfaction in the business.  
For further information on our company, our complete range of products, and the  
applications that they serve, please visit www.teledyne-api.com or contact  
NOTICE OF COPYRIGHT  
© 2011-2012 Teledyne Advanced Pollution Instrumentation. All rights reserved.  
TRADEMARKS  
All trademarks, registered trademarks, brand names or product names appearing  
in this document are the property of their respective owners and are used herein  
for identification purposes only.  
i
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
ii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
SAFETY MESSAGES  
Important safety messages are provided throughout this manual for the purpose of  
avoiding personal injury or instrument damage. Please read these messages carefully.  
Each safety message is associated with a safety alert symbol, and are placed  
throughout this manual; the safety symbols are also located inside the instrument. It is  
imperative that you pay close attention to these messages, the descriptions of which  
are as follows:  
WARNING: Electrical Shock Hazard  
HAZARD: Strong oxidizer  
GENERAL WARNING/CAUTION: Read the accompanying message for  
specific information.  
CAUTION: Hot Surface Warning  
Do Not Touch: Touching some parts of the instrument without  
protection or proper tools could result in damage to the part(s) and/or the  
instrument.  
Technician Symbol: All operations marked with this symbol are to be  
performed by qualified maintenance personnel only.  
Electrical Ground: This symbol inside the instrument marks the central  
safety grounding point for the instrument.  
CAUTION  
This instrument should only be used for the purpose and in the manner described  
in this manual. If you use this instrument in a manner other than that for which it  
was intended, unpredictable behavior could ensue with possible hazardous  
consequences.  
NEVER use any gas analyzer to sample combustible gas(es)!  
For Technical Assistance regarding the use and maintenance of this instrument or any other  
Teledyne API product, contact Teledyne API’s Technical Support Department:  
Telephone: 800-324-5190  
or access any of the service options on our website at http://www.teledyne-api.com/  
iii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
CONSIGNES DE SÉCURITÉ  
Des consignes de sécurité importantes sont fournies tout au long du présent manuel  
dans le but d’éviter des blessures corporelles ou d’endommager les instruments.  
Veuillez lire attentivement ces consignes. Chaque consigne de sécurité est  
représentée par un pictogramme d’alerte de sécurité; ces pictogrammes se retrouvent  
dans ce manuel et à l’intérieur des instruments. Les symboles correspondent aux  
consignes suivantes :  
AVERTISSEMENT : Risque de choc électrique  
DANGER : Oxydant puissant  
AVERTISSEMENT GÉNÉRAL  
/
MISE EN GARDE : Lire la consigne  
complémentaire pour des renseignements spécifiques  
MISE EN GARDE : Surface chaude  
Ne pas toucher : Toucher à certaines parties de l’instrument sans protection ou  
sans les outils appropriés pourrait entraîner des dommages aux pièces ou à  
l’instrument.  
Pictogramme « technicien » : Toutes les opérations portant ce symbole doivent  
être effectuées uniquement par du personnel de maintenance qualifié.  
Mise à la terre : Ce symbole à l’intérieur de l’instrument détermine le point central  
de la mise à la terre sécuritaire de l’instrument.  
MISE EN GARDE  
Cet instrument doit être utilisé aux fins décrites et de la manière décrite dans  
ce manuel. Si vous utilisez cet instrument d’une autre manière que celle pour  
laquelle il a été prévu, l’instrument pourrait se comporter de façon imprévisible  
et entraîner des conséquences dangereuses.  
NE JAMAIS utiliser un analyseur de gaz pour échantillonner des gaz  
combustibles!  
iv  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
WARRANTY  
WARRANTY POLICY (02024 F)  
Teledyne Advanced Pollution Instrumentation (TAPI), a business unit of Teledyne  
Instruments, Inc., provides that:  
Prior to shipment, TAPI equipment is thoroughly inspected and tested. Should equipment  
failure occur, TAPI assures its customers that prompt service and support will be available.  
COVERAGE  
After the warranty period and throughout the equipment lifetime, TAPI stands ready to  
provide on-site or in-plant service at reasonable rates similar to those of other manufacturers  
in the industry. All maintenance and the first level of field troubleshooting are to be  
performed by the customer.  
NON-TAPI MANUFACTURED EQUIPMENT  
Equipment provided but not manufactured by TAPI is warranted and will be repaired to the  
extent and according to the current terms and conditions of the respective equipment  
manufacturer’s warranty.  
PRODUCT RETURN  
All units or components returned to Teledyne API should be properly packed for  
handling and returned freight prepaid to the nearest designated Service Center. After the  
repair, the equipment will be returned, freight prepaid.  
The complete Terms and Conditions of Sale can be reviewed at http://www.teledyne-  
api.com/terms_and_conditions.asp  
CAUTION – Avoid Warranty Invalidation  
Failure to comply with proper anti-Electro-Static Discharge (ESD) handling and packing instructions  
and Return Merchandise Authorization (RMA) procedures when returning parts for repair or  
calibration may void your warranty. For anti-ESD handling and packing instructions please refer to  
“Packing Components for Return to Teledyne API’s Customer Service” in the Primer on Electro-  
Static Discharge section of this manual, and for RMA procedures please refer to our Website at  
http://www.teledyne-api.com under Customer Support > Return Authorization.  
v
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
vi  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ABOUT THIS MANUAL  
This manual is comprised of multiple documents, in PDF format, as listed below.  
Part No. Rev  
Name/Description  
07270  
05147  
07351  
07367  
05149  
B
H
A
A
B
T200H/M Operation Manual  
Menu Trees and Software Documentation (inserted as Appendix A in this manual)  
Spare Parts List - T200H (located in Appendix B of this manual)  
Spare Parts List - T200M (located in Appendix B of this manual)t  
Repair Request Form (inserted as Appendix C in this manual)  
Documents included in Appendix D:  
0691101  
06911  
01669  
01840  
03632  
03956  
04354  
04181  
04468  
01840  
03632  
03956  
06731  
A
A
G
B
A
A
D
H
B
B
D
B
A
Interconnect Wire List  
Interconnect Wiring Diagram  
PCA 016680300, Ozone generator board  
PCA Thermo-electric cooler board  
PCA 03631, 0-20mA Driver  
PCA 039550200, Relay Board  
PCA 04003, Pressure/Flow Transducer Interface  
PCA 041800200, PMT pre-amplifier board  
PCA, 04467, Analog Output  
SCH, PCA 05802, MOTHERBOARD, GEN-5  
SCH, PCA 06697, INTRFC, LCD TCH SCRN,  
SCH, LVDS TRANSMITTER BOARD  
SCH, AUXILLIARY-I/O BOARD  
Note  
We recommend that all users read this manual in its entirety before  
operating the instrument.  
vii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
viii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
REVISION HISTORY  
This section provides information regarding changes to this manual.  
T200H/T200M Operation Manual PN 07270  
Date  
Rev DCN Change Summary  
2012 June 20  
2011 March 04  
B
A
6512 Administrative updates  
5999 Initial Release  
ix  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
x
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
TABLE OF CONTENTS  
ABOUT TELEDYNE ADVANCED POLLUTION INSTRUMENTATION (TAPI) ............................................................................... i  
SAFETY MESSAGES..................................................................................................................................................................iii  
CONSIGNES DE SÉCURITÉ...................................................................................................................................................... iv  
Warranty ...................................................................................................................................................................................... v  
About This Manual ......................................................................................................................................................................vii  
Revision History .......................................................................................................................................................................... ix  
Table of Contents........................................................................................................................................................................ xi  
List of Figures.............................................................................................................................................................................xiv  
List of Tables..............................................................................................................................................................................xvi  
LIST OF APPENDICES ............................................................................................................................................................xvii  
1. Introduction, Features, and Options.......................................................................................................................................19  
1.1. Overview ........................................................................................................................................................................19  
1.2. Features .........................................................................................................................................................................19  
1.3. Using This Manual..........................................................................................................................................................19  
1.4. Options...........................................................................................................................................................................20  
2. Specifications and Approvals.................................................................................................................................................23  
2.1. T200H/M Operating Specifications.................................................................................................................................23  
2.2. Approvals and Certifications...........................................................................................................................................24  
2.2.1. Safety .....................................................................................................................................................................24  
2.2.2. EMC........................................................................................................................................................................24  
3. Getting Started.......................................................................................................................................................................25  
3.1. Unpacking and Initial Setup............................................................................................................................................25  
3.2. Ventilation Clearance .....................................................................................................................................................26  
3.3. T200H/M Layout.............................................................................................................................................................26  
3.4. Electrical Connections....................................................................................................................................................32  
3.4.1. Power Connection ..................................................................................................................................................32  
3.4.2. Analog Inputs (Option 64) Connections..................................................................................................................33  
3.4.3. Analog Output Connections....................................................................................................................................33  
3.4.4. Connecting the Status Outputs...............................................................................................................................34  
3.4.5. Current Loop Analog Outputs (OPT 41) Setup.......................................................................................................36  
3.4.6. Connecting the Control Inputs ................................................................................................................................38  
3.4.7. Connecting the Alarm Relay Option (OPT 61)........................................................................................................39  
3.4.8. Connecting the Communications Ports...................................................................................................................40  
3.5. Pneumatic Connections .................................................................................................................................................42  
3.5.1. About Zero Air and Calibration (Span) Gases ........................................................................................................42  
3.5.2. Pneumatic Connections to T200H/M Basic Configuration ......................................................................................44  
3.5.3. Connections with Internal Valve Options Installed..................................................................................................49  
3.6. Initial Operation ..............................................................................................................................................................59  
3.6.1. Startup....................................................................................................................................................................59  
3.6.2. Warning Messages.................................................................................................................................................59  
3.6.3. Functional Check....................................................................................................................................................60  
3.7. Calibration ......................................................................................................................................................................61  
3.7.1. Basic NOx Calibration Procedure............................................................................................................................61  
3.7.2. Basic O2 Sensor Calibration Procedure..................................................................................................................66  
4. Operating Instructions............................................................................................................................................................71  
4.1. Overview of Operating Modes........................................................................................................................................71  
4.2. Sample Mode .................................................................................................................................................................73  
4.2.1. Test Functions........................................................................................................................................................73  
4.2.2. Warning Messages.................................................................................................................................................75  
4.3. Calibration Mode ............................................................................................................................................................77  
4.3.1. Calibration Functions..............................................................................................................................................77  
4.4. SETUP MODE................................................................................................................................................................77  
4.5. SETUP CFG: Viewing the Analyzer’s Configuration Information ...............................................................................78  
4.6. SETUP ACAL: Automatic Calibration.........................................................................................................................79  
4.7. SETUP DAS - Using the Data Acquisition System (DAS).........................................................................................80  
4.7.1. DAS Structure.........................................................................................................................................................81  
4.7.2. Default DAS Channels............................................................................................................................................83  
4.7.3. Remote DAS Configuration ....................................................................................................................................96  
xi  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Table of Contents  
Teledyne API - Model T200H/T200M Operation Manual  
4.8. SETUP RNGE: Range Units and Dilution Configuration............................................................................................97  
4.8.1. Range Units............................................................................................................................................................97  
4.8.2. Dilution Ratio ..........................................................................................................................................................98  
4.9. SETUP PASS: Password Feature .............................................................................................................................99  
4.10. SETUP CLK: Setting the Internal Time-of-Day Clock ............................................................................................101  
4.11. SETUP MORE COMM: Setting Up the Analyser’s Communication Ports .........................................................103  
4.11.1. DTE and DCE Communication...........................................................................................................................103  
4.11.2. COM Port Default Settings .................................................................................................................................103  
4.11.3. Communication Modes, Baud Rate and Port Testing.........................................................................................104  
4.11.4. Analyzer ID.........................................................................................................................................................108  
4.11.5. RS-232 COM Port Cable Connections ...............................................................................................................109  
4.11.6. RS-485 Configuration of COM2..........................................................................................................................111  
4.11.7. Ethernet Interface Configuration.........................................................................................................................111  
4.11.8. USB Port Setup ..................................................................................................................................................117  
4.11.9. Multidrop RS-232 Set Up....................................................................................................................................119  
4.11.10. MODBUS SETUP.............................................................................................................................................122  
4.12. SETUP MORE VARS: Internal Variables (VARS).............................................................................................124  
4.12.1. Setting the Gas Measurement Mode ..................................................................................................................126  
4.13. SETUP MORE DIAG: Diagnostics MENU........................................................................................................127  
4.13.1. Accessing the Diagnostic Features.....................................................................................................................128  
4.13.2. Signal I/O............................................................................................................................................................128  
4.13.3. Analog Output Step Test ....................................................................................................................................130  
4.13.4. ANALOG OUTPUTS and Reporting Ranges......................................................................................................131  
4.13.5. ANALOG I/O CONFIGURATION........................................................................................................................134  
4.13.6. ANALOG OUTPUT CALIBRATION....................................................................................................................148  
4.13.7. OTHER DIAG MENU FUNCTIONS....................................................................................................................158  
4.14. SETUP – ALRM: Using the optional Gas Concentration Alarms (OPT 67) ................................................................166  
4.15. Remote Operation......................................................................................................................................................167  
4.15.1. Remote Operation Using the External Digital I/O ...............................................................................................167  
4.15.2. Remote Operation ..............................................................................................................................................169  
4.15.3. Additional Communications Documentation .......................................................................................................176  
4.15.4. Using the T200H/M with a Hessen Protocol Network .........................................................................................176  
5. Calibration Procedures.........................................................................................................................................................183  
5.1.1. Interferents for NOX Measurements......................................................................................................................183  
5.2. Calibration Preparations...............................................................................................................................................184  
5.2.1. Required Equipment, Supplies, and Expendables................................................................................................184  
5.2.2. Zero Air.................................................................................................................................................................184  
5.2.3. Span Calibration Gas Standards & Traceability....................................................................................................185  
5.2.4. Data Recording Devices.......................................................................................................................................186  
5.2.5. NO2 Conversion Efficiency (CE) ...........................................................................................................................186  
5.3. Manual Calibration .......................................................................................................................................................191  
5.4. Calibration Checks .......................................................................................................................................................195  
5.5. Manual Calibration with Zero/Span Valves...................................................................................................................196  
5.6. Calibration Checks with Zero/Span Valves...................................................................................................................199  
5.7. Calibration With Remote Contact Closures ..................................................................................................................200  
5.8. Automatic Calibration (AutoCal) ...................................................................................................................................201  
5.9. Calibration Quality Analysis..........................................................................................................................................204  
6. Instrument Maintenance.......................................................................................................................................................205  
6.1. Maintenance Schedule.................................................................................................................................................205  
6.2. Predictive Diagnostics ..................................................................................................................................................207  
6.3. Maintenance Procedures..............................................................................................................................................207  
6.3.1. Changing the Sample Particulate Filter ................................................................................................................207  
6.3.2. Changing the O3 Dryer Particulate Filter...............................................................................................................209  
6.3.3. Maintaining the External Sample Pump................................................................................................................210  
6.3.4. Changing the NO2 converter.................................................................................................................................211  
6.3.5. Cleaning the Reaction Cell ...................................................................................................................................212  
6.3.6. Changing Critical Flow Orifices.............................................................................................................................214  
6.3.7. Checking for Light Leaks ......................................................................................................................................215  
7. Troubleshooting & Repair ....................................................................................................................................................217  
7.1. General Troubleshooting..............................................................................................................................................217  
7.1.1. Fault Diagnosis with Warning Messages..............................................................................................................218  
7.1.2. Fault Diagnosis with Test Functions .....................................................................................................................219  
7.1.3. Using the Diagnostic Signal I/O Function .............................................................................................................220  
7.1.4. Status LED’s.........................................................................................................................................................222  
7.2. Gas Flow Problems......................................................................................................................................................225  
xii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Table of Contents  
7.2.1. T200H Internal Gas Flow Diagrams......................................................................................................................226  
7.2.2. T200M Internal Gas Flow Diagrams .....................................................................................................................229  
7.2.3. Zero or Low Flow Problems..................................................................................................................................231  
7.2.4. High Flow..............................................................................................................................................................233  
7.2.5. Sample Flow is Zero or Low But Analyzer Reports Correct Flow .........................................................................233  
7.3. Calibration Problems ....................................................................................................................................................234  
7.3.1. Negative Concentrations ......................................................................................................................................234  
7.3.2. No Response........................................................................................................................................................234  
7.3.3. Unstable Zero and Span.......................................................................................................................................235  
7.3.4. Inability to Span - No SPAN Key ..........................................................................................................................235  
7.3.5. Inability to Zero - No ZERO Button.......................................................................................................................236  
7.3.6. Non-Linear Response...........................................................................................................................................236  
7.3.7. Discrepancy Between Analog Output and Display ...............................................................................................237  
7.3.8. Discrepancy between NO and NOX slopes...........................................................................................................237  
7.4. Other Performance Problems.......................................................................................................................................237  
7.4.1. Excessive noise....................................................................................................................................................238  
7.4.2. Slow Response.....................................................................................................................................................238  
7.4.3. Auto-zero Warnings..............................................................................................................................................238  
7.5. Subsystem Checkout ...................................................................................................................................................239  
7.5.1. Simple Leak Check using Vacuum and Pump......................................................................................................239  
7.5.2. Detailed Leak Check Using Pressure ...................................................................................................................239  
7.5.3. Performing a Sample Flow Check ........................................................................................................................240  
7.5.4. AC Power Configuration .......................................................................................................................................241  
7.5.5. DC Power Supply Test Points ..............................................................................................................................245  
7.5.6. I2C Bus .................................................................................................................................................................245  
7.5.7. Touch Screen Interface ........................................................................................................................................246  
7.5.8. LCD Display Module.............................................................................................................................................246  
7.5.9. General Relay Board Diagnostics.........................................................................................................................246  
7.5.10. Motherboard .......................................................................................................................................................247  
7.5.11. CPU....................................................................................................................................................................249  
7.5.12. RS-232 Communication......................................................................................................................................250  
7.5.13. PMT Sensor........................................................................................................................................................251  
7.5.14. PMT Preamplifier Board .....................................................................................................................................251  
7.5.15. High Voltage Power Supply................................................................................................................................251  
7.5.16. Pneumatic Sensor Assembly..............................................................................................................................252  
7.5.17. NO2 Converter ....................................................................................................................................................253  
7.5.18. O3 Generator ......................................................................................................................................................255  
7.5.19. Box Temperature................................................................................................................................................255  
7.5.20. PMT Temperature...............................................................................................................................................255  
7.6. Repair Procedures .......................................................................................................................................................256  
7.6.1. Disk-on-Module Replacement ..............................................................................................................................256  
7.6.2. O3 Generator Replacement ..................................................................................................................................257  
7.6.3. Sample and Ozone Dryer Replacement ...............................................................................................................257  
7.6.4. PMT Sensor Hardware Calibration.......................................................................................................................258  
7.6.5. Replacing the PMT, HVPS or TEC.......................................................................................................................260  
7.7. Removing / Replacing the Relay PCA from the Instrument..........................................................................................263  
7.8. Frequently Asked Questions ........................................................................................................................................264  
7.9. Technical Assistance....................................................................................................................................................265  
8. Principles of Operation.........................................................................................................................................................267  
8.1. Measurement Principle.................................................................................................................................................267  
8.1.1. Chemiluminescence .............................................................................................................................................267  
8.1.2. NOX and NO2 Determination.................................................................................................................................269  
8.2. Chemiluminescence Detection.....................................................................................................................................270  
8.2.1. The Photo Multiplier Tube.....................................................................................................................................270  
8.2.2. Optical Filter .........................................................................................................................................................270  
8.2.3. Auto Zero..............................................................................................................................................................271  
8.2.4. Measurement Interferences..................................................................................................................................272  
8.3. Pneumatic Operation....................................................................................................................................................274  
8.3.1. Pump and Exhaust Manifold.................................................................................................................................274  
8.3.2. Sample Gas Flow .................................................................................................................................................275  
8.3.3. Flow Rate Control - Critical Flow Orifices .............................................................................................................276  
8.3.4. Sample Particulate Filter.......................................................................................................................................280  
8.3.5. Ozone Gas Air Flow..............................................................................................................................................281  
8.3.6. O3 Generator ........................................................................................................................................................282  
8.3.7. Perma Pure® Dryer...............................................................................................................................................283  
xiii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
Teledyne API - Model T200H/T200M Operation Manual  
8.3.8. Ozone Supply Air Filter.........................................................................................................................................285  
8.3.9. Ozone Scrubber ...................................................................................................................................................285  
8.3.10. Pneumatic Sensors.............................................................................................................................................286  
8.3.11. Dilution Manifold.................................................................................................................................................287  
8.4. Oxygen Sensor (OPT 65A) Principles of Operation .....................................................................................................288  
8.4.1. Paramagnetic Measurement of O2........................................................................................................................288  
8.4.2. Operation Within the T200H/M Analyzer ..............................................................................................................289  
8.4.3. Pneumatic Operation of the O2 Sensor.................................................................................................................289  
8.5. Electronic Operation.....................................................................................................................................................290  
8.5.1. CPU......................................................................................................................................................................291  
8.5.2. Sensor Module, Reaction Cell ..............................................................................................................................292  
8.5.3. Photo Multiplier Tube (PMT).................................................................................................................................293  
8.5.4. PMT Cooling System............................................................................................................................................295  
8.5.5. PMT Preamplifier..................................................................................................................................................295  
8.5.6. Pneumatic Sensor Board......................................................................................................................................297  
8.5.7. Relay Board..........................................................................................................................................................297  
8.5.8. Status LEDs & Watch Dog Circuitry......................................................................................................................301  
8.5.9. Motherboard .........................................................................................................................................................302  
8.5.10. Analog Outputs...................................................................................................................................................304  
8.5.11. External Digital I/O..............................................................................................................................................304  
8.5.12. I2C Data Bus.......................................................................................................................................................304  
8.5.13. Power-up Circuit .................................................................................................................................................304  
8.6. Power Distribution & Circuit Breaker ............................................................................................................................305  
8.7. Front Panel/Display Interface Electronics.....................................................................................................................306  
8.7.1. Front Panel Interface PCA....................................................................................................................................306  
8.8. Software Operation ......................................................................................................................................................307  
8.8.1. Adaptive Filter.......................................................................................................................................................308  
8.8.2. Calibration - Slope and Offset...............................................................................................................................308  
8.8.3. Temperature/Pressure Compensation (TPC) .......................................................................................................309  
8.8.4. NO2 Converter Efficiency Compensation..............................................................................................................310  
8.8.5. Internal Data Acquisition System (DAS) ...............................................................................................................310  
9. A Primer on Electro-Static Discharge...................................................................................................................................311  
9.1. How Static Charges are Created..................................................................................................................................311  
9.2. How Electro-Static Charges Cause Damage................................................................................................................312  
9.3. Common Myths About ESD Damage...........................................................................................................................313  
9.4. Basic Principles of Static Control..................................................................................................................................314  
9.4.1. General Rules.......................................................................................................................................................314  
9.4.2. Basic anti-ESD Procedures for Analyzer Repair and Maintenance ......................................................................315  
Glossary...................................................................................................................................................................................319  
LIST OF FIGURES  
Figure 3-1:  
Figure 3-2:  
Figure 3-3:  
Figure 3-4:  
Figure 3-5:  
Figure 3-6:  
Figure 3-7:  
Figure 3-8:  
Figure 3-9:  
Figure 3-10:  
Figure 3-11:  
Figure 3-12:  
Figure 3-13:  
Figure 3-14:  
Figure 3-15:  
Figure 3-16:  
Figure 3-17:  
Front Panel ..................................................................................................................................27  
Display/Touch Control Screen Mapped to Menu Charts .............................................................29  
T200H/M Rear Panel Layout .......................................................................................................30  
T200H/M Internal Layout .............................................................................................................31  
Analog In Connector....................................................................................................................33  
Analog Output Connector ............................................................................................................34  
Status Output Connector .............................................................................................................35  
Control Input Connector...............................................................................................................38  
T200H/M Multidrop Card .............................................................................................................41  
Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator.............................44  
Pneumatic Connections–Basic Configuration–Using Bottled Span Gas.....................................45  
T200H Internal Pneumatic Block Diagram - Standard Configuration..........................................47  
T200M Internal Pneumatic Block Diagram - Standard Configuration..........................................48  
Pneumatic Connections–With Zero/Span Valve Option (50A)....................................................49  
xiv  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Table of Contents  
Figure 3-18:  
Figure 3-19:  
Figure 3-20:  
Figure 3-21:  
Figure 3-22:  
Figure 3-23:  
Figure 3-24:  
Figure 3-23:  
Figure 4-1:  
Figure 4-2:  
Figure 4-3:  
Figure 4-4:  
Figure 4-5:  
Figure 4-6:  
Figure 4-7:  
Figure 4-8:  
Figure 4-9:  
Figure 4-10:  
Figure 4-11:  
Figure 4-12:  
Figure 4-13:  
Figure 4-14.  
Figure 4-15:  
Figure 4-16:  
Figure 4-17:  
Figure 4-18:  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
Figure 6-1:  
Figure 6-2:  
Figure 6-3:  
Figure 6-4:  
Figure 6-5:  
Figure 7-1:  
Figure 7-2:  
Figure 7-3:  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Figure 7-7:  
Figure 7-8:  
Figure 7-9:  
Figure 7-10:  
Figure 7-11:  
Figure 7-12:  
Figure 7-13:  
Figure 7-14:  
Figure 7-15:  
Figure 7-16:  
Figure 7-17:  
Figure 7-18:  
Figure 7-19.  
Figure 7-20:  
Figure 7-21:  
Figure 8-1:  
Figure 8-2:  
Pneumatic Connections–With 2-Span point Option (50D) –Using Bottled Span Gas.................49  
T200H – Internal Pneumatics with Ambient Zero-Span Valve Option 50A .................................50  
T200M – Internal Pneumatics with Ambient Zero-Span Valve Option 50A.................................51  
T200H - Internal Pneumatics for Zero Scrubber/Dual Pressurized Span, Option 50D ...............55  
T200M - Internal Pneumatics for Zero Scrubber/Dual Pressurized Span, Option 50D...............56  
T200H – Internal Pneumatics with O2 Sensor Option 65A .........................................................57  
T200M – Internal Pneumatics with O2 Sensor Option 65A..........................................................58  
O2 Sensor Calibration Set Up......................................................................................................66  
Front Panel Display with “SAMPLE” Indicated in the Mode Field ...............................................72  
APICOM Graphical User Interface for Configuring the DAS .......................................................96  
Default Pin Assignments for Rear Panel com Port Connectors (RS-232 DCE & DTE) ........... 109  
CPU COM1 & COM2 Connector Pin-Outs in RS-232 mode.................................................... 110  
COM – LAN / Internet Manual Configuration............................................................................ 115  
Jumper and Cables for Multidrop Mode.................................................................................... 120  
RS-232-Multidrop Host-to-Analyzer Interconnect Diagram...................................................... 121  
Analog Output Connector Key.................................................................................................. 131  
Setup for Calibrating Analog Outputs ....................................................................................... 151  
Setup for Calibrating Current Outputs ...................................................................................... 153  
Alternative Setup for Calibrating Current Outputs .................................................................... 154  
DIAG – Analog Inputs (Option) Configuration Menu ................................................................ 157  
Status Output Connector .......................................................................................................... 167  
Control Inputs with local 5 V power supply............................................................................... 169  
Control Inputs with external 5 V power supply ......................................................................... 169  
APICOM Remote Control Program Interface ........................................................................... 175  
Gas Supply Setup for Determination of NO2 Conversion Efficiency......................................... 187  
Pneumatic Connections–With Zero/Span Valve Option (50A)................................................. 191  
Pneumatic Connections–With 2-Span point Option (50D) –Using Bottled Span Gas.............. 192  
Pneumatic Connections–With Zero/Span Valve Option (50) ................................................... 196  
Sample Particulate Filter Assembly.......................................................................................... 208  
Particle Filter on O3 Supply Air Dryer ....................................................................................... 209  
NO2 Converter Assembly.......................................................................................................... 211  
Reaction Cell Assembly............................................................................................................ 213  
Critical Flow Orifice Assembly .................................................................................................. 214  
Viewing and Clearing Warning Messages................................................................................ 219  
Switching Signal I/O Functions................................................................................................. 221  
Motherboard Watchdog Status Indicator.................................................................................. 222  
Relay Board PCA...................................................................................................................... 223  
T200H – Basic Internal Gas Flow............................................................................................. 226  
T200H – Internal Gas Flow with Ambient Zero Span, OPT 50A .............................................. 227  
T200H – Internal Gas Flow with O2 Sensor, OPT 65A............................................................. 228  
T200M – Basic Internal Gas Flow............................................................................................. 229  
T200M – Internal Gas Flow with Ambient Zero Span, OPT 50A.............................................. 230  
T200M – Internal Gas Flow with O2 Sensor, OPT 65A ............................................................ 231  
Location of AC power Configuration Jumpers.......................................................................... 241  
Pump AC Power Jumpers (JP7)............................................................................................... 242  
Typical Set Up of AC Heater Jumper Set (JP2) ....................................................................... 243  
Typical Set Up of AC Heater Jumper Set (JP6) ....................................................................... 244  
Typical Set Up of Status Output Test ....................................................................................... 248  
Pressure / Flow Sensor Assembly............................................................................................ 253  
Pre-Amplifier Board Layout....................................................................................................... 259  
T200H/M Sensor Assembly...................................................................................................... 260  
3-Port Reaction Cell Oriented to the Sensor Housing.............................................................. 261  
Relay PCA with AC Relay Retainer In Place............................................................................ 263  
Relay PCA Mounting Screw Locations.................................................................................... 263  
T200H/M Sensitivity Spectrum ................................................................................................. 268  
NO2 Conversion Principle ......................................................................................................... 269  
xv  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Table of Contents  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 8-3:  
Figure 8-4:  
Figure 8-5:  
Figure 8-6:  
Figure 8-7:  
Figure 8-8:  
Figure 8-9:  
Figure 8-10:  
Figure 8-11:  
Figure 8-12:  
Figure 8-13:  
Figure 8-14:  
Figure 8-15:  
Figure 8-16:  
Figure 8-17:  
Figure 8-18:  
Figure 8-19:  
Figure 8-20:  
Figure 8-21:  
Figure 8-22:  
Figure 8-23:  
Figure 8-24:  
Figure 8-25:  
Figure 8-26:  
Figure 9-1:  
Figure 9-2:  
Reaction Cell with PMT Tube ................................................................................................... 270  
Reaction Cell During the AutoZero Cycle................................................................................. 271  
External Pump Pack ................................................................................................................. 275  
Location of Gas Flow Control Assemblies for T200H............................................................... 277  
Location of Gas Flow Control Assemblies for T200M .............................................................. 278  
Flow Control Assembly & Critical Flow Orifice ......................................................................... 279  
Ozone Generator Principle ....................................................................................................... 282  
Semi-Permeable Membrane Drying Process ........................................................................... 283  
T200H/M Perma Pure® Dryer ................................................................................................... 284  
Vacuum Manifold ...................................................................................................................... 286  
Dilution Manifold ....................................................................................................................... 288  
Oxygen Sensor - Principle of Operation................................................................................... 289  
T200H/M Electronic Block Diagram.......................................................................................... 290  
T200H/M CPU Board Annotated .............................................................................................. 291  
PMT Housing Assembly ........................................................................................................... 293  
Basic PMT Design .................................................................................................................... 294  
PMT Cooling System................................................................................................................ 295  
PMT Preamp Block Diagram .................................................................................................... 296  
Heater Control Loop Block Diagram......................................................................................... 298  
Thermocouple Configuration Jumper (JP5) Pin-Outs............................................................... 299  
Status LED Locations – Relay PCA.......................................................................................... 301  
Power Distribution Block Diagram ............................................................................................ 305  
Front Panel and Display Interface Block Diagram.................................................................... 306  
Basic Software Operation......................................................................................................... 307  
Triboelectric Charging............................................................................................................... 311  
Basic anti-ESD Work Station.................................................................................................... 314  
LIST OF TABLES  
Table 2-1:  
Table 3-1:  
Table 3-4:  
Table 3-5:  
Table 3-6:  
Table 5-5:  
Table 3-8:  
Table 3-9:  
Table 3-10:  
Table 3-11:  
Table 4-1:  
Table 4-2:  
Table 4-3:  
Table 4-4:  
Table 4-5:  
Table 4-6:  
Table 4-7:  
Table 4-8:  
Table 4-9:  
Table 4-10:  
Table 4-11:  
Table 4-13:  
Table 4-14:  
Table 4-15:  
Table 4-16:  
Table 4-17:  
Analog Output Pin-Outs...............................................................................................................34  
Status Output Signals..................................................................................................................35  
Control Input Signals ...................................................................................................................38  
Inlet / Outlet Connector Descriptions...........................................................................................42  
NIST-SRM's Available for Traceability of NOx Calibration Gases ................................................43  
Zero/Span Valve States...............................................................................................................51  
Analyzer Operating modes ..........................................................................................................73  
Test Functions Defined................................................................................................................74  
List of Warning Messages ...........................................................................................................76  
DAS Data Channel Properties.....................................................................................................81  
Password Levels..........................................................................................................................99  
COM Port Communication modes............................................................................................ 104  
LAN/Internet Configuration Properties...................................................................................... 113  
Internet Configuration Menu Button Functions......................................................................... 116  
Variable Names (VARS)........................................................................................................... 124  
T200H/M Diagnostic (DIAG) Functions .................................................................................... 127  
Analog Output Voltage Ranges with Over-Range Active ......................................................... 131  
xvi  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Table of Contents  
Table 4-18:  
Table 4-19:  
Table 4-20:  
Table 4-21:  
Table 4-22:  
Table 4-23:  
Table 4-24:  
Table 4-25:  
Table 4-26:  
Table 4-27:  
Table 4-28:  
Table 4-30:  
Table 4-31:  
Table 4-32:  
Table 4-33:  
Table 4-34:  
Table 6-28:  
Table 4-35:  
Table 4-36:  
Table 5-1:  
Table 5-2:  
Table 5-3:  
Table 5-4:  
Table 5-5:  
Table 6-1:  
Table 6-2:  
Table 7-4:  
Table 7-5:  
Table 7-6:  
Table 7-7:  
Table 7-8:  
Table 7-9:  
Table 7-10:  
Table 7-11:  
Table 8-1:  
Table 8-2:  
Table 8-3:  
Table8-4:  
Analog Output Pin Assignments............................................................................................... 131  
Analog Output Current Loop Range ......................................................................................... 132  
Example of Analog Output Configuration for T200H/M ............................................................ 132  
DIAG - Analog I/O Functions .................................................................................................... 134  
Analog Output Data Type Default Settings............................................................................... 140  
Analog Output DAS Parameters Related to Gas Concentration Data ..................................... 141  
Voltage Tolerances for Analog Output Calibration ................................................................... 151  
Current Loop Output Calibration with Resistor......................................................................... 154  
T200H/M Available Concentration Display Values................................................................... 158  
T200H/M Concentration Display Default Values ...................................................................... 159  
Concentration Alarm Default Settings....................................................................................... 166  
Control Input Pin Assignments ................................................................................................. 168  
Terminal Mode Software Commands ....................................................................................... 170  
Command Types....................................................................................................................... 170  
Serial Interface Documents ...................................................................................................... 176  
RS-232 Communication Parameters for Hessen Protocol ....................................................... 177  
T200H/M Hessen Protocol Response Modes .......................................................................... 178  
T200H/M Hessen GAS ID List.................................................................................................. 180  
Default Hessen Status Bit Assignments ................................................................................... 181  
NIST-SRM's Available for Traceability of NOx Calibration Gases ............................................. 185  
AutoCal Modes ......................................................................................................................... 201  
AutoCal Attribute Setup Parameters......................................................................................... 201  
Example Auto-Cal Sequence.................................................................................................... 202  
Calibration Data Quality Evaluation.......................................................................................... 204  
T200H/M Preventive Maintenance Schedule ........................................................................... 206  
Predictive Uses for Test Functions........................................................................................... 207  
Power Configuration for Standard AC Heaters (JP2)............................................................... 243  
Power Configuration for Optional AC Heaters (JP6) ................................................................ 244  
DC Power Test Point and Wiring Color Code........................................................................... 245  
DC Power Supply Acceptable Levels ....................................................................................... 245  
Relay Board Control Devices.................................................................................................... 246  
Analog Output Test Function - Nominal Values ....................................................................... 247  
Status Outputs Pin Assignments ............................................................................................. 248  
Example of HVPS Power Supply Outputs................................................................................ 252  
List of Interferents ..................................................................................................................... 273  
T200H/M Valve Cycle Phases.................................................................................................. 276  
T200H/M Critical Flow Orifice Diameters and Gas Flow Rates................................................ 280  
Thermocouple Configuration Jumper (JP5) Pin-Outs............................................................... 299  
Typical Thermocouple Settings ................................................................................................ 300  
Static Generation Voltages for Typical Activities...................................................................... 312  
Sensitivity of Electronic Devices to Damage by ESD............................................................... 312  
Table 8-5:  
Table 9-1:  
Table 9-2:  
LIST OF APPENDICES  
APPENDIX A - VERSION SPECIFIC SOFTWARE DOCUMENTATION  
APPENDIX B - T200H/M SPARE PARTS LIST  
APPENDIX C - REPAIR QUESTIONNAIRE - T200H/M  
APPENDIX D - ELECTRONIC SCHEMATICS  
xvii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Table of Contents  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
xviii  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1. INTRODUCTION, FEATURES, AND OPTIONS  
1.1. OVERVIEW  
The Models T200H and T200M (also referred to in this manual as T200H/M when  
applicable to both models) use the proven chemiluminescence measurement principle,  
coupled with state-of-the-art microprocessor technology for monitoring high and  
medium levels of nitrogen oxides. User-selectable analog output ranges and a linear  
response over the entire measurement range make them ideal for a wide variety of  
applications, including extractive and dilution CEM, stack testing, and process control.  
1.2. FEATURES  
The Models T200H and T200M include the following features:  
LCD Graphical User Interface with capacitive touch screen  
Bi-directional RS-232, and 10/100Base-T Ethernet (optional USB and RS-485) ports  
for remote operation  
Front panel USB ports for peripheral devices  
T200H: 0-5 ppm to 0-5000 ppm, user selectable  
T200M: 0-1 to 0-200 ppm, user selectable  
Independent ranges for NO, NO2, NOX  
Auto ranging and remote range selection  
NOX-only or NO-only modes  
Microprocessor controlled for versatility  
Multi-tasking software allows viewing of test variables while operating  
Continuous self checking with alarms  
Permeation drier on ozone generator  
Digital status outputs provide instrument condition  
Adaptive signal filtering optimizes response time  
Temperature & pressure compensation, automatic zero correction  
Converter efficiency correction software  
Minimum CO2 and H2O interference  
Catalytic ozone scrubber  
Internal data logging with 1 min to 365 day multiple averages  
1.3. USING THIS MANUAL  
The flowcharts in this manual contain typical representations of the analyzer’s display  
during the various operations being described. These representations are not intended to  
be exact and may differ slightly from the actual display of your instrument.  
19  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Introduction, Features, and Options  
Teledyne API - Model T200H/T200M Operation Manual  
1.4. OPTIONS  
Option  
Number  
Option  
Pumps  
Description/Notes  
Reference  
Pumps meet all typical AC power supply standards while exhibiting same  
pneumatic performance.  
11A  
11B  
12A  
12B  
12C  
Ship without pump  
N/A  
N/A  
N/A  
N/A  
N/A  
Pumpless Pump Pack  
Internal Pump 115V @ 60 Hz  
Internal Pump 220V @ 60 Hz  
Internal Pump 220V @ 50 Hz  
Rack Mount  
Kits  
Options for mounting the analyzer in standard 19” racks  
20A  
20B  
21  
Rack mount brackets with 26 in. (660 mm) chassis slides  
Rack mount brackets with 24 in. (610 mm) chassis slides  
N/A  
N/A  
Rack mount brackets only (compatible with carrying strap, Option 29) N/A  
23  
Rack mount for external pump pack (no slides)  
Side-mounted strap for hand-carrying analyzer  
Extends from “flat” position to accommodate hand for carrying.  
Recesses to 9mm (3/8”) dimension for storage.  
Can be used with rack mount brackets, Option 21.  
Cannot be used with rack mount slides.  
N/A  
Carrying Strap/Handle  
29  
N/A  
CAUTION – GENERAL SAFETY HAZARD  
THE T200H OR T200M ANALYZER WEIGHS ABOUT 18 KG (40 POUNDS).  
TO AVOID PERSONAL INJURY WE RECOMMEND THAT TWO PERSONS LIFT AND CARRY THE  
ANALYZER. DISCONNECT ALL CABLES AND TUBING FROM THE ANALYZER BEFORE MOVING IT.  
Used for connecting external voltage signals from other instrumentation (such as  
meteorological instruments).  
Analog Input and USB port  
64B  
Current Loop Analog  
Also can be used for logging these signals in the analyzer’s internal  
DAS  
Section 3.4.2  
Adds isolated, voltage-to-current conversion circuitry to the analyzer’s analog  
outputs.  
Outputs  
Can be configured for any output range between 0 and 20 mA.  
41  
May be ordered separately for any of the analog outputs.  
Can be installed at the factory or retrofitted in the field.  
Spare parts and expendables  
Section 3.4.5  
Parts Kits  
Expendables Kit includes a recommended set of expendables for  
one year of operation of this instrument including replacement  
sample particulate filters.  
42A  
Appendix B  
Used to control the flow of calibration gases generated from external sources,  
rather than manually switching the rear panel pneumatic connections.  
Calibration Valves  
AMBIENT ZERO AND AMBIENT SPAN VALVES  
50A  
50D  
Zero Air and Span Gas input supplied at ambient pressure.  
Section 3.5.3.1  
Gases controlled by 2 internal valves; SAMPLE/CAL & ZERO/SPAN.  
ZERO SCRUBBER AND DUAL PRESSURIZED SPAN VALVES  
Zero Air Scrubber produces/supplies zero air to the ZERO inlet port.  
Dual Pressurized Span Valves for two gas mixtures to separate inlet ports,  
HIGH SPAN and LOW SPAN.  
Section 3.5.3.2  
20  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Introduction, Features, and Options  
Option  
Number  
Option  
Description/Notes  
Reference  
Communication Cables  
For remote serial, network and Internet communication with the analyzer.  
Type  
Description  
Shielded, straight-through DB-9F to DB-25M cable, about  
1.8 m long. Used to interface with older computers or  
code activated switches with DB-25 serial connectors.  
60A  
RS-232  
Section 3.4.8  
Shielded, straight-through DB-9F to DB-9F cable of about  
1.8 m length.  
60B  
60C  
RS-232  
Ethernet  
USB  
Section 3.4.8  
Section 3.4.8  
Section 3.4.8  
Patch cable, 2 meters long, used for Internet and LAN  
communications.  
Cable for direct connection between instrument (rear  
panel USB port) and personal computer.  
60D  
USB Port  
For remote connection  
For connection to personal computer. (Separate option only when  
Option 64B, Analog Input and USB Com Port not elected).  
Sections 3.4.8.2  
64A  
Concentration Alarm Relays  
Issues warning when gas concentration exceeds limits set by user.  
Four (4) “dry contact” relays on the rear panel of the instrument. This  
relay option is different from and in addition to the “Contact Closures”  
that come standard on all TAPI instruments.  
Section 3.4.7  
61  
RS-232 Multidrop  
Enables communications between host computer and up to eight analyzers.  
Multidrop card seated on the analyzer’s CPU card.  
Sections 3.4.8.3  
62  
Each instrument in the multidrop network requres this card and a  
communications cable (Option 60B).  
Other Gas Options  
Second gas sensor and gas conditioners  
3-24 and Sections  
65A  
Oxygen (O2) Sensor  
Sample Gas Conditioner (Dryer/NH3 Removal) for sample gas  
stream only. Converts analyzer to dual-conditioner instrument.  
86A  
(contact Sales)  
(contact Sales)  
Sample Oxygenator for proper operation of the NO2-to-NO catalytic  
converter. Injects oxygen into sample gas that is depleted of oxygen.  
87  
Special Features  
Built in features, software activated  
Maintenance Mode Switch, located inside the instrument, places  
the analyzer in maintenance mode where it can continue sampling,  
yet ignore calibration, diagnostic, and reset instrument commands.  
This feature is of particular use for instruments connected to  
Multidrop or Hessen protocol networks.  
N/A  
N/A  
Call Customer Service for activation.  
Second Language Switch activates an alternate set of display  
messages in a language other than the instrument’s default  
language.  
N/A  
N/A  
N/A  
Call Customer Service for a specially programmed Disk on Module containing  
the second language.  
Dilution Ratio Option allows the user to compensate for diluted  
sample gas, such as in continuous emission monitoring (CEM) where  
the quality of gas in a smoke stack is being tested and the sampling  
method used to remove the gas from the stack dilutes the gas.  
Section 4.8.2  
Call Customer Service for activation.  
21  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Introduction, Features, and Options  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
22  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
2. SPECIFICATIONS AND APPROVALS  
2.1. T200H/M OPERATING SPECIFICATIONS  
Table 2-1: Model T200H/M Basic Unit Specifications  
Min/Max Range  
T200H: Min: 0-5 ppm; Max: 0-5000 ppm  
T200M: Min: 0-1 ppm; Max: 0-200 ppm  
(Physical Analog Output)  
Measurement Units  
Zero Noise  
ppm, mg/m3 (user selectable)  
<20 ppb (RMS)  
Span Noise  
<0.2% of reading above 20 ppm  
40 ppb (2x noise as per USEPA)  
<20 ppb (at constant temperature and voltage.)  
<20 ppb (at constant temperature and voltage.)  
<1% of reading (at constant temperature and voltage.)  
1% of full scale  
Lower Detectable Limit  
Zero Drift (24 hours)  
Zero Drift (7 days)  
Span Drift (7 Days)  
Linearity  
Precision  
0.5% of reading  
Lag Time  
20 s  
Rise/Fall Time  
95% in <60 s (~10 s in NO only or NOX only modes)  
T200H:  
T200M:  
40 cm³/min sample gas through NO2  
converter & sensor module  
250 cm3/min ± 10% through bypass  
manifold  
250 cm³/min sample gas through NO2  
converter & sensor module  
Gas Flow Rates  
290 cm³/min total flow  
O2 Sensor option adds 80 cm³/min to total flow though T200H/M when installed.  
Temperature Range  
Humidity Range  
5 - 40 C operating range  
0-95% RH non-condensing  
Dimensions H x W x D  
Weight, Analyzer  
18 cm x 43 cm x 61 cm (7" x 17" x 23.6")  
18 kg (40 lbs) without options  
Weight, Ext Pump Pack  
7 kg (16 lbs)  
T200H:  
T200M:  
AC Power  
100V-120V, 60 Hz (175W)  
220V-240V, 50 Hz (155W)  
100V-120V, 60 Hz (55W)  
220V-240V, 50 Hz (75W)  
100 V, 50 Hz (300 W); 100 V, 60 Hz (255 W); 115 V, 60 Hz (285 W);  
220 - 240 V, 50 Hz (270 W); 230 V, 60 Hz (270 W)  
Power, Ext Pump  
Environmental  
Analog Outputs  
Installation category (over-voltage category) II; Pollution degree 2  
4 user configurable outputs  
All Outputs: 0.1 V, 1 V, 5 V or 10 V  
Analog Output Ranges  
Three outputs convertible to 4-20 mA isolated current loop.  
All Ranges with 5% under/over-range  
Analog Output Resolution  
Status Outputs  
1 part in 4096 of selected full-scale voltage (12 bit)  
8 Status outputs from opto-isolators, 7 defined, 1 spare  
6 Control inputs, 4 defined, 2 spare  
Control Inputs  
2 relay alarms outputs (Optional equipment) with user settable alarm limits  
- 1 Form C: SPDT; 3 Amp @ 125 VAC  
Alarm outputs  
Standard I/O  
1 Ethernet: 10/100Base-T  
2 RS-232 (300 – 115,200 baud)  
2 USB device ports  
8 opto-isolated digital outputs  
6 opto-isolated digital inputs  
4 analog outputs  
1 USB com port  
1 RS485  
8 analog inputs (0-10V, 12-bit)  
4 digital alarm outputs  
Multidrop RS232  
Optional I/O  
3 4-20mA current outputs  
23  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Specifications and Approvals  
Teledyne API - Model T200H/T200M Operation Manual  
2.2. APPROVALS AND CERTIFICATIONS  
The Teledyne API Nitrogen Oxides Analyzers T200H and T200M were tested and  
certified for Safety and Electromagnetic Compatibility (EMC). This section presents the  
compliance statements for those requirements and directives.  
2.2.1. SAFETY  
IEC 61010-1:2001, Safety requirements for electrical equipment for measurement,  
control, and laboratory use.  
CE: 2006/95/EC, Low-Voltage Directive  
North American:  
cNEMKO (Canada): CAN/CSA-C22.2 No. 61010-1-04  
NEMKO-CCL (US): UL No. 61010-1 (2nd Edition)  
2.2.2.  
EMC  
EN 61326-1 (IEC 61326-1), Class A Emissions/Industrial Immunity  
EN 55011 (CISPR 11), Group 1, Class A Emissions  
FCC 47 CFR Part 15B, Class A Emissions  
CE: 2004/108/EC, Electromagnetic Compatibility Directive  
24  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
3. GETTING STARTED  
3.1. UNPACKING AND INITIAL SETUP  
CAUTION  
THE T200H AND THE T200M EACH WEIGHS ABOUT 18 KG (40 POUNDS) WITHOUT  
OPTIONS INSTALLED. TO AVOID PERSONAL INJURY, WE RECOMMEND TO USE TWO  
PERSONS TO LIFT AND CARRY THE ANALYZER.  
CAUTION – Avoid Warranty Invalidation  
Printed circuit assemblies (PCAs) are sensitive to electro-static discharges too small to be  
felt by the human nervous system. Damage resulting from failure to use ESD protection  
when working with electronic assemblies will void the instrument warranty.  
See A Primer on Electro-Static Discharge section in this manual for more information on preventing  
ESD damage.  
Note  
It is recommended that you store shipping containers/materials for future  
use if/when the instrument should be returned to the factory for repair  
and/or calibration service. See Warranty section in this manual and  
shipping procedures on our Website at http://www.teledyne-api.com  
under Customer Support > Return Authorization.  
WARNING  
NEVER DISCONNECT ELECTRONIC CIRCUIT BOARDS, WIRING HARNESSES OR  
ELECTRONIC SUBASSEMBLIES WHILE THE UNIT IS UNDER POWER.  
1. Inspect the received packages for external shipping damage. If damaged, please  
advise the shipper first, then Teledyne API.  
2. Included with your analyzer is a printed record of the final performance  
characterization performed on your instrument at the factory. This record, titled  
Final Test and Validation Data Sheet (P/N 04413) is an important quality assurance  
and calibration record for this instrument. It should be placed in the quality records  
file for this instrument.  
3. Carefully remove the top cover of the analyzer and check for internal shipping  
damage, as follows:  
a. Remove the set-screw located in the top, center of the front panel.  
25  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
b. Remove the 2 screws fastening the top cover to the unit (one per side towards  
the rear).  
c. Slide the cover backwards until it clears the analyzer’s front bezel.  
d. Lift the cover straight up.  
4. Inspect the interior of the instrument to make sure all circuit boards and other  
components are in good shape and properly seated.  
5. Check the connectors of the various internal wiring harnesses and pneumatic hoses  
to make sure they are firmly and properly seated.  
6. Verify that all of the optional hardware ordered with the unit has been installed.  
These are checked on the paperwork (Form 04490) accompanying the analyzer.  
3.2. VENTILATION CLEARANCE  
Whether the analyzer is set up on a bench or installed into an instrument rack, be sure to  
leave sufficient ventilation clearance.  
AREA  
MINIMUM REQUIRED CLEARANCE  
10 cm / 4 inches  
Back of the instrument  
Sides of the instrument  
Above and below the instrument.  
2.5 cm / 1 inch  
2.5 cm / 1 inch  
3.3. T200H/M LAYOUT  
Figure 3-1 shows the front panel layout of the analyzer, and Figure 3-4 shows the rear  
panel with optional zero-air scrubber mounted to it and two optional fittings for the IZS  
option. Figure 3-5 shows a top-down view of the analyzer. This configuration includes  
the IZS option, zero-air scrubber and an additional sample dryer (briefly described in  
Section 1.4).  
26  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-1:  
Front Panel  
Figure 3-2:  
Display Screen and Touch Control  
CAUTION – Avoid Damaging Touch screen  
Do not use hard-surfaced instruments such as pens to operate the touch screen.  
27  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
The front panel liquid crystal display screen includes touch control. Upon analyzer start-  
up, the screen shows a splash screen and other initialization indicators before the main  
display appears, similar to Figure 3-2 above (may or may not display a Fault alarm). The  
LEDs on the display screen indicate the Sample, Calibration and Fault states; also on the  
screen is the gas concentration field (Conc), which displays real-time readouts for the  
primary gas and for the secondary gas if installed. The display screen also shows what  
mode the analyzer is currently in, as well as messages and data (Param). Along the  
bottom of the screen is a row of touch control buttons; only those that are currently  
applicable will have a label. Table 3-1 provides detailed information for each component  
of the screen.  
Table 3-1:  
Display Screen and Touch Control Description  
Description/Function  
Field  
Status  
LEDs indicating the states of Sample, Calibration and Fault, as follows:  
Name  
Color  
State  
Off  
Definition  
Unit is not operating in sample mode, DAS is disabled.  
On  
Sample Mode active; Front Panel Display being updated; DAS data  
being stored.  
SAMPLE Green  
Unit is operating in sample mode, front panel display being updated,  
DAS hold-off mode is ON, DAS disabled  
Blinking  
Off  
Auto Cal disabled  
Auto Cal enabled  
Unit is in calibration mode  
No warnings exist  
Warnings exist  
CAL  
Yellow  
Red  
On  
Blinking  
Off  
FAULT  
Blinking  
Displays the actual concentration of the sample gas currently being measured by the analyzer in the  
currently selected units of measure  
Conc  
Mode  
Displays the name of the analyzer’s current operating mode  
Displays a variety of informational messages such as warning messages, operational data, test function  
values and response messages during interactive tasks.  
Param  
Control Buttons  
Displays dynamic, context sensitive labels on each button, which is blank when inactive until applicable.  
Figure 3-3 shows how the front panel display is mapped to the menu charts illustrated in  
this manual. The Mode, Param (parameters), and Conc (gas concentration) fields in the  
display screen are represented across the top row of each menu chart. The eight touch  
control buttons along the bottom of the display screen are represented in the bottom row  
of each menu chart.  
28  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-3:  
Display/Touch Control Screen Mapped to Menu Charts  
The rear panel is illustrated in Figure 3-4 and described in Table 3-2.  
29  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 3-4:  
T200H/M Rear Panel Layout  
Table 3-2: Rear Panel Description  
Function  
Component  
Cooling Fan Pulls ambient air into chassis through side vents and exhausts through rear.  
Connector for three-prong cord to apply AC power to the analyzer.  
AC power  
CAUTION! The cord’s power specifications (specs) MUST comply with the power  
connector  
specs on the analyzer’s rear panel Model number label  
Model label Identifies the analyzer model number and provides voltage and frequency specs  
Connect a gas line from the source of sample gas here.  
SAMPLE  
Calibration gases are also inlet here on units without zero/span valve options installed.  
Connect an exhaust gas line of not more than 10 meters long here that leads outside  
EXHAUST  
the shelter or immediate area surrounding the instrument.  
On units with zero/span valve options installed, connect a gas line to the source of  
calibrated span gas here.  
SPAN 1  
ZERO AIR Internal Zero Air: On units with zero/span valve options installed but no internal zero air  
scrubber attach a gas line to the source of zero air here.  
(option)  
RX TX LEDs indicate receive (RX) and transmit (TX) activity on the when blinking.  
COM 2 Serial communications port for RS-232 or RS-485.  
RS-232 Serial communications port for RS-232 only.  
Switch to select either data terminal equipment or data communication equipment  
during RS-232 communication.  
DCE DTE  
STATUS For outputs to devices such as Programmable Logic Controllers (PLCs).  
ANALOG OUT For voltage or current loop outputs to a strip chart recorder and/or a data logger.  
CONTROL IN For remotely activating the zero and span calibration modes.  
ALARM Option for concentration alarms and system warnings.  
ETHERNET Connector for network or Internet remote communication, using Ethernet cable  
Option for external voltage signals from other instrumentation and for logging these  
signals.  
ANALOG IN  
USB Option for direct connection to laptop computer, using USB cable.  
30  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-5:  
T200H/M Internal Layout  
31  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.4. ELECTRICAL CONNECTIONS  
Note  
To maintain compliance with EMC standards, it is required that the cable  
length be no greater than 3 meters for all I/O connections, which include  
Analog In, Analog Out, Status Out, Control In, Ethernet/LAN, USB, RS-232,  
and RS-485.  
Refer to Figure 3-4 for the location of the rear panel electrical and pneumatic  
connections.  
3.4.1. POWER CONNECTION  
Attach the power cord to the analyzer and plug it into a power outlet capable of carrying  
at least 10 A current at your AC voltage and that it is equipped with a functioning earth  
ground.  
CAUTION  
CHECK THE VOLTAGE AND FREQUENCY SPECIFICATIONS ON THE REAR PANEL  
LABEL SHOWING THE MODEL NAME AND NUMBER OF THE INSTRUMENT FOR  
COMPATIBILITY WITH THE LOCAL POWER BEFORE PLUGGING THE T200H/M INTO  
LINE POWER.  
Do not plug in the power cord if the voltage or frequency is incorrect.  
WARNING – RISK OF ELECTRIC SHOCK  
HIGH VOLTAGES ARE PRESENT INSIDE THE INSTRUMENT’S CHASSIS.  
POWER CONNECTION MUST HAVE FUNCTIONING GROUND CONNECTION.  
DO NOT DEFEAT THE GROUND WIRE ON POWER PLUG.  
TURN  
OFF  
ANALYZER  
POWER  
BEFORE  
DISCONNECTING  
OR  
CONNECTING ELECTRICAL SUBASSEMBLIES.  
DO NOT OPERATE WITH COVER OFF.  
The T200H/M analyzer can be configured for both 100-130 V and 210-240 V at either  
50 or 60 Hz. To avoid damage to your analyzer, make sure that the AC power voltage  
matches the voltage indicated on the rear panel serial number label and that the  
frequency is between 47 and 63 Hz.  
32  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.4.2. ANALOG INPUTS (OPTION 64) CONNECTIONS  
The Analog In connector is used for connecting external voltage signals from other  
instrumentation (such as meteorological instruments) and for logging these signals in the  
analyzer’s internal DAS. The input voltage range for each analog input is 0-10 VDC,  
and the input impedance is nominally 20kin parallel with 0.1µF.  
Figure 3-6:  
Analog In Connector  
Pin assignments for the Analog In connector are presented in Table 3-3.  
Table 3-3:  
PIN  
Analog Input Pin Assignments  
DAS  
DESCRIPTION  
PARAMETER1  
1
Analog input # 1  
Analog input # 2  
Analog input # 3  
Analog input # 4  
Analog input # 5  
Analog input # 6  
Analog input # 7  
Analog input # 8  
Analog input Ground  
AIN 1  
AIN 2  
AIN 3  
AIN 4  
AIN 5  
AIN 6  
AIN 7  
AIN 8  
N/A  
2
3
4
5
6
7
8
GND  
1 See Section 4.7 for details on setting up the DAS.  
3.4.3. ANALOG OUTPUT CONNECTIONS  
The T200H/M is equipped with four analog output channels accessible through a  
connector on the back panel of the instrument. Each of these outputs may be set to  
reflect the value of any of the instrument’s DAS data types. (see Table A-6 of T200H/M  
Appendix A – P/N 05147).  
The following table lists the default settings for each of these channels. To change these  
settings, see Sections 6.13.4  
33  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
Table 3-1: Analog Output Data Type Default Settings  
CHANNEL DEFAULT SETTING  
PARAMETER  
A1  
A2  
A3  
A43  
DATA TYPE1  
RANGE  
NXCNC1  
NOCNC1  
N2CNC1  
NXCNC2  
0 - 5 VDC2  
REC OFS  
AUTO CAL.  
CALIBRATED  
OUTPUT  
0 mVDC  
ON  
NO  
ON  
SCALE  
100 ppm  
5 sec  
UPDATE  
1 See Table A-6 of T200H/M Appendix A for definitions of these DAS data types  
2 Optional current loop outputs are available for analog output channels A1-A3.  
3 On analyzers with O2 sensor options installed, DAS parameter O2CONC is assigned to output A4.  
To access these signals attach a strip chart recorder and/or data-logger to the appropriate  
contacts of the analog output connecter on the rear panel of the analyzer.  
ANALOG OUT  
A1  
A2  
A3  
A4  
+
-
+
-
+
-
+
-
Figure 3-7:  
Analog Output Connector  
Table 3-4: Analog Output Pin-Outs  
PIN  
1
ANALOG OUTPUT  
VOLTAGE SIGNAL  
V Out  
CURRENT SIGNAL  
I Out +  
A1  
A2  
A3  
A4  
2
Ground  
V Out  
I Out -  
3
I Out +  
4
Ground  
V Out  
I Out -  
5
I Out +  
6
Ground  
V Out  
I Out -  
7
Not Available  
Not Available  
8
Ground  
3.4.4. CONNECTING THE STATUS OUTPUTS  
The analyzer’s status outputs to interface with a device that accepts logic-level digital  
inputs, such as programmable logic controller (PLC) chips, are accessed through a 12  
pin connector labeled STATUS on the analyzer’s rear panel.  
34  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Teledyne API - Model T200H/T200M Operation Manual  
STATUS  
Getting Started  
1
2
3
4
5
6
7
8
D
+
Figure 3-8:  
Status Output Connector  
Note  
Most PLCs have internal provisions for limiting the amount of current the  
input will draw. When connecting to a unit that does not have this feature,  
external resistors must be used to limit the current through the individual  
transistor outputs to 50mA (120 for 5V supply).  
Table 3-5: Status Output Signals  
PIN #  
STATUS  
CONDITION (ON = CONDUCTING)  
ON if no faults are present.  
1
SYSTEM OK  
ON if concentration measurement (NO, NO2 or NOx) is valid.  
OFF any time the hold-off feature is active.  
2
CONC VALID  
3
4
5
6
7
8
D
HIGH RANGE  
ZERO CAL  
ON if unit is in high range of the Auto Range Mode.  
ON whenever the instrument is in ZERO point calibration mode.  
ON whenever the instrument is in SPAN point calibration mode.  
ON whenever the instrument is in diagnostic mode.  
SPAN CAL  
DIAG MODE  
LOW SPAN CAL  
Not Used  
ON when in low span calibration (optional equipment necessary)  
EMITTER BUS  
Not Used  
The emitters of the transistors on pins 1-8 are tied together.  
+
DC POWER  
+ 5 VDC, 300 mA (combined rating with Control Output, if used).  
The ground level from the analyzer’s internal DC power supplies  
Digital Ground  
35  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.4.5. CURRENT LOOP ANALOG OUTPUTS (OPT 41) SETUP  
This option adds isolated, voltage-to-current conversion circuitry to the analyzer’s  
analog outputs. This option may be ordered separately for the first three of the analog  
outputs and can be installed at the factory or added later. Call Teledyne API sales for  
pricing and availability.  
The current loop option can be configured for any output range between 0 and 20 mA  
(for example 0-20, 2-20 or 4-20 mA). Information on calibrating or adjusting these  
outputs can be found in Section 4.13.6.3.  
CAUTION – Avoid Warranty Invalidation  
Printed circuit assemblies (PCAs) are sensitive to electro-static discharges too small  
to be felt by the human nervous system. Damage resulting from failure to use ESD  
protection when working with electronic assemblies will void the instrument warranty.  
See A Primer on Electro-Static Discharge in this manual for more information on preventing  
ESD damage.  
Figure 3-9:  
Current Loop Option Installed on the Motherboard  
36  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.4.5.1. Converting Current Loop Analog Outputs to Standard Voltage Outputs.  
CAUTION – Avoid Warranty Invalidation  
Printed circuit assemblies (PCAs) are sensitive to electro-static discharges too small  
to be felt by the human nervous system. Damage resulting from failure to use ESD  
protection when working with electronic assemblies will void the instrument warranty.  
See A Primer on Electro-Static Discharge in this manual for more information on preventing  
ESD damage.  
To convert an output configured for current loop operation to the standard 0 to 5 VDC  
output operation:  
1. Turn off power to the analyzer.  
2. If a recording device was connected to the output being modified, disconnect it.  
3. Remove the top cover:  
a. Remove the set screw located in the top, center of the rear panel  
b. Remove the screws fastening the top cover to the unit (four per side).  
c. Lift the cover straight up.  
4. Disconnect the current loop option PCA from the appropriate connector on the  
motherboard.  
5. Place a shunt between the leftmost two pins of the connector (see Figure 3-9).  
6. Reattach the top case to the analyzer.  
The analyzer is now ready to have a voltage-sensing, recording device attached to that  
output.  
37  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.4.6. CONNECTING THE CONTROL INPUTS  
Control Inputs are used to remotely activate the zero and span calibration modes. Locate  
the 10-pin connector labeled CONTROL IN on the analyzer’s rear panel.  
There are two methods for energizing the control inputs. The internal +5V available  
from the pin labeled “+” is the most convenient method. However, if full isolation is  
required, an external 5 VDC power supply should be used.  
CONTROL IN  
CONTROL IN  
A
B
C
D
E
F
U
+
A
B
C
D
E
F
U
+
5 VDC Power  
Supply  
+
-
External Power Connections  
Local Power Connections  
Figure 3-10:  
Control Input Connector  
Table 3-6: Control Input Signals  
INPUT #  
STATUS DEFINITION  
ON CONDITION  
The analyzer is placed in Zero Calibration mode. The mode field of  
the display will read ZERO CAL R.  
A
REMOTE ZERO CAL  
The analyzer is placed in Span Calibration mode. The mode field of  
the display will read SPAN CAL R.  
B
C
D
REMOTE SPAN CAL  
REMOTE LO SPAN CAL  
REMOTE RANGE HI  
The analyzer is placed in low span calibration mode as part of  
performing a low span (midpoint) calibration. The mode field of the  
display will read LO CAL R.  
The analyzer is placed into high range when configured for dual  
ranges..  
E
F
SPARE  
SPARE  
The ground level from the analyzer’s internal DC power supplies  
(same as chassis ground).  
Digital Ground  
U
+
External Power input  
Input pin for +5 VDC required to activate pins A - F.  
Internally generated 5V DC power. To activate inputs A - F, place a  
jumper between this pin and the “U” pin. The maximum amperage  
through this port is 300 mA (combined with the analog output supply,  
if used).  
5 VDC output  
38  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.4.7. CONNECTING THE ALARM RELAY OPTION (OPT 61)  
The T200H/M can be equipped with a set of 2 concentration alarms. Each alarm can be  
independently enabled or disabled as well as programmed with its own, individual alarm  
limit point (see Section 4.14 for details on programming the alarms).  
The status of each alarm is available via a set of alarm relay outputs located on the lower  
right hand corner of the analyzer’s rear panel (see Figure 3-4). While there are four  
relay outputs on the back of the analyzer, only Two of the outputs correspond to the  
instrument’s two concentration alarms.  
Table 5-5: Alarm Relay Output Assignments  
RELAY NAME  
AL1  
AL2  
AL3  
AL4  
CONCENTRATION  
ALARM 1  
CONCENTRATION  
ALARM 2  
ASSIGNED ALARM  
ST_SYSTEM_OK21  
SPARE  
1 ST_SYSTEM OK2 is a second system OK status alarm available on some analyzers.  
ALARM OUT  
AL2 AL3  
AL1  
AL4  
NO C NC NO C NC NO C NC NO C NC  
CONCENTRATION CONCENTRATION  
ALARM 1 ALARM 2  
ST_SYSTEM_OK2  
SPARE  
(Optional Alert)  
Figure 3-11:  
Alarm Relay Output Pin Assignments  
Each of the two concentration relay outputs has 3-pin connections that allow the relay to  
be connected for either normally open or normally closed operation. Table 3-7 describes  
how to connect the alarm relays.  
39  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
Table 3-7: Concentration Alarm Relay Output Operation  
RELAY PIN  
STATE1  
RELAY  
FUNCTION  
COMMENTS  
N
N
C
O
C
Gas concentration level is above the trigger limit set for  
CONC_ALARM_1  
Concentration Alarm 1  
DAS Trigger CONCW1 ACTIVATED  
Active  
AL2  
AL3  
CONC ALARM1 WARN appears on Analyzer Display  
Concentration Alarm 1  
Gas concentration level is below the trigger limit set for  
CONC_ALARM_1  
Inactive  
Gas concentration level is above the trigger limit set for  
CONC_ALARM_2  
Concentration Alarm 2  
DAS Trigger CONCW2 ACTIVATED  
Active  
CONC ALARM2 WARN appears on Analyzer Display  
Concentration Alarm 2  
Gas concentration level is below the trigger limit set for  
CONC_ALARM_2  
Inactive  
1
NO = Normally Open operation.  
C = Common  
NC = Normally Closed operation.  
3.4.8. CONNECTING THE COMMUNICATIONS PORTS  
For RS-232 or RS-485 (option) communications through the analyzer’s two serial  
interface ports, refer to Section 4.11 for information and connection instructions.  
3.4.8.1. Connecting to a LAN or the Internet  
For network or Internet communication with the analyzer, connect an Ethernet cable  
from the analyzer’s rear panel Ethernet interface connector to an Ethernet port. See  
Section 4.11.7 for configuration instructions.  
Note  
The T200H/M firmware supports dynamic IP addressing or DHCP. If your  
network also supports DHCP, the analyzer will automatically configure its  
LAN connection appropriately. If your network does not support DHCP,  
see Section 4.11.7.2 for instructions on manually configuring the LAN  
connection.  
3.4.8.2. Connecting to a Personal Computer (PC)  
If the USB port is configured for direct communication between the analyzer and a  
desktop or a laptop PC, connect a USB cable between the analyzer and the PC or laptop  
USB ports, and follow the set-up instructions in Section 4.11.8. (RS-485 communication  
is not available with the USB com port option).  
40  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.4.8.3. Connecting to a Multidrop Network  
The multidrop option is used with RS-232 and utilizes both com port DB-9 connectors  
(RS-232 and COM2) on the rear panel to enable communications of up to eight  
analyzers with the host computer over a chain of RS-232 cables. It is subject to the  
distance limitations of the RS 232 standard.  
The option consists of a small printed circuit assembly, which is seated on the analyzer’s  
CPU card (see Figure 3-12). One Option 62 is required for each analyzer along with one  
6’ straight-through, DB9 male DB9 Female cable (P/N WR0000101).  
If your unit has a Teledyne API RS-232 multidrop card (Option 62), see Section 4.11.9  
for instructions on setting it up.  
Figure 3-12:  
T200H/M Multidrop Card  
41  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.5. PNEUMATIC CONNECTIONS  
Note  
To prevent dust from getting into the analyzer, it was shipped with small  
plugs inserted into each of the pneumatic fittings on the rear panel.  
Remove and store the dust plugs for future use, such as storage, moving,  
shipping.  
CAUTION!  
Do not operate this instrument until you’ve removed dust plugs from SAMPLE and EXHAUST  
ports on the rear panel!  
Table 3-8: Inlet / Outlet Connector Descriptions  
REAR PANEL LABEL  
FUNCTION  
Connects the sample gas to the analyzer. When operating the analyzer  
without zero span option, this is also the inlet for any calibration gases.  
SAMPLE  
EXHAUST  
SPAN  
Connects the exhaust of the analyzer with the external vacuum pump.  
On Units with a zero/span valve, this port connects the external calibration gas  
to the analyzer.  
On Units with a zero/span valve, this port connects the zero air gas or the zero  
air cartridge to the analyzer.  
ZERO AIR  
3.5.1. ABOUT ZERO AIR AND CALIBRATION (SPAN) GASES  
3.5.1.1. Zero Air  
Zero air or zero calibration gas is defined as a gas that is similar in chemical  
composition to the measured medium but without the gas to be measured by the  
analyzer, in this case NO and NO2. If your analyzer is equipped with an external zero  
air scrubber option, it is capable of creating zero air from ambient air.  
If your application is not a measurement in ambient air, the zero calibration gas should  
be matched to the matrix of the measured medium. Pure nitrogen could be used as a  
zero gas for applications where NOX is measured in nitrogen. Special considerations  
apply if measuring NOX in a matrix that does not contain oxygen, see Section 8.3.11 for  
more information.  
3.5.1.2. Calibration (Span) Gas  
Calibration (or Span) gas is a gas specifically mixed to match the chemical composition  
of the type of gas being measured at near full scale of the desired measurement range.  
In this case, NOX, NO and NO2 measurements made with the T200H/M, it is  
recommended that you use a span gas with an NO concentration equal to 80% of the  
measurement range for your application.  
EXAMPLE: If the application is to measure between 0 ppm and 500 ppm, an  
appropriate span gas concentration would be 400 ppm NOx.  
42  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
         
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Even though NO gas in nitrogen could be used as a span gas, the matrix of the balance  
gas is different and may cause interference problems or yield incorrect calibrations. The  
same applies to gases that contain high concentrations of other compounds (for example,  
CO2 or H2O). The span gas should match all concentrations of all gases of the measured  
medium as closely as possible.  
Cylinders of calibrated NO gas traceable to NIST-standard reference materials  
specifications (also referred to as EPA protocol calibration gases) are commercially  
available.  
Table 3-9: NIST-SRM's Available for Traceability of NOx Calibration Gases  
NOMINAL  
NIST-SRM4  
TYPE  
CONCENTRATION  
2627a  
2628a  
2629a  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
5 ppm  
10 ppm  
20 ppm  
1683b  
1684b  
1685b  
1686b  
1687b  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
50 ppm  
100 ppm  
250 ppm  
5000 ppm  
1000 ppm  
2630  
2631a  
2635  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
1500 ppm  
3000 ppm  
800 ppm  
2636a  
2000 ppm  
2631a  
1684b  
Oxides of Nitrogen (NOx) in N2  
Oxides of Nitrogen (NOx) in N2  
3000 ppm  
100 ppm  
Note  
If a dynamic dilution system such as the Teledyne API Model T700 is used  
to dilute high concentration gas standards to low, ambient  
concentrations, make sure that the NO concentration of the reference gas  
matches the dilution range of the calibrator. Choose an NO gas  
concentration that is in the middle of the dilution system’s range.  
43  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.5.2. PNEUMATIC CONNECTIONS TO T200H/M BASIC CONFIGURATION  
Figure 3-13 and Figure 3-14 show the most common configurations for gas supply and  
exhaust lines to the Model T200H/M analyzer. Please refer to Figure 3-4 for the  
locations of pneumatic connections on the rear panel and Table 3-2 for the descriptions.  
Note  
Sample and calibration gases should only come into contact with PTFE  
(Teflon) or glass or materials. They should not come in contact with FEP  
or stainless steel materials.  
VENT here if input  
Source of  
MODEL T700  
Gas Dilution  
is pressurized  
SAMPLE GAS  
Removed during  
calibration  
Calibrator  
NOx Gas  
(High Concentration)  
SAMPLE  
EXHAUST  
MODEL 701  
Zero Gas  
VENT (if no vent  
on calibrator)  
Instrument  
Chassis  
Generator  
PUMP  
Figure 3-13:  
Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator  
44  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Source of  
MODEL 701  
SAMPLE GAS  
Removed during  
calibration  
Zero Gas  
Generator  
VENT here if input  
is pressurized  
3-way Valve  
NOX Gas  
(High Concentration)  
SAMPLE  
EXHAUST  
Manual  
Control Valve  
Instrument  
Chassis  
PUMP  
Figure 3-14:  
Pneumatic Connections–Basic Configuration–Using Bottled Span Gas  
45  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
1. Attach a 1/4" exhaust line between the external pump and the EXHAUST port of the  
analyzer.  
2. Attach an additional 1/4" exhaust port of the pump.  
CAUTION  
The exhaust from the analyzer must be vented outside the shelter or immediate  
area surrounding the instrument and conform to all safety requirements using  
a maximum of 10 meters of 1/4” PTFE tubing.  
3. Attach a sample inlet line to the SAMPLE inlet port. Ideally, the pressure of the  
sample gas should be equal to ambient atmospheric pressure.  
Note  
Maximum pressure of any gas at the SAMPLE inlet should not exceed 1.5  
in-Hg above ambient pressure and ideally should equal ambient  
atmospheric pressure.  
In applications where the sample gas is received from a pressurized  
manifold, a vent must be provided to equalize the sample gas with  
ambient atmospheric pressure before it enters the analyzer.  
The vented gas must be routed outside the immediate area or shelter  
surrounding the instrument.  
4. Once the appropriate pneumatic connections have been made, check all pneumatic  
fittings for leaks using procedures defined in Section 7.5.1.  
Figure 3-15 and Figure 3-16 show the internal pneumatic flow of the standard  
configuration of the T200H and T200M respectively.  
46  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-15:  
T200H Internal Pneumatic Block Diagram - Standard Configuration  
47  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
NO/NOX  
VALVE  
FLOW PRESSURE  
SENSOR PCA  
SAMPLE  
GAS  
INLET  
NO2  
NO  
COM  
Converter  
VACUUM  
PRESSURE  
SENSOR  
NC  
SAMPLE  
PRESSURE  
SENSOR  
EXHAUST  
GAS  
OUTLET  
AUTOZERO  
VALVE  
COM  
O3  
NC  
GENERATOR  
NO  
Orifice Dia.  
0.007"  
Orifice Dia.  
0.007"  
REACTION  
CELL  
O3  
Destruct  
Orifice Dia.  
0.004"  
PMT  
PUMP  
RMAPURE  
YER  
INSTRUMENT CHASSIS  
Figure 3-16:  
T200M Internal Pneumatic Block Diagram - Standard Configuration  
Note  
The most significant differences between the T200H and T200M versions in regards to  
pneumatic flow are:  
A bypass line leading directly from the particulate filter to the exhaust manifold is  
present on the T200H, but not in the T200M.  
The diameter of the critical flow orifice controlling the gas flow into the sample  
chamber is smaller and therefore the flow rate of sample gas through the instrument  
is lower.  
48  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.5.3. CONNECTIONS WITH INTERNAL VALVE OPTIONS INSTALLED  
If your analyzer is equipped with either the zero/span valve option (50A) or the 2-span  
point valve option (50D), the pneumatic connections should be made as shown in Figure  
MODEL T700  
Gas Dilution  
VENT here if input  
is pressurized  
Calibrator  
Source of  
SAMPLE Gas  
MODEL 701  
Zero Gas  
Sample  
Exhaust  
PUMP  
Generator  
Instrument  
Chassis  
Span Point  
Zero Air  
Figure 3-17:  
Pneumatic Connections–With Zero/Span Valve Option (50A)  
On/Off  
Valves  
Source of  
SAMPLE Gas  
VENT here if input  
is pressurized  
PUMP  
Sample  
Exhaust  
Instrument  
Chassis  
High Span Point  
Low Span Point  
Zero Air  
Figure 3-18:  
Pneumatic Connections–With 2-Span Point Option (50D) –Using Bottled Span Gas  
Once the appropriate pneumatic connections have been made, check all pneumatic  
fittings for leaks using the procedures defined in Section 7.5.  
49  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.5.3.1. Ambient Zero/Ambient Span Valves (OPT 50A)  
The Model T200H/M NOx analyzer can be equipped with a zero/span valve option for controlling the flow of  
calibration gases generated from external sources. This option contains two solenoid valves located inside the  
analyzer that allow the user to switch either zero, span or sample gas to the instrument’s sensor.  
The user can control these valves from the front panel keyboard either manually or by activating the instrument’s  
CAL or AutoCal features (Section 5.8). The valves may also be opened and closed remotely through the serial  
ports (Section 4.11) or through the external, digital control inputs (Section 4.15).  
This option also includes a two-stage, external zero air scrubber assembly that removes all NO and NO2 from  
the zero air source (ambient air). The scrubber is filled with 50% Purafil Chemisorbant® (for conversion of NO to  
NO2) and 50% activated charcoal (for removal of NO2). This assembly also includes a small particle filter to  
prevent scrubber particles to enter the analyzer as well as two more rear panel fittings so each gas can enter the  
analyzer separately.  
Figure 3-19 and Figure 3-20 show the internal, pneumatic layouts with the zero/span valve option installed for a  
Model T200H and T200M respectively.  
Figure 3-19:  
T200H – Internal Pneumatics with Ambient Zero-Span Valve Option 50A  
50  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-20:  
T200M – Internal Pneumatics with Ambient Zero-Span Valve Option 50A  
Table 3-10: Zero/Span Valve States  
MODE  
VALVE  
CONDITION  
Sample/Cal  
Zero/Span  
Open to sample gas inlet  
Open to zero air inlet  
SAMPLE  
Sample/Cal  
Zero/Span  
Open to zero/span inlet (activated)  
Open to zero air inlet  
ZERO  
CALIBRATION  
Sample/Cal  
Zero/Span  
Open to zero/span inlet (activated)  
SPAN  
CALIBRATION  
Open to span gas inlet / IZS gas (activated)  
The state of the zero/span valves can also be controlled:  
Manually from the analyzer’s front panel by using the SIGNAL I/O controls located  
under the DIAG Menu (Section 4.13.2),  
By activating the instrument’s AutoCal feature (Section 5.8),  
Remotely by using the external digital control inputs (Section 4.15.1.2) or Ethernet  
option.  
Remotely through the RS-232/485 serial I/O ports (Section 4.11).  
All supply lines should be vented outside of the analyzer’s enclosure. In order to  
prevent back-diffusion and pressure drop effects, these vent lines should be between 2  
and 10 meters in length.  
51  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.5.3.2. Zero Scrubber/Dual Pressurized Span Valve (OPT 50D)  
The zero air scrubber of Option 50D is a cartridge, which is used to produce and supply  
zero air to the analyzer’s ZERO inlet port. The cartridge mounts to the outside rear panel  
and contains two chemicals: 50% volume of Purafil Chemisorbant to convert NO to  
NO2, followed by 50% volume of charcoal to absorb NO2.  
The dual pressurized span valves of Option 50D are a special set of valves that allows  
two separate NOx mixtures to enter the analyzer from two independent sources.  
Typically these two gas mixtures will come from two, separate, pressurized bottles of  
certified calibration gas: one mixed to produce a NO, NO2 or NOx concentration equal  
to the expected span calibration value for the application and the other mixed to produce  
a concentration at or near the midpoint of the intended measurement range. Individual  
gas inlets, labeled HIGH SPAN and LOW SPAN are provided at the back on the  
analyzer.  
The valves allow the user to switch between the two sources via the front panel  
touchscreen control buttons or from a remote location by way of either the analyzer’s  
digital control inputs or by sending commands over its serial I/O port(s).  
Note  
The analyzer’s software only allows the SLOPE and OFFSET to be  
calculated when sample is being routed through the HIGH SPAN inlet.  
The LOW SPAN gas is for midpoint reference checks only.  
52  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
The state of the optional valves can be controlled:  
Getting Started  
Manually from the analyzer’s front panel by using the SIGNAL I/O submenu located  
under the DIAG menu (Section 4.13.2),  
By activating the instrument’s CAL or AutoCal features (Section 5.8),  
Remotely by using the external digital control inputs (Section 4.15.1.2) or Ethernet.  
Remotely through the RS-232/485 serial I/O ports (Section 4.11).  
Table 3-11: Two-Point Span Valve Operating States  
MODE  
VALVE  
CONDITION  
Sample/Cal  
Open to SAMPLE inlet  
Closed to ZERO AIR inlet  
Closed to HIGH SPAN inlet  
Closed to LOW SPAN inlet  
Zero Gas Valve  
High Span Valve  
Low Span Valve  
SAMPLE  
Closed to SAMPLE inlet  
Sample/Cal  
Zero Gas Valve  
High Span Valve  
Low Span Valve  
Open to ZERO AIR inlet  
Closed to HIGH SPAN inlet  
Closed to LOW SPAN inlet  
ZERO  
CAL  
Closed to SAMPLE inlet  
Closed to ZERO AIR inlet  
Sample/Cal  
HIGH  
SPAN  
CAL  
Zero Gas Valve  
High Span Valve  
Low Span Valve  
Open to HIGH SPAN inlet  
Closed to LOW SPAN inlet  
Closed to SAMPLE inlet  
Closed to ZERO AIR inlet  
Closed to HIGH SPAN inlet  
Sample/Cal  
Zero Gas Valve  
High Span Valve  
Low Span Valve  
Low Span  
Check  
Open to LOW SPAN inlet  
53  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
54  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
Figure 3-21:  
T200H - Internal Pneumatics for Zero Scrubber/Dual Pressurized Span, Option 50D  
55  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 3-22:  
T200M - Internal Pneumatics for Zero Scrubber/Dual Pressurized Span, Option 50D  
56  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.5.3.3. Internal Flow for O2 Sensor Option 65A  
Please see Section 3.7.2 for calibration connections and method.  
NO/NOX  
VALVE  
FLOW PRESSURE  
SENSOR PCA  
SAMPLE  
GAS  
INLET  
NO2  
Converter  
NO  
COM  
NC  
VACUUM  
PRESSURE  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
OPTION, O2  
SENSOR, P/N 04453  
EXHAUST  
GAS  
OUTLET  
AUTOZERO  
VALVE  
COM  
NO  
NC  
O3  
O2  
Sensor  
GENERATOR  
Orifice Dia.  
0.004"  
Orifice Dia.  
0.007"  
Orifice Dia.  
0.007"  
REACTION  
CELL  
O3  
Orifice Dia.  
0.004"  
Destruct  
PMT  
PUMP  
MAPURE  
ER  
INSTRUMENT CHASSIS  
Figure 3-23:  
T200H – Internal Pneumatics with O2 Sensor Option 65A  
57  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 3-24:  
T200M – Internal Pneumatics with O2 Sensor Option 65A  
58  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
3.6. INITIAL OPERATION  
CAUTION!  
If the presence of ozone is detected at any time, call Teledyne API Technical Support as soon  
as possible:  
800-324-5190 or email: [email protected]  
If you are unfamiliar with the theory of operation of the T200H/M analyzer, we  
recommend that you read Section 8 before proceeding. For information on navigating  
the analyzer’s software menus, see the menu trees described in Appendix A.  
3.6.1. STARTUP  
After the electrical and pneumatic connections are made, an initial functional check is in  
order. Turn on the instrument. The pump and exhaust fan should start immediately. The  
display will briefly show a logo splash screen at the start of initialization.  
The analyzer should automatically switch to Sample Mode after completing the boot-up  
sequence and start monitoring NOX, NO, NO2 gases. Allow a one-hour warm-up period.  
During the warm-up period, the front panel display may show messages in the  
Parameters field, such as WARNING messages.  
3.6.2. WARNING MESSAGES  
During warm-up, internal temperatures and other parameters may be outside of specified  
limits. The software will suppress most warning conditions for 30 minutes after power  
up.  
TEST deactivates warning  
SAMPLE  
HVPS WARNING  
CAL MSG  
NOX = 0.0  
messages  
TEST  
CLR SETUP  
MSG activates warning  
SAMPLE  
RANGE=200.0 PPM  
MSG  
NO = 0.0  
messages.  
<TST TST> keys replaced with  
< TST TST > CAL  
CLR SETUP  
TEST key  
SAMPLE  
HVPS WARNING  
NOX = 0.0  
Press CLR to clear the current  
message.  
TEST  
CAL  
MSG  
CLR SETUP  
If more than one warning is active, the  
next message will take its place  
NOTE:  
Once the last warning has been  
cleared, the analyzer returns to  
SAMPLE mode  
If the warning message persists after several attempts to  
clear it, the message may indicate a real problem and not  
an artifact of the warm-up period  
Section 4.2.2 provides a table of warning messages with their definitions and the steps to  
view and clear them. If warning messages persist after 30 minutes, investigate their  
cause using the troubleshooting guidelines in Section 7.  
59  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.6.3. FUNCTIONAL CHECK  
After the analyzer’s components have warmed up for at least 30 minutes, verify that the  
software properly supports any hardware options that were installed.  
Check to make sure that the analyzer is functioning within allowable operating  
parameters. Appendices A and C include a list of test functions viewable from the  
analyzer’s front panel as well as their expected values. These functions are also useful  
tools for diagnosing performance problems with your analyzer (Section 7). The  
enclosed Final Test and Validation Data Sheet (part number 04490) lists these values  
before the instrument left the factory. To view the current values of these test functions  
press the <TST TST> buttons:  
SAMPLE  
A1:NXCNC1=100 PPM  
NOX = XXX  
SETUP  
< TST TST > CAL  
A1:NXCNC1=100 PPM1  
A2:N0CNC1=100 PPM1  
A3:N2CNC1=25 PPM1  
A4:NXCNC2=100%1  
NOX STB  
SAMP FLOW  
OZONE FLOW  
PMT  
Toggle <TST TST> to scroll  
through list of functions  
NORM PMT  
AZERO  
HVPS  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
MF TEMP  
O2 CELL TEMP2  
MOLY TEMP  
RCEL  
1 default settings for user  
SAMP  
NOX SLOPE  
NOX OFFSET  
NO SLOPE  
NO OFFSET  
O2 SLOPE2  
O2 OFFSET2  
TIME  
selectable reporting range  
settings.  
2 Only appears if O2 sensor  
option is installed.  
60  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.7. CALIBRATION  
An initial calibration and functional check should be conducted upon first-time startup.  
Once you have completed the followng set-up procedures, please fill out  
the quality questionnaire that was shipped with your unit and return it to  
Teledyne API.  
Note  
This information is vital to our efforts in continuously improving our  
service and our products. Thank you.  
3.7.1. BASIC NOX CALIBRATION PROCEDURE  
The initial calibration should be carried out using the same reporting range set up as  
used during the analyzer’s factory calibration. This will allow you to compare your  
calibration results to the factory calibration as listed on the Final Test and Validation  
Data Sheet.  
The following procedure assumes that the instrument does not have any of the available  
valve options installed. Section 5 contains instructions for calibrating instruments with  
these options.  
If both available DAS parameters for a specific gas type are being reported via the  
instrument’s analog outputs e.g. NXCNC1 and NXCNC2, separate calibrations should  
be carried out for each parameter.  
Use the LOW button when calibrating for NXCNC1  
Use the HIGH button when calibrating for NXCNC2.  
See Sections 4.13.3 and 4.13.4 for more information on analog output reporting ranges.  
61  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
STEP 1 - Set Units:  
To select the concentration units of measure press:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP  
< TST TST >  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
UNIT DIL  
RANGE CONTROL MENU  
SETUP X.X  
PPM MGM  
CONC UNITS: PPM  
Press this button to  
ENTR EXIT  
select the  
concentration units  
of measure:  
PPM or MGM  
62  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
STEP 2 - Dilution Ratio:  
If the dilution ratio option is enabled on your T200H/M and your application involves  
diluting the sample gas before it enters the analyzer, set the dilution ratio as follows:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST >  
CAL  
SETUP  
SETUP X.X  
RANGE CONTROL MENU  
DIL FACTOR:1.0 Gain  
UNIT DIL  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
0
0
0
0
.0  
ENTR EXIT  
Toggle these  
buttons to select the  
dilution ratio factor  
EXIT ignores the new  
setting and returns to the  
previous display.  
ENTR accepts the new  
setting and returns to the  
previous display..  
63  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
STEP 3 – Set NOx and NO span gas concentrations :  
Set the expected NO and NOx span gas concentration. These should be 80% of range of  
concentration values likely to be encountered in this application. The default factory  
setting is 100 ppm. If one of the configurable analog outputs is to be set to transmit  
concentration values, use 80% of the reporting range set for that output (see Section  
If you supply NO span gas to the analyzer as well as NOx, the values for expected NO  
and NOx span gas concentrations need to be identical.  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
NOX O2  
ENTR EXIT  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
M-P CAL  
A1:NXCNC1 =100PPM  
NOX=X.XXX  
EXIT  
<TST TST> ZERO SPAN CONC  
M-P CAL  
CONCENTRATION MENU  
NOX NO CONV  
EXIT  
M-P CAL  
0
NOX SPAN CONC:80.0 Conc  
.0  
EXIT ignores the new  
setting and returns to  
the previous display.  
0
8
0
ENTR EXIT  
ENTR accepts the new  
setting and returns to  
the  
CONCENTRATION  
MENU.  
If using NO span gas  
in addition to NOX  
repeat last step.  
The NOX & NO span concentration  
values automatically default to  
80.0 Conc.  
If this is not the the concentration of  
the span gas being used, toggle  
these buttons to set the correct  
concentration of the NOX and NO  
calibration gases.  
64  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
STEP 4 – Zero/Span Calibration :  
To perform the zero/span calibration procedure:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NOX STB test  
function.  
Analyzer continues to  
cycle through NOx,  
NO, and NO2  
measurements  
throughout this  
procedure.  
< TST TST >  
This function calculates  
the stability of the NO /NOx  
measurement  
Toggle TST> button until ...  
SAMPLE  
NOX STB= XXX.X PPM  
CAL  
NOX=XXX.X  
SETUP  
< TST TST >  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
NOX  
O2  
ENTR EXIT  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
M-P CAL  
NOX STB= XXX.X PPM  
ZERO CONC  
NOX=XXX.X  
EXIT  
<TST TST>  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
M-P CAL  
NOX STB= XXX.X PPM  
NOX=X.XXX  
EXIT  
<TST TST> ENTR  
CONC  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
RANGE TO CAL:LOW  
NOX STB= XXX.X PPM  
NOX  
O2  
ENTR EXIT  
SAMPLE  
LOW HIGH  
ENTR EXIT  
The SPAN key now appears  
during the transition from  
zero to span.  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
M-P CAL  
NOX=X.XXX  
EXIT  
You may see both keys.  
If either the ZERO or SPAN  
buttons fail to appear see  
Section 10 for  
<TST TST> ZERO SPAN CONC  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
troubleshooting tips.  
M-P CAL  
NOX STB= XXX.X PPM  
CONC  
NOX=X.XXX  
EXIT  
<TST TST> ENTR  
M-P CAL  
NOX STB= XXX.X PPM  
CONC  
NOX=X.XXX  
EXIT  
EXIT at this point  
returns to the  
SAMPLE menu.  
<TST TST> ENTR  
65  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
3.7.2. BASIC O2 SENSOR CALIBRATION PROCEDURE  
If your instrument has an O2 sensor option installed that should be calibrated as well.  
3.7.2.1. O2 Calibration Setup  
The pneumatic connections for calibrating are as follows:  
VENT here if input  
is pressurized  
Source of  
SAMPLE GAS  
Removed during  
calibration  
3-way  
Valve  
SAMPLE  
EXHAUST  
Manual  
Instrument  
Chassis  
Control Valve  
PUMP  
Figure 3-25:  
O2 Sensor Calibration Set Up  
O2 SENSOR ZERO GAS: Teledyne API’ recommends using pure N2 when calibration  
the zero point of your O2 sensor option.  
O2 SENSOR SPAN GAS: Teledyne API’ recommends using 21% O2 in N2 when  
calibration the span point of your O2 sensor option.  
66  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
3.7.2.2. O2 Calibration Method  
STEP 1 – Set O2 span gas concentration :  
Set the expected O2 span gas concentration.  
This should be equal to the percent concentration of the O2 span gas of the selected  
reporting range (default factory setting = 20.8%; the approximate O2 content of ambient  
air).  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP  
< TST TST >  
SAMPLE  
GAS TO CAL:NOX  
NOX O2  
ENTR EXIT  
M-P CAL  
A1:NXCNC1 =100PPM  
NOX=X.XXX  
EXIT  
<TST TST> ZERO SPAN CONC  
SAMPLE  
GAS TO CAL:O2  
NOX O2  
ENTR EXIT  
M-P CAL  
0
O2 SPAN CONC:20.8%  
.8  
EXIT ignores the new  
setting and returns to  
the previous display.  
2
0
0
ENTR EXIT  
ENTR accepts the new  
setting and returns to  
the previous menu.  
The O2 span concentration value automatically defaults to  
20.8 %.  
If this is not the the concentration of the span gas being  
used, toggle these buttons to set the correct concentration  
of the O2 calibration gases.  
67  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
STEP 2 – Activate O2 sensor stability function  
To change the stability test function from NOx concentration to the O2 sensor output,  
press:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP X.X  
0) DAS_HOLD_OFF=15.0 Minutes  
EDIT PRNT EXIT  
< TST TST >  
SETUP  
<PREV NEXT> JUMP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Continue pressing NEXT until ...  
SETUP X.X  
SECONDARY SETUP MENU  
SETUP X.X  
2) STABIL_GAS=NOX  
COMM VARS DIAG ALRM  
EXIT  
<PREV NEXT> JUMP  
EDIT PRNT EXIT  
SETUP X.X  
ENTER PASSWORD:818  
SETUP X.X  
STABIL_GAS:NOX  
8
1
8
ENTR EXIT  
NO  
NO2 NOX O2  
ENTR EXIT  
SETUP X.X  
STABIL_GAS:O2  
NO  
NO2 NOX O2  
ENTR EXIT  
Press ENTR to keep  
changes, then press  
EXIT 3 times to return  
to SAMPLE menu  
Note  
Use the same procedure to reset the STB test function to NOx when the O2  
calibration procedure is complete.  
68  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Getting Started  
STEP 4 – O2 ZERO/SPAN CALIBRATION :  
To perform the zero/span calibration procedure:  
The Model T200H/M analyzer is now ready for operation.  
69  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Getting Started  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
70  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
4. OPERATING INSTRUCTIONS  
To assist in navigating the analyzer’s software, a series of menu trees can be found in  
Appendix A of this manual.  
Note  
The flow charts appearing in this section contain typical representations  
of the analyzer’s display during the various operations being described.  
These representations may differ slightly from the actual display of your  
instrument.  
The ENTR button may disappear if you select a setting that is invalid or  
out of the allowable range for that parameter, such as trying to set the 24-  
hour clock to 25:00:00. Once you adjust the setting to an allowable value,  
the ENTR button will re-appear.  
4.1. OVERVIEW OF OPERATING MODES  
The T200H/M software has a variety of operating modes. Most commonly, the analyzer  
will be operating in SAMPLE mode. In this mode, a continuous read-out of the NO,  
NO2 and NOx concentrations are displayed on the front panel and are available to be  
output as analog signals from the analyzer’s rear panel terminals. Also, calibrations can  
be performed, and TEST functions and WARNING messages can be examined.  
The second most important operating mode is SETUP mode. This mode is used for  
performing certain configuration operations, such as for the DAS system, configuring  
the reporting ranges, or the serial (RS-232/RS-485/Ethernet) communication channels.  
The SET UP mode is also used for performing various diagnostic tests during  
troubleshooting.  
71  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 4-1:  
Front Panel Display with “SAMPLE” Indicated in the Mode Field  
The mode field of the front panel display indicates to the user which operating mode the  
unit is currently running.  
In addition to SAMPLE and SETUP, other modes the analyzer can be operated in are:  
72  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-1: Analyzer Operating modes  
Operating Instructions  
MODE  
EXPLANATION  
SAMPLE  
M-P CAL  
Sampling normally, flashing text indicates adaptive filter is on.  
This is the basic calibration mode of the instrument and is activated  
by pressing the CAL key.  
SETUP X.#2  
SAMPLE A  
SETUP mode is being used to configure the analyzer. The gas  
measurement will continue during this process.  
Indicates that unit is in SAMPLE mode and AUTOCAL feature is  
activated.  
ZERO CAL M1  
ZERO CAL A1  
ZERO CAL R1  
LO CAL A  
Unit is performing ZERO calibration procedure initiated manually by  
the user.  
Unit is performing ZERO calibration procedure initiated automatically  
by the AUTOCAL feature.  
Unit is performing ZERO calibration procedure initiated remotely  
through the COM ports or digital control inputs.  
Unit is performing LOW SPAN (midpoint) calibration initiated  
automatically by the analyzer’s AUTOCAL feature.  
LO CAL R  
Unit is performing LOW SPAN (midpoint) calibration initiated remotely  
through the COM ports or digital control inputs.  
SPAN CAL M1  
SPAN CAL A1  
Unit is performing SPAN calibration initiated manually by the user.  
Unit is performing SPAN calibration initiated automatically by the  
analyzer’s AUTOCAL feature.  
SPAN CAL R1  
Unit is performing SPAN calibration initiated remotely through the  
COM ports or digital control inputs.  
DIAG  
One of the analyzer’s diagnostic modes is active (Section 4.13).  
1 Only Appears on units with Z/S valve or IZS options.  
2 The revision of the analyzer firmware is displayed following the word SETUP, e.g., SETUP  
F.0.  
The very important CAL mode, which allows calibration of the analyzer in various  
ways, is described in detail in Section 7.  
4.2. SAMPLE MODE  
This is the analyzer’s standard operating mode. In this mode, the instrument is  
analyzing NO and NOX and calculating NO2 concentrations.  
4.2.1. TEST FUNCTIONS  
A series of test functions is available at the front panel while the analyzer is in SAMPLE  
mode. These parameters provide information about the present operating status of the  
instrument and are useful during troubleshooting (Section 7). They can also be recorded  
in one of the DAS channels (Section 4.7) for data analysis or output on one of the  
configurable analog outputs.  
73  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-2: Test Functions Defined  
DESCRIPTION  
DISPLAY  
PARAMETER  
UNITS  
A1:NXCNC1=100 PPM  
Analog output  
range  
configuration  
A2:N0CNC1=100 PPM  
A3:N2CNC1=25 PPM  
A4:NXCNC2=100%  
These functions show the default settings for the enabled analog  
output channels. See section 4.13.4 for more information.  
The stability is a standard deviation of the NOX concentration over 25  
samples, each recorded every 10 seconds. A low NOX STB value  
indicates low variability in NOX.  
NOX STB  
STABILITY  
PPM, MGM  
The flow rate of the sample gas through the reaction cell. This value is  
not measured but calculated from the sample pressure.  
SAMP FLW  
SAMPLE FLOW  
cm³/min (cc/m)  
OZONE FL  
PMT  
OZONE  
cm³/min (cc/m) Flow rate of the O3 gas stream as measured with a flow meter  
PMT Signal  
MV  
MV  
The raw output voltage of the PMT.  
NORMALIZED PMT  
Signal  
The output voltage of the PMT after normalization for auto-zero offset and  
temperature/pressure compensation (if activated).  
NORM PMT  
AZERO  
The PMT signal with zero NOX, which is usually slightly different from 0 V.  
This offset is subtracted from the PMT signal and adjusts for variations in  
the zero signal.  
AUTO-ZERO  
MV  
HVPS  
HVPS  
V
The PMT high voltage power supply.  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
REACTION CELL TEMP  
BOX TEMPERATURE  
PMT TEMPERATURE  
The current temperature of the reaction cell.  
The ambient temperature of the inside of the analyzer case.  
The current temperature of the PMT.  
C  
C  
C  
CONVERTER  
TEMPERATURE  
CONV TEMP  
RCEL  
The current temperature of the NO2 converter.  
C  
in-Hg-A  
in-Hg-A  
- -  
REACTION CELL  
PRESSURE  
The current gas pressure of the reaction cell as measured at the vacuum  
manifold. This is the vacuum pressure created by the external pump.  
The current pressure of the sample gas as it enters the reaction cell,  
measured between the NO/NOx and Auto-Zero valves.  
SAMP  
SAMPLE PRESSURE  
NOx SLOPE  
The slope of the current NOx calibration as calculated from a linear fit  
during the analyzer’s last zero/span calibration.  
NOX SLOPE  
NOX OFFS  
NO SLOPE  
NO OFFS  
The offset of the current NOx calibration as calculated from a linear fit  
during the analyzer’s last zero/span calibration.  
NOx OFFSET  
NO SLOPE  
MV  
The slope of the current NO calibration as calculated from a linear fit  
during the analyzer’s last zero/span calibration.  
- -  
The offset of the current NO calibration as calculated from a linear fit  
during the analyzer’s last zero/span calibration.  
NO OFFSET  
MV  
NO2  
NOX  
NO  
NO2 concentration  
NOx concentration  
NO concentration  
TEST SIGNAL2  
CLOCK TIME  
PPM, MGM  
PPM, MGM  
PPM, MGM  
MV  
The current NO2 concentration in the chosen unit.  
The current NOx concentration in the chosen unit.  
The current NO concentration in the chosen unit.  
Signal of a user-defined test function on output channel A4.  
The current day time for DAS records and calibration events.  
TEST  
TIME  
hh:mm:ss  
74  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
SAMPLE  
A1:NXCNC1=100 PPM1  
NOX = XXX  
< TST TST > CAL  
SETUP  
A1:NXCNC1=100 PPM1  
A2:NOCNC1=100 PPM1  
A3:N2CNC1=25 PPM1  
A4:NXCNC2=100%1  
RANGE  
Toggle <TST TST> to scroll  
through list of functions  
NOX STB  
SAMP FLW  
OZONE FL  
PMT  
NORM PMT  
AZERO  
HVPS  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
CONV TEMP  
O2 CELL TEMP2  
RCEL  
1 Default settings for user  
selectable reporting range  
settings.  
SAMP  
NOX SLOPE  
NOX OFFS  
NO SLOPE  
NO OFFS  
2 Only appears if O2 sensor  
option is installed.  
O2 SLOPE2  
O2 OFFS2  
TIME  
Figure 4-2:  
Viewing T200H/M TEST Functions  
Note  
A value of “XXXX” displayed for any of the TEST functions indicates an  
out-of-range reading or the analyzer’s inability to calculate it. All pressure  
measurements are represented in terms of absolute pressure. Absolute,  
atmospheric pressure is 29.92 in-Hg-A at sea level. It decreases about 1  
in-Hg per 300 m gain in altitude. A variety of factors such as air  
conditioning and passing storms can cause changes in the absolute  
atmospheric pressure.  
4.2.2. WARNING MESSAGES  
The most common instrument failures will be reported as a warning on the analyzer’s  
front panel and through the COM ports. Appendix A provides the recommended action  
and explains how to use these messages to troubleshoot problems. 7.1.1 shows how to  
view and clear warning messages.  
75  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-3: List of Warning Messages  
MESSAGE  
DEFINITION  
The instrument’s analog-to-digital converter (A/D) circuitry or one of the analog  
outputs are not calibrated.  
ANALOG CAL WARNING  
The reading taken during the Auto-zero cycle is outside the specified limits. The  
value shown here as “XXX.X” indicates the actual auto-zero reading at the time of  
the warning.  
AZERO WRN XXX.X MV  
BOX TEMP WARNING  
CANNOT DYN SPAN  
CANNOT DYN ZERO  
The temperature inside the T200H/M chassis is outside the specified limits.  
Remote span calibration failed while the dynamic span feature was ON.  
Remote zero calibration failed while the dynamic zero feature was ON.  
Configuration storage was reset to factory configuration or was erased.  
CONFIG INITIALIZED  
CONV TEMP WARNING  
DATA INITIALIZED  
NO2 converter temperature is outside of specified limits.  
DAS data storage was erased.  
HVPS WARNING  
High voltage power supply for the PMT is outside of specified limits.  
Ozone flow is outside of specified limits.  
OZONE FLOW WARNING  
Ozone generator is off. This is the only warning message that automatically  
clears itself when the ozone generator is turned on.  
OZONE GEN OFF  
PMT TEMP WARNING  
RCELL PRESS WARN  
RCELL TEMP WARNING  
REAR BOARD NOT DET  
RELAY BOARD WARN  
SAMPLE FLOW WARN  
SYSTEM RESET  
PMT temperature is outside of specified limits.  
Reaction cell pressure is outside of specified limits.  
Reaction cell temperature is outside of specified limits.  
The firmware is unable to communicate with the motherboard.  
The firmware is unable to communicate with the relay board.  
The flow rate of the sample gas is outside the specified limits.  
The computer rebooted or was powered up.  
To view and clear warning messages  
SAMPLE  
A1:NXCNC1=100PPM  
MSG  
NOX=XXX.X  
TEST deactivates warning  
TEST  
CAL  
CLR SETUP  
messages  
MSG activates warning  
messages.  
<TST TST> keys replaced with  
SAMPLE  
A1:NXCNC1=100PPM  
MSG  
NO=XXX.X  
TEST key  
All Warning messages are hidden,  
< TST TST > CAL  
CLR SETUP  
but MSG button appears  
SAMPLE  
HVPS WARNING  
NO2=XXX.X  
Press CLR to clear the current  
message.  
TEST  
CAL  
MSG  
CLR SETUP  
NOTE:  
If more than one warning is active, the  
next message will take its place  
If the warning message persists  
after several attempts to clear it,  
the message may indicate a  
real problem and not an artifact  
of the warm-up period  
Once the last warning has been  
cleared, the analyzer returns to  
SAMPLE mode  
Make sure warning messages are  
not due to real problems.  
Figure 4-3:  
Viewing and Clearing T200H/M WARNING Messages  
76  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.3. CALIBRATION MODE  
4.3.1. CALIBRATION FUNCTIONS  
Pressing the CAL key switches the T200H/M into calibration mode. In this mode, the  
user can calibrate the instrument with the use of calibrated zero or span gases.  
If the instrument includes the zero/span valve option, the display will also include  
CALZ and CALS buttons. Pressing either of these buttons also puts the instrument into  
multipoint calibration mode.  
The CALZ button is used to initiate a calibration of the zero point.  
The CALS button is used to calibrate the span point of the analyzer. It is  
recommended that this span calibration is performed at 90% of full scale of the  
analyzer’s currently selected reporting range.  
Because of their critical importance and complexity, calibration operations are described  
in detail in Section 5.  
4.4. SETUP MODE  
The SETUP mode contains a variety of choices that are used to configure the analyzer’s  
hardware and software features, perform diagnostic procedures, gather information on  
the instruments performance and configure or access data from the internal data  
acquisition system (DAS). The areas access under the Setup mode are:  
Table 4-4: Primary Setup Mode Features and Functions  
MENU  
BUTTON  
CFG  
MODE OR FEATURE  
DESCRIPTION  
Analyzer Configuration  
Auto Cal Feature  
Lists key hardware and software configuration information  
Used to set up an operate the AutoCal feature. Only appears if  
the analyzer has one of the internal valve options installed  
ACAL  
DAS  
Internal Data Acquisition  
(DAS)  
Used to set up the DAS system and view recorded data  
Analog Output Reporting  
Range Configuration  
Used to set the units of measure for the display and set the  
dilution ratio on instruments with that option active.  
RNGE  
Calibration Password Security  
Internal Clock Configuration  
PASS  
CLK  
Turns the password feature ON/OFF  
Used to Set or adjust the instrument’s internal clock  
Advanced SETUP features  
MORE  
This button accesses the instruments secondary setup menu  
77  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-5: Secondary Setup Mode Features and Functions  
KEYPAD  
LABEL  
MANUAL  
SECTION  
MODE OR FEATURE  
DESCRIPTION  
Used to set up and operate the analyzer’s various external I/O  
channels including RS-232; RS 485, modem communication  
and/or Ethernet access.  
External Communication  
Channel Configuration  
6.11 &  
6.15  
COMM  
VARS  
Used to view various variables related to the instruments current  
operational status  
System Status Variables  
6.12  
6.13  
6.14  
Used to access a variety of functions that are used to configure,  
test or diagnose problems with a variety of the analyzer’s basic  
systems.  
System Diagnostic Features  
and  
Analog Output Configuration  
DIAG  
Most notably, the menus used to configure the output signals  
generated by the instruments Analog outputs are located here.  
Used to turn the instrument’s two alarms on and off as well as  
set the trigger limits for each.  
Alarm Limit Configuration1  
ALRM  
1 Only present if the optional alarm relay outputs (Option 61) are installed.  
Note  
Any changes made to a variable during one of the following procedures is  
not acknowledged by the instrument until the ENTR button is pressed. If  
the EXIT button is pressed before the ENTR button, the analyzer will beep,  
alerting the user that the newly entered value has not been accepted.  
4.5. SETUP CFG: VIEWING THE ANALYZER’S  
CONFIGURATION INFORMATION  
Pressing the CFG key displays the instrument configuration information. This display  
lists the analyzer model, serial number, firmware revision, software library revision,  
CPU type and other information. Use this information to identify the software and  
hardware when contacting Technical Support. Special instrument or software features  
or installed options may also be listed here.  
78  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
Press NEXT of PREV to move back  
and forth through the following list  
of Configuration information:  
MODEL NAME  
SAMPLE  
PRIMARY SETUP MENU  
Press EXIT at  
any time to  
return to the  
SAMPLE display  
SERIAL NUMBER  
SOFTWARE REVISION  
LIBRARY REVISION  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
iCHIP SOFTWARE REVISION1  
HESSEN PROTOCOL REVISION1  
ACTIVE SPECIAL SOFTWARE  
SAMPLE  
T200 NOX ANALYZER  
OPTIONS1  
Press EXIT at  
any time to  
return to  
CPU TYPE  
DATE FACTORY CONFIGURATION  
SAVED  
NEXT PREV  
SETUP menu  
1Only appears if relevant option of Feature is active.  
4.6. SETUP ACAL: AUTOMATIC CALIBRATION  
Instruments with one of the internal valve options installed can be set to automatically  
run calibration procedures and calibration checks. These automatic procedures are  
programmed using the submenus and functions found under the ACAL menu.  
A menu tree showing the ACAL menu’s entire structure can be found in Appendix A-1  
of this manual.  
Instructions for using the ACAL feature are located in the Section 7.7 of this manual  
along with all other information related to calibrating the T200H/M analyzer.  
79  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7. SETUP DAS - USING THE DATA ACQUISITION SYSTEM  
(DAS)  
The T200H/M analyzer contains a flexible and powerful, internal data acquisition  
system (DAS) that enables the analyzer to store concentration and calibration data as  
well as a host of diagnostic parameters. The data points can cover days, weeks or  
months of valuable measurements, depending on how the DAS is configured. The data  
are stored in non-volatile memory and are retained even when the instrument is powered  
off. Data are stored in plain text format for easy retrieval and use in common data  
analysis programs (such as spreadsheet-type programs).  
Note  
Please be aware that all stored data will be erased if the analyzer’s disk-  
on-module, CPU board or configuration is replaced/reset.  
The DAS is designed to be flexible. Users have full control over the type, length and  
reporting time of the data. The DAS permits users to access stored data through the  
instrument’s front panel or its communication ports. Teledyne API also offers  
APICOM, a program that provides a visual interface for configuration and data retrieval  
of the DAS or using a remote computer. Additionally, the analyzer’s four analog output  
channels can be programmed to carry data related to any of the available DAS  
parameters.  
The principal use of the DAS is logging data for trend analysis and predictive  
diagnostics, which can assist in identifying possible problems before they affect the  
functionality of the analyzer. The secondary use is for data analysis, documentation and  
archival in electronic format.  
DAS STATUS  
The green SAMPLE LED on the instrument front panel, which indicates the analyzer  
status, also indicates certain aspects of the DAS status:  
Table 4-6: Front Panel LED Status Indicators for DAS  
LED STATE  
DAS STATUS  
System is in calibration mode. Data logging can be enabled or disabled for this mode.  
Calibration data are typically stored at the end of calibration periods, concentration data  
are typically not sampled, diagnostic data should be collected.  
Off  
Instrument is in hold-off mode, a short period after the system exits calibrations. DAS  
channels can be enabled or disabled for this period. Concentration data are typically  
disabled whereas diagnostic should be collected.  
Blinking  
On  
Sampling normally.  
The DAS can be disabled only by disabling or deleting its individual data channels.  
80  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.7.1. DAS STRUCTURE  
The DAS is designed around the feature of a “record”, an automatically stored single  
data point. (e.g. concentration, PMT signal level, etc.). Records are organized into data  
channels which are defined by properties that characterize the:  
Type of date recorded (e.g. concentration, PMT signal level, etc.);  
Trigger event that causes the record to be made (e.g. every minute, upon exiting  
calibration mode, etc.);  
How many records to be stored, as well as;  
How the information is to be stored (e.g. average over 1 hour, individual points,  
minimum value over last 5 minutes, etc.).  
The configuration of each DAS channel is stored in the analyzer’s memory as a script,  
which can be edited from the front panel or downloaded, edited and uploaded to the  
instrument in form of a string of plain-text lines through the communication ports.  
4.7.1.1. DAS Channels  
The key to the flexibility of the DAS is its ability to store a large number of  
combinations of triggering events and data parameters in the form of data channels.  
Users may create up to 20 data channels. For each channel one triggering event is  
selected and one or all of the T200H/M’s 25 data parameters are allowed. The number  
of parameters and channels is limited by available memory.  
The properties that define the structure of an DAS data channel are:  
Table 4-7: DAS Data Channel Properties  
PROPERTY  
NAME  
DESCRIPTION  
DEFAULT  
“NONE”  
SETTING RANGE  
Up to 6 letters or digits1.  
The name of the data channel.  
TRIGGERING  
EVENT  
The event that triggers the data channel to  
measure and store the datum  
Any available event  
(see Appendix A-5).  
ATIMER  
NUMBER AND  
LIST OF  
PARAMETERS  
A User-configurable list of data types to be  
recorded in any given channel.  
Any available parameter  
(see Appendix A-5).  
1 - PMTDET  
000:00:01 to  
366:23:59  
(Days:Hours:Minutes)  
The amount of time between each channel data  
point.  
REPORT PERIOD  
000:01:00  
100  
The number of reports that will be stored in the  
data file. Once the limit is exceeded, the oldest  
data is over-written.  
NUMBER OF  
RECORDS  
1 to 1 million, limited by  
available storage space.  
Enables the analyzer to automatically report  
channel values to the RS-232 ports.  
RS-232 REPORT  
OFF  
ON  
OFF or ON  
OFF or ON  
OFF or ON  
CHANNEL  
ENABLED  
Enables or disables the channel. Allows a channel  
to be temporarily turned off without deleting it.  
Disables sampling of data parameters while  
CAL HOLD OFF  
OFF  
instrument is in calibration mode2.  
1 More with APICOM, but only the first six are displayed on the front panel).  
2 When enabled records are not recorded until the DAS HOLD OFF period is passed after calibration mode. DAS HOLD OFF set in  
the VARS menu (see Section 4.12.)  
81  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.1.2. DAS Parameters  
Data parameters are types of data that may be measured by the analyzers instrumentality  
concentrations of measured gases, temperatures of heated zones,, pressures and flows of  
the pneumatic subsystem as well as calibration data such as slope and offset for each  
gas. For each Teledyne API analyzer model, the list of available data parameters is  
different, fully defined and not customizable (see Appendix A for a list of T200H/M  
parameters).  
Most data parameters have associated measurement units, such as mV, ppm, cm³/min,  
etc., although some parameters have no units. The only units that can be changed are  
those of the concentration readings according to the SETUP-RANGE settings.  
Note  
The DAS does not keep track of the unit of each concentration value and  
DAS data files may contain concentrations in multiple units if the unit was  
changed during data acquisition.  
Each data parameter has user-configurable functions that define how the data are  
recorded.  
Table 4-8: DAS Data Parameter Functions  
EFFECT  
FUNCTION  
PARAMETER  
SAMPLE MODE  
Instrument-specific parameter name.  
INST: Records instantaneous reading.  
AVG: Records average reading during reporting interval.  
MIN: Records minimum (instantaneous) reading during reporting interval.  
MAX: Records maximum (instantaneous) reading during reporting interval.  
SDEV: Records the standard deviation of the data points recorded during the reporting  
interval.  
PRECISION  
Decimal precision of parameter value(0-4).  
STORE NUM.  
SAMPLES  
OFF: stores only the average (default).  
ON: stores the average and the number of samples in each average for a parameter.  
This property is only useful when the AVG sample mode is used. Note that the  
number of samples is the same for all parameters in one channel and needs to be  
specified only for one of the parameters.  
4.7.1.3. DAS Triggering Events  
Triggering events define when and how the DAS records a measurement of any given  
data channel. Triggering events are firmware-specific and are listed in Appendix A-5.  
The most common triggering events are:  
ATIMER: Sampling occurs at regular intervals specified by an automatic timer.  
Trending information is often stored via such intervals, as either individual datum or  
averaged.  
EXITZR, EXITSP, SLPCHG (exit zero, exit span, slope change): Sampling at the  
end of an irregularly occurring event such as calibration or when the slope changes.  
These events create individual data points. Zero and slope values can be used to  
monitor response drift and to document when the instrument was calibrated.  
82  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
WARNINGS: Some data may be useful when stored if one of several warning  
messages appears. This is helpful for trouble-shooting by monitoring when a  
particular warning occurred.  
4.7.2. DEFAULT DAS CHANNELS  
The T200H/M is configured with a basic DAS configuration, which is enabled by  
default. New data channels are also enabled by default but each channel may be turned  
off for later or occasional use. Note that DAS operation is suspended while its  
configuration is edited through the front panel. To prevent such data loss, it is  
recommended to use the APICOM graphical user interface for DAS changes.  
A set of default data channels has been included in the analyzer’s software for logging  
nitrogen oxides concentrations, calibration and predictive diagnostic data. They are:  
CONC: Samples NOX, NO and NO2 concentration at one minute intervals and  
stores an average every hour with a time and date stamp along with the number of  
(1-minute) samples within each average(for statistical evaluation). Readings during  
calibration and calibration hold off are not included in the data. By default, the last  
800 hourly averages are stored.  
CALDAT: Every time a zero or span calibration is performed CALDAT logs  
concentration, slope and offset values for NOX and NO with a time and date stamp.  
The NOX stability (to evaluate calibration stability) as well as the converter  
efficiency (for reference) are also stored. This data channel will store data from the  
last 200 calibrations and can be used to document analyzer calibration. The slope  
and offset data can be used to detect trends in (instrument response.  
CALCHECK: This channel logs concentrations and the stability each time a zero or  
span check (not calibration) is finished. This allows the user to track the quality of  
zero and span responses over time and assist in evaluating the quality of zero and  
span gases and the analyzer’s noise specifications. The last 200 data points are  
retained.  
DIAG: Daily averages of temperature zones, flow and pressure data as well as  
some other diagnostic parameters (HVPS, AZERO). These data are useful for  
predictive diagnostics and maintenance of the T200H/M. The last 1100 daily  
averages are stored to cover more than four years of analyzer performance.  
HIRES: Records one minute, instantaneous data of all active parameters in the  
T200H/M. Short-term trends as well as signal noise levels can be detected and  
documented. Readings during calibration and the calibration hold off period are  
included in the averages. The last 1500 data points are stored, which covers a little  
more than one day of continuous data acquisition. This data channel is disabled by  
default but may be turned on when needed such as for trouble-shooting problems  
with the analyzer.  
The default data channels can be used as they are, or they can be customized from the  
front panel or through APICOM to fit a specific application. The Teledyne API website  
contains this default and other sample DAS scripts for free download. We recommend  
that the user backs up any DAS configuration and its data before altering it.  
Note  
Teledyne-API recommends downloading and storing existing data and the  
DAS configurations regularly for permanent documentation and future  
data analysis. Sending a DAS configuration to the analyzer through its  
COM ports will replace the existing configuration and will delete all stored  
data.  
83  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-9: T200H/M Default DAS Configuration  
PARAMETERS  
CHANNELS with PROPERTIES  
NUM  
SAMPLES  
NAME  
MODE  
EVENT  
PRECISION  
Name: CONC  
Event: ATIMER  
NOXCNC1  
NOCNC1  
N2CNC1  
STABIL  
AVG  
AVG  
AVG  
AVG  
- -  
- -  
- -  
- -  
4
4
4
4
ON  
OFF  
OFF  
OM  
Sample Period: 000:00:01  
Report Period: 000:01:00  
Number of Records: 800  
RS-232 report: OFF  
Channel enabled: ON  
DAS HOLDOFF: ON  
NXZSC1  
NOXSLP1  
NOXOFFS1  
NOZSC1  
NOSLP1  
NOOFFS1  
N2ZSC1  
CNVEF1  
STABIL  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
SLPCHG  
4
4
4
4
4
4
4
4
4
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Name: CALDAT  
Event: SLPCHG  
Number of Records: 200  
RS-232 report: OFF  
Channel enabled: ON  
DAS HOLDOFF: OFF  
Name: CALCHECK  
Event: EXITMP  
Number of Records: 200  
RS-232 report: OFF  
Channel enabled: ON  
DAS HOLDOFF: OFF  
NXZSC1  
NOZSC1  
N2ZSC1  
STABIL  
- -  
- -  
- -  
- -  
EXITMP  
EXITMP  
EXITMP  
EXITMP  
4
4
4
4
OFF  
OFF  
OFF  
OFF  
SMPFLW  
O3FLOW  
RCPRESS  
SMPPRES  
RCTEMP  
PMTTMP  
CNVTMP  
BOXTMP  
HVPS  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
AVG  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
- -  
2
2
2
2
2
2
2
2
2
2
4
4
4
4
2
2
2
2
2
2
2
2
1
2
1
1
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Name: CALCHECK  
Event: EXITMP  
Number of Records: 200  
RS-232 report: OFF  
Channel enabled: ON  
DAS HOLDOFF: OFF  
AZERO  
NOXCNC1  
NOCNC1  
N2CNC1  
STABIL  
SMPFLW  
O3FLOW  
RCPRESS  
SMPPRES  
RCTEMP  
PMTTMP  
CNVTMP  
BOXTMP  
HVPS  
Name: HIRES  
Event: ATIMER  
Sample Period: 000:00:01  
Report Period: 000:00:01  
Number of Records: 1500  
RS-232 report: OFF  
Channel enabled: OFF  
DAS HOLDOFF: OFF  
AZERO  
REFGND  
REF4096  
84  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.7.2.1. Viewing DAS Data and Settings  
DAS data and settings can be viewed on the front panel through the following keystroke  
sequence.  
FRONT PANEL CONTROL BUTTON FUNCTIONS  
BUTTON  
FUNCTION  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
<PRM  
PRM>  
Moves to the next Parameter  
< TST TST > CAL  
SETUP  
Moves to the previous  
Parameter  
EXIT will return to the  
main SAMPLE Display.  
SETUP X.X  
PRIMARY SETUP MENU  
NX10  
NEXT  
PREV  
PV10  
Moves the view forward 10  
data points/channels  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
Moves to the next data  
point/channel  
Moves to the previous data  
point/channel  
SETUP X.X  
DATA ACQUISITION  
Moves the view back 10 data  
points/channels  
VIEW EDIT  
Buttons only appear if applicable  
SETUP X.X  
CONC : DATA AVAILABLE  
NEXT VIEW  
EXIT  
SETUP X.X  
287:10:00 NXCNC1: XXX.X PPM  
PV10 PREV NEXT NX10 <PRM PRM>  
EXIT  
SETUP X.X  
CALDAT: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
281:15:10 NXZCS1: X.XXX PPM  
PV10 PREV NEXT NX10 <PRM PRM>  
EXIT  
SETUP X.X  
CALCHE: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
285:00:00 SMPFLW= X.XXX  
<PRM PRM>  
cc/m  
EXIT  
PV10 PREV  
SETUP X.X  
DIAG: DATA AVAILABLE  
PREV NEXT VIEW  
EXIT  
SETUP X.X  
00:00::00 PMTDET=0000.0000 m  
<PRM PRM> EXIT  
PV10 PREV  
Default  
setting for  
HIRES is  
SETUP X.X  
PREV  
HIRES: NO DATA AVAILABLE  
EXIT  
DISABLED.  
85  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.2.2. Editing DAS Data Channels  
DAS configuration is most conveniently done through the APICOM remote control  
program. The following sequence of touchscreen button presses shows how to edit  
using the front panel.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
EXIT will return to the  
previous SAMPLE  
display.  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
DATA ACQUISITION  
VIEW EDIT  
SETUP X.X  
ENTER DAS PASS: 818  
8
1
8
ENTR EXIT  
Edit Data Channel Menu  
SETUP X.X  
Moves the  
display up &  
down the list of  
Data Channels  
0) CONC: ATIMER, 8,  
800  
Exits to the Main  
Data Acquisition  
Menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
Exports the  
Inserts a new Data  
Channel into the list  
BEFORE the Channel  
currently being displayed  
configuration of all  
data channels to  
RS-232 interface.  
Deletes The Data  
Channel currently  
being displayed  
Moves the display  
between the  
PROPERTIES for this  
data channel.  
SETUP X.X  
NAME:CONC  
EXITS returns to  
the previous  
Menu  
<SET SET> EDIT PRNT  
EXIT  
Reports the configuration of current  
data channels to the RS-232 ports.  
Allows to edit the channel name, see next key sequence.  
When editing the data channels, the top line of the display indicates some of the  
configuration parameters. For example, the display line:  
0) CONC : ATIMER, 4, 800  
Translates to the following configuration:  
Channel No.: 0  
NAME: CONC  
TRIGGER EVENT: ATIMER  
PARAMETERS: Four parameters are included in this channel  
EVENT: This channel is set up to record 800 data points.  
86  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
To edit the name of a data channel, follow the above key sequence and then press:  
FROM THE PREVIOUS BUTTON SEQUENCE …  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
string and returns to the  
previous menu.  
EXIT ignores the new  
string and returns to the  
previous menu.  
SETUP X.X  
NAME:CONC  
C
O
N
C
-
-
ENTR  
EXIT  
Press each key repeatedly to cycle through the available character  
set:  
0-9, A-Z, space ’ ~ ! # $ % ^ & * ( ) - _ = +[ ] { } < >\ | ; : , . / ?  
4.7.2.3. Trigger Events  
To edit the list of data parameters associated with a specific data channel, press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 8,  
800  
EXITS to the Main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EVENT:ATIMER  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new string  
and returns to the previous  
menu.  
EXIT ignores the new string  
and returns to the previous  
menu.  
SETUP X.X  
EVENT:ATIMER  
<PREV NEXT>  
ENTR  
EXIT  
Press each key repeatedly to cycle through the  
list of available trigger events.  
See Appendix A for list of DAS trigger events available on the T200H/M.  
87  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.2.4. Editing DAS Parameters  
Data channels can be edited individually from the front panel without affecting other  
data channels. However, when editing a data channel, such as during adding, deleting or  
editing parameters, all data for that particular channel will be lost, because the DAS can  
store only data of one format (number of parameter columns etc.) for any given channel.  
In addition, an DAS configuration can only be uploaded remotely as an entire set of  
channels. Hence, remote update of the DAS will always delete all current channels and  
stored data.  
To modify, add or delete a parameter, follow the instruction shown in section 4.7.2.2  
then press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
Edit Data Channel Menu  
Exits to the main  
Data Acquisition  
menu  
SETUP X.X  
0) CONC: ATIMER, 8,  
800  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> key until…  
SETUP X.X  
PARAMETERS: 8  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EDIT PARAMS (DELETE DATA)  
YES will delete  
all data in that  
entire channel.  
NO returns to  
the previous  
menu and  
YES NO  
retains all data.  
Edit Data Parameter Menu  
SETUP X.X 0) PARAM=DETREP, MODE=INST  
Moves the  
display between  
available  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT  
EXIT  
Parameters  
Inserts a new Parameter  
before the currently  
displayed Parameter  
Use to configure  
the functions for  
this Parameter.  
Deletes the Parameter  
currently displayed.  
88  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
To configure the parameters for a specific data parameter, press:  
Operating Instructions  
FROM THE EDIT DATA PARAMETER MENU  
(see previous section)  
SETUP X.X 0) PARAM=NXCNC1, MODE=AVG  
PREV NEXT  
INS DEL EDIT  
EXIT  
SETUP X.X PARAMETERS: NOCNC1  
SET> EDIT  
EXIT  
SETUP X.X PARAMETER: NXCNC1  
PREV NEXT  
ENTR  
EXIT  
Cycle through list of available  
Parameters.  
SETUP X.X SAMPLE MODE: INST  
<SET SET> EDIT  
EXIT  
SETUP X.X SAMPLE MODE: INST  
INST AVG MIN MAX  
EXIT  
ENTR accepts the  
new setting and  
Press the key for the desired mode  
returns to the previous  
menu.  
EXIT ignores the new  
setting and returns to  
the previous menu.  
SETUP X.X PRECISION:4  
<SET SET> EDIT  
EXIT  
SETUP X.X PRECISION: 4  
1
EXIT  
Set for 0-4  
SETUP X.X STORE NUM. SAMPLES: OFF  
<SET  
EDIT  
EXIT  
SETUP X.X STORE NUM. SAMPLES: OFF  
OFF  
ENTR EXIT  
<SET Returns to  
previous  
Functions  
Turn ON or OFF  
See Appendix A-5 for list of DAS parameters available on the T200H/M.  
89  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.2.5. Sample Period and Report Period  
The DAS defines two principal time periods by which sample readings are taken and  
permanently recorded:  
SAMPLE PERIOD: Determines how often DAS temporarily records a sample  
reading of the parameter in volatile memory. The SAMPLE PERIOD is set to one  
minute by default and generally cannot be accessed from the standard DAS front  
panel menu, but is available via the instruments communication ports by using  
APICOM or the analyzer’s standard serial data protocol.  
SAMPLE PERIOD is only used when the DAS parameter’s sample mode is set for  
AVG, MIN or MAX.  
REPORT PERIOD: Sets how often the sample readings stored in volatile memory  
are processed, (e.g. average, minimum or maximum are calculated) and the results  
stored permanently in the instrument’s Disk-on-Module as well as transmitted via  
the analyzer’s communication ports. The REPORT PERIOD may be set from the  
front panel.  
If the INST sample mode is selected the instrument stores and reports an instantaneous  
reading of the selected parameter at the end of the chosen REPORT PERIOD  
In AVG, MIN or MAX sample modes, the settings for the SAMPLE PERIOD and the  
REPORT PERIOD determine the number of data points used each time the average,  
minimum or maximum is calculated, stored and reported to the com ports. The actual  
sample readings are not stored past the end of the of the chosen REPORT PERIOD.  
Also, the SAMPLE PERIOD and REPORT PERIOD intervals are synchronized to  
the beginning and end of the appropriate interval of the instruments internal clock.  
If SAMPLE PERIOD were set for one minute the first reading would occur at the  
beginning of the next full minute according to the instrument’s internal clock.  
If the REPORT PERIOD were set for of one hour the first report activity would occur  
at the beginning of the next full hour according to the instrument’s internal clock.  
EXAMPLE: Given the above settings, if DAS were activated at 7:57:35 the first sample  
would occur at 7:58 and the first report would be calculated at 8:00 consisting of data  
points for 7:58. 7:59 and 8:00.  
During the next hour (from 8:01 to 9:00) the instrument will take a sample reading every  
minute and include 60 sample readings.  
When the STORE NUM. SAMPLES feature is turned on the instrument will also store  
how many sample readings were used for the AVG, MIN or MAX calculation but not  
the readings themselves.  
4.7.2.6. Report Periods in Progress when Instrument Is Powered Off  
If the instrument is powered off in the middle of a REPORT PERIOD, the samples  
accumulated so far during that period are lost. Once the instrument is turned back on,  
the DAS restarts taking samples and temporarily them in volatile memory as part of the  
REPORT PERIOD currently active at the time of restart. At the end of this REPORT  
PERIOD only the sample readings taken since the instrument was turned back on will  
be included in any AVG, MIN or MAX calculation. Also, the STORE NUM.  
SAMPLES feature will report the number of sample readings taken since the instrument  
was restarted.  
90  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
To define the REPORT PERIOD, follow the instruction shown in Section 4.7.2.2 then  
press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
SETUP X.X  
ENTER DAS PASS: 818  
ENTR EXIT  
Changing the SAMPLE  
PERIOD or REPORT  
PERIOD Requires a  
special password  
9
2
9
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 8,  
8500  
Use the PREV and NEXT  
buttons to scroll to the  
data channel to be edited.  
Exits to the main  
Data Acquisition  
menu.  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME: CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> until you reach REPORT PERIOD (OR SAMPLE PERIOD) …  
SETUP X.X  
REPORT PERIOD:000:01:00  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
REPORT PERIODD:DAYS:0  
Set the number of days  
between reports (0-366).  
0
0
0
ENTR EXIT  
Press buttons to set hours  
between reports in the format :  
HH:MM (max: 23:59). This is a  
24 hour clock . PM hours are 13  
thru 23, midnight is 00:00.  
SETUP X.X  
REPORT PERIODD:TIME:01:01  
ENTR EXIT  
ENTR accepts the new string and  
returns to the previous menu.  
EXIT ignores the new string and  
returns to the previous menu.  
0
1
0
0
IIf at any time an illegal entry is selected (e.g., days > 366)  
the ENTR button will disappear from the display.  
Example 2:15 PM = 14:15  
91  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.2.7. Number of Records  
The DAS is capable of capturing several months worth of data, depending on the  
configuration. Every additional data channel, parameter, number of samples setting etc.  
will reduce the maximum amount of data points somewhat. In general, however, the  
maximum data capacity is divided amongst all channels (max: 20) and parameters (max:  
50 per channel).  
The DAS will check the amount of available data space and prevent the user from  
specifying too many records at any given point. If, for example, the DAS memory space  
can accommodate 375 more data records, the ENTR key will disappear when trying to  
specify more than that number of records. This check for memory space may also make  
an upload of an DAS configuration with APICOM or a Terminal program fail, if the  
combined number of records would be exceeded. In this case, it is suggested to either  
try from the front panel what the maximum number of records can be or use trial-and-  
error in designing the DAS script or calculate the number of records using the DAS or  
APICOM manuals. To set the number of records for one channel from the front panel,  
follow the instruction shown in section 4.7.2.2 then press.  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
SETUP X.X  
0) CONC: ATIMER, 8,  
800  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> key until…  
SETUP X.X  
NUMBER OF RECORDS:000  
<SET SET> EDIT PRINT  
EXIT  
SETUP X.X  
EDIT RECOPRDS (DELET DATA)  
NO returns to the  
previous menu.  
YES will delete all data  
in this channel.  
YES  
NO  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
Toggle buttons to set  
number of records  
(1-99999)  
SETUP X.X  
REPORT PERIODD:DAYS:0  
ENTR EXIT  
0
0
0
0
0
92  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.7.2.8. RS-232 Report Function  
The T200H/M DAS can automatically report data to the communications ports, where  
they can be captured with a terminal emulation program or simply viewed by the user.  
To enable automatic COM port reporting, follow the instruction shown in section 4.7.2.2  
then press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 8,  
800  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> key until…  
SETUP X.X  
RS-232 REPORT: OFF  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
RS-232 REPORT: OFF  
Toggle button to turn  
reporting ON or OFF  
OFF  
ENTR EXIT  
4.7.2.9. Compact Report  
When enabled, this option avoids unnecessary line breaks on all RS-232 reports. Instead  
of reporting each parameter in one channel on a separate line, up to five parameters are  
reported in one line, instead. For example, channel DIAG would report its record in two  
lines (10 parameters) instead of 10 lines. Individual lines carry the same time stamp and  
are labeled in sequence.  
4.7.2.10. Starting Date  
This option allows to specify a starting date for any given channel in case the user wants  
to start data acquisition only after a certain time and date. If the Starting Date is in the  
past, the DAS ignores this setting.  
93  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.2.11. Disabling/Enabling Data Channels  
Data channels can be temporarily disabled, which can reduce the read/write wear on the  
disk-on-chip. The HIRES channel of the T200H/M, for example, is disabled by default.  
To disable a data channel, follow the instruction shown in section 4.7.2.2 then press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 8,  
800  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> key until…  
SETUP X.X  
CHANNEL ENABLE:ON  
<SET SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
CHANNEL ENABLE:ON  
Toggle button to turn  
channel ON or OFF  
OFF  
ENTR EXIT  
94  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.7.2.12. HOLDOFF Feature  
The DAS HOLDOFF feature allows to prevent data collection during calibrations and  
during the DAS_HOLDOFF period enabled and specified in the VARS (Section 4.12).  
To enable or disable the HOLDOFF for any one DAS channel, follow the instruction  
shown in section 6.7.2.2 then press:  
From the DATA ACQUISITION menu  
(see Section 6.7.2.2)  
Edit Data Channel Menu  
SETUP X.X  
0) CONC: ATIMER, 2,  
900  
Exits to the main  
Data Acquisition  
menu  
PREV NEXT  
INS DEL EDIT PRNT EXIT  
SETUP X.X  
NAME:CONC  
<SET SET> EDIT PRINT  
EXIT  
Press SET> key until…  
SETUP X.X  
CAL HOLD OFF:ON  
SET> EDIT PRINT  
EXIT  
ENTR accepts the new  
setting and returns to the  
previous menu.  
EXIT ignores the new setting  
and returns to the previous  
menu.  
SETUP X.X  
CAL HOLD OFF:ON  
Toggle button to turn  
HOLDOFF ON or OFF  
ON  
ENTR EXIT  
95  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.7.3. REMOTE DAS CONFIGURATION  
Editing channels, parameters and triggering events as described in 6.7 is much more  
conveniently done in one step through the APICOM remote control program using the  
graphical interface shown in Figure 4-4. Refer to Section 4.15 for details on remote  
access to the T200H/M analyzer.  
Figure 4-4:  
APICOM Graphical User Interface for Configuring the DAS  
Once a DAS configuration is edited (which can be done offline and without interrupting  
DAS data collection), it is conveniently uploaded to the instrument and can be stored on  
a computer for later review, alteration or documentation and archival. Refer to the  
APICOM manual for details on these procedures. The APICOM user manual is  
included in the APICOM installation file, which can be downloaded at  
http://www.teledyne-api.com/software/apicom/.  
Note  
Whereas the editing, adding and deleting of DAS channels and  
parameters of one channel through the front-panel touch screen can be  
done without affecting the other channels, uploading a DAS configuration  
script to the analyzer through its communication ports will erase all data,  
parameters and channels by replacing them with the new DAS  
configuration. It is advised to download and backup all data and the  
original DAS configuration before attempting any DAS changes.  
96  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.8. SETUP RNGE: RANGE UNITS AND DILUTION  
CONFIGURATION  
This Menu is used to set the units of measure to be associated with the analyzer’s  
reporting ranges (see Section 4.13.4.2. for more information on reporting ranges vs.  
physical ranges) and for instruments with the sample gas dilution option operating, to set  
the dilution ratio.  
4.8.1. RANGE UNITS  
The T200H/M can display concentrations in parts per million (106 mols per mol, PPM)  
or milligrams per cubic meter (mg/m3, MGM). Changing units affects all of the  
display, COM port and DAS values for all reporting ranges regardless of the analyzer’s  
range mode. To change the concentration units:  
SAMPLE  
A1:NXCNC1= 100.0 PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.  
RANGE CONTROL MENU  
EXIT returns  
to the main  
menu.  
UNIT DIL  
SETUP X.X  
CONC UNITS: PPM  
Select the preferred  
concentration unit.  
PPM MGM  
ENTER EXIT  
ENTER EXIT  
ENTR accepts  
the new unit,  
EXIT returns  
to the SETUP  
menu.  
SETUP X.X  
PPM MGM  
CONC UNITS: MGM  
Conversion factors from volumetric to mass units used in the T200H/M:  
NO: ppm x 1.34 = mg/m3  
NO2: ppm x 2.05 = mg/m3  
Concentrations displayed in mg/m3 and µg/m3 use 0° C and 760 Torr as standard  
temperature and pressure (STP). Consult your local regulations for the STP used by  
your agency. EPA protocol applications, for example, use 25° C as the reference  
temperature. Changing the units may cause a bias in the measurements if standard  
temperature and pressure other than 0C and 760 Torr are used. This problem can be  
avoided by recalibrating the analyzer after any change from a volumetric to a mass unit  
or vice versa.  
Note  
In order to avoid a reference temperature bias, the analyzer must be  
recalibrated after every change in reporting units.  
97  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.8.2. DILUTION RATIO  
The dilution ratio is a software option that allows the user to compensate for any dilution  
of the sample gas before it enters the sample inlet.  
1. The SPAN value entered during calibration is the maximum expected concentration  
of the undiluted calibration gas  
2. The span gas should be either supplied through the same dilution inlet system as  
the sample gas or be supplied at an appropriately lower actual concentration.  
For example, with a dilution set to 100, a 1 ppm gas can be used to calibrate a 100  
ppm sample gas if the span gas is not routed through the dilution system.  
On the other hand, if a 100 ppm span gas is used, it needs to pass through the  
same dilution steps as the sample gas.  
3. Set the dilution factor as a gain (e.g., a value of 20 means 20 parts diluent and 1  
part of sample gas):  
The analyzer will multiply the measured gas concentrations with this dilution factor  
and displays the result.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP C.3  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP C.3  
RANGE CONTROL MENU  
DIL only appears  
if the dilution ratio  
option has been  
activateded  
UNIT  
DIL  
EXIT  
EXIT ignores the  
new setting.  
Toggle each as needed  
to set the dilution  
factor.  
SETUP C.3  
DIL FACTOR: 1.0 GAIN  
ENTR accepts the  
0
0
0
1
.0  
ENTR  
EXIT  
new setting.  
This is the number by  
which the analyzer will  
multiply the NO, NO2  
and NOx concentrations  
of the gas passing  
through the reaction  
cell  
SETUP C.3  
DIL FACTOR: 20.0 GAIN  
.0 ENTR  
0
0
2
0
EXIT  
The analyzer multiplies the measured gas concentrations with this dilution factor and  
displays the result.  
Calibrate the analyzer. Once the above settings have been entered, the instrument needs  
to be recalibrated using one of the methods discussed in Section 5.  
98  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.9. SETUP PASS: PASSWORD FEATURE  
The T200H/M provides password protection of the calibration and setup functions to  
prevent unauthorized adjustments. When the passwords have been enabled in the PASS  
menu item, the system will prompt the user for a password anytime a password-  
protected functio n (e.g., SETUP) is selected. This allows normal operation of the  
instrument, but requires the password (101) to access to the menus under SETUP. When  
PASSWORD is disabled (SETUP>OFF), any operator can enter the Primary Setup  
(SETUP) and Secondary Setup (SETUP>MORE) menus. Whether PASSWORD is  
enabled or disabled, a password (default 818) is required to enter the VARS or DIAG  
menus in the SETUP>MORE menu.  
There are three levels of password protection, which correspond to operator,  
maintenance, and configuration functions. Each level allows access to all of the  
functions in the previous level.  
Table 4-10: Password Levels  
Password  
Null (000)  
101  
Level  
Menu Access Allowed  
Operation  
All functions of the MAIN menu: TEST, GEN, initiate SEQ , MSG, CLR  
Configuration/Maintenance Access to Primary Setup and Secondary SETUP Menus when  
PASSWORD is enabled.  
818  
Configuration/Maintenance Access to Secondary SETUP Submenus VARS and DIAG whether  
PASSWORD is enabled or disabled.  
To enable or disable passwords, press the following menu button sequence:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
PASSWORD ENABLE: OFF  
ENTR EXIT  
Toggle this  
button to  
OFF  
enable, disable  
password  
SETUP X.X  
PASSWORD ENABLE: ON  
ENTR EXIT  
feature  
ON  
99  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Example: If all passwords are enabled, the following menu button sequence would be  
required to enter the SETUP menu:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
prompts for  
password  
number  
SAMPLE  
ENTER SETUP PASS: 0  
0
0
1
0
8
ENTR  
EXIT  
Example: this  
password enables the  
SETUP mode  
Press individual  
buttons to set  
numbers  
SAMPLE  
ENTER SETUP PASS: 0  
8
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Note that the instrument still prompts for a password when entering the VARS and  
DIAG menus, even if passwords are disabled, but it displays the default password (818)  
upon entering these menus. The user only has to press ENTR to access the password-  
protected menus but does not have to enter the required number code.  
100  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.10. SETUP CLK: SETTING THE INTERNAL TIME-OF-DAY  
CLOCK  
The T200H/M has a built-in clock for the AutoCal timer, Time TEST function, and time  
stamps on COM port messages and DAS data entries.  
To set the time-of-day, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
TIME-OF-DAY CLOCK  
Enter Current  
Date-of-Year  
Enter Current  
Time-of-Day  
TIME DATE  
EXIT  
SETUP X.X  
DATE: 01-JAN-02  
SETUP X.X  
TIME: 12:00  
0
1
JAN 0 2  
ENTR EXIT  
1 2 : 0 0  
ENTR EXIT  
SETUP X.X  
JAN  
DATE: 01-JAN-02  
SETUP X.X  
1 2 : 0 0  
TIME: 12:00  
0
1
0
2
ENTR EXIT  
ENTR EXIT  
SETUP X.X  
TIME DATE  
TIME-OF-DAY CLOCK  
EXIT  
EXIT returns  
to the main  
SETUP X.X  
PRIMARY SETUP MENU  
SAMPLE display  
CFG DAS RNGE PASS CLK MORE  
EXIT  
101  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
In order to compensate for CPU clocks which run fast or slow, there is a variable to  
speed up or slow down the clock by a fixed amount every day.  
To change this variable, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUPX.X  
1 ) MEASURE_MODE=NOX-NO  
EDIT PRNT EXIT  
< TST TST > CAL  
SETUP  
PREV NEXT JUMP  
SETUP X.X  
PRIMARY SETUP MENU  
Continue to press NEXT until …  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
7) CLOCK_ADJ=0 Sec/Day  
JUMP EDIT PRNT EXIT  
SETUP X.X SECONDARY SETUP MENU  
PREV  
COMM VARS DIAG  
EXIT  
SETUP X.X  
CLOCK_ADJ:0 Sec/Day  
ENTR EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
8
+
0
0
8
1
ENTR EXIT  
Enter sign and number of seconds per  
day the clock gains (-) or loses (+).  
SETUP X.X  
0 ) DAS_HOLD_OFF=15.0 Minutes  
EDIT PRNT EXIT  
SETUP X.X  
7) CLOCK_ADJ=0 Sec/Day  
NEXT JUMP  
PREV NEXT JUMP  
EDIT PRNT EXIT  
3x EXIT returns  
to the main SAMPLE display  
102  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11. SETUP MORE COMM: SETTING UP THE ANALYSER’S  
COMMUNICATION PORTS  
The T200H/M is equipped with an Ethernet port, a USB port and two serial  
communication (COMM) ports located on the rear panel (see Figure 3-2). Both com  
ports operate similarly and give the user the ability to communicate with, issue  
commands to, and receive data from the analyzer through an external computer system  
or terminal. By default, both ports operate on the RS-232 protocol.  
The RS232 port (used as COM1) can also be configured to operate in single or RS-232  
multidrop mode (option 62; See Section 5.9.2 and 4.11.8).  
The COM2 port, can be configured for standard RS-232 operation or for half-duplex  
RS-485 communication (RS485 configuration disables the USB communication port).  
A code-activated switch (CAS), can also be used on either port to connect typically  
between 2 and 16 send/receive instruments (host computer(s) printers, data loggers,  
analyzers, monitors, calibrators, etc.) into one communications hub. Contact Teledyne  
API sales for more information on CAS systems.  
4.11.1. DTE AND DCE COMMUNICATION  
RS-232 was developed for allowing communications between data terminal equipment  
(DTE) and data communication equipment (DCE). Basic terminals always fall into the  
DTE category whereas modems are always considered DCE devices. The difference  
between the two is the pin assignment of the Data Receive and Data Transmit functions.  
DTE devices receive data on pin 2 and transmit data on pin 3.  
DCE devices receive data on pin 3 and transmit data on pin 2.  
To allow the analyzer to be used with terminals (DTE), modems (DCE) and computers  
(which can be either), a switch mounted below the serial ports on the rear panel allows  
the user to set the configuration of COM1 for one of these two modes. This switch  
exchanges the receive and transmit lines on COM1 emulating a cross-over or null-  
modem cable. The switch has no effect on COM2.  
4.11.2. COM PORT DEFAULT SETTINGS  
As received from the factory, the analyzer is set up to emulate a DCE or modem, with  
Pin 3 of the DB-9 connector designated for receiving data and Pin 2 designated for  
sending data.  
RS232: (used as COM 1) RS-232 (fixed), DB-9 male connector.  
o
o
o
Baud rate: 115200 bits per second (baud).  
Data Bits: 8 data bits with 1 stop bit.  
Parity: None.  
COM2: RS-232 (configurable to RS-485), DB-9 female connector.  
o
o
o
Baud rate: 19200 bits per second (baud).  
Data Bits: 8 data bits with 1 stop bit.  
Parity: None.  
103  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.3. COMMUNICATION MODES, BAUD RATE AND PORT TESTING  
Use the SETUP>MORE>COMM menu to configure COM1 (labeled RS232 on  
instrument rear panel) and/or COM2 (labeled COM2 on instrument rear panel) for  
communication modes, baud rate and/or port testing for correct connection.  
4.11.3.1. COM Port Communication Modes  
Each of the analyzer’s serial ports can be configured to operate in a number of different  
modes, which are listed in the following table. Each COM port needs to be configured  
independently.  
Table 4-11: COM Port Communication modes  
MODE1  
QUIET  
ID  
1
DESCRIPTION  
Quiet mode suppresses any feedback from the analyzer (DAS reports, and warning  
messages) to the remote device and is typically used when the port is communicating  
with a computer program such as APICOM. Such feedback is still available but a  
command must be issued to receive them.  
COMPUTER  
SECURITY  
Computer mode inhibits echoing of typed characters and is used when the port is  
communicating with a computer program, such as APICOM.  
2
4
When enabled, the serial port requires a password before it will respond. The only  
command that is active is the help screen (? CR).  
HESSEN  
PROTOCOL  
The Hessen communications protocol is used in some European countries. Teledyne  
API part number 02252 contains more information on this protocol.  
16  
E, 7, 1  
When turned on this mode switches the com port settings  
from  
No parity; 8 data bits; 1 stop bit  
to  
2048  
Even parity; 7 data bits; 1 stop bit  
RS-485  
Configures the COM2 Port for RS-485 communication. RS-485 mode has precedence  
over multidrop mode if both are enabled. When the COM2 port is configured for RS-485  
communication, the rear panel USB port is disabled.  
1024  
MULTIDROP  
PROTOCOL  
Multidrop protocol allows a multi-instrument configuration on a single communications  
channel. Multidrop is an option requiring a special PCA and the use of instrument IDs.  
32  
64  
ENABLE  
MODEM  
Enables sending a modem initialization string at power-up. Asserts certain lines in the  
RS-232 port to enable the modem to communicate.  
ERROR  
Fixes certain types of parity errors at certain Hessen protocol installations.  
CHECKING2  
128  
256  
XON/XOFF  
Disables XON/XOFF data flow control also known as software handshaking.  
HANDSHAKE2  
HARDWARE  
HANDSHAKE  
Enables CTS/RTS style hardwired transmission handshaking. This style of data  
transmission handshaking is commonly used with modems or terminal emulation  
protocols as well as by Teledyne Instrument’s APICOM software.  
8
HARDWARE  
FIFO2  
Improves data transfer rate when on of the com ports.  
512  
COMMAND  
PROMPT  
Enables a command prompt when in terminal mode.  
4096  
1 Modes are listed in the order in which they appear in the  
SETUP MORE com COM[1 OR 2] MODE menu  
2 The default sting for this feature is ON. Do not disable unless instructed to by Teledyne API Technical Support  
personnel.  
104  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
Press the following buttons to select a communication mode for a one of the com ports,  
such as the following example where HESSEN PROTOCOL mode is enabled:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT returns  
to the  
SETUP X.X  
SECONDARY SETUP MENU  
previous  
menu  
COMM VARS DIAG ALRM  
EXIT  
EXIT  
SETUP X.X  
COMMUNICATIONS MENU  
Select which COM  
port to configure  
ID  
INET COM1 COM2  
The sum of the mode  
IDs of the selected  
modes is displayed  
here  
SETUP X.X  
COM1MODE:0  
SET> EDIT  
EXIT  
SETUP X.X  
COM1 QUIET MODE: OFF  
NEXT OFF  
ENTR EXIT  
Continue pressing next until …  
SETUP X.X COM1 HESSEN PROTOCOL : OFF  
PREV NEXT OFF  
ENTR EXIT  
Use PREV and NEXT to  
move between available  
modes.  
A mode is enabled by  
toggling the ON/OFF  
button.  
ENTR accepts the new  
SETUP X.X COM1 HESSEN PROTOCOL : ON  
settings  
EXIT ignores the new  
PREV NEXT ON  
ENTR EXIT  
settings  
Continue pressing NEXT and/or PREV to select any other modes  
you which to enable or disable  
105  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.3.2. COM Port Baud Rate  
To select the baud rate of one of the COM Ports, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT returns  
to the  
SETUP X.X SECONDARY SETUP MENU  
previous  
menu  
COMM VARS DIAG  
EXIT  
EXIT  
EXIT  
EXIT  
EXIT  
EXIT  
SETUP X.X COMMUNICATIONS MENU  
Select which COM port  
to configure.  
ID INET  
SETUP X.X  
COM1 COM2  
COM1MODE:0  
Press SET> until you  
reach  
COM1 BAUD RATE  
SET> EDIT  
EXAMPLE  
SETUP X.X  
COM1 BAUD RATE:115200  
Use PREV and NEXT  
keys to move  
between available  
baud rates.  
EXIT  
ignores the  
new  
setting  
<SET SET> EDIT  
300  
1200  
4800  
SETUP X.X  
COM1 BAUD RATE:115200  
ENTR  
ENTR  
accepts  
the new  
setting  
PREV NEXT  
9600  
19200  
38400  
57600  
115200  
SETUP X.X  
COM1 BAUD RATE:9600  
ENTR  
NEXT ON  
106  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11.3.3. COM Port Testing  
The serial ports can be tested for correct connection and output in the com menu. This  
test sends a string of 256 ‘w’ characters to the selected COM port. While the test is  
running, the red LED on the rear panel of the analyzer should flicker.  
To initiate the test press the following key sequence.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
< TST TST > CAL  
SETUP  
EXIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
SETUP X.X  
COM1 BAUD RATE:19200  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
<SET SET> EDIT  
SETUP X.X  
SECONDARY SETUP MENU  
SETUP X.X  
<SET  
COM1: TEST PORT  
TEST  
COMM VARS DIAG  
EXIT  
SETUP X.X  
COMMUNICATIONS MENU  
SETUP X.X  
<SET  
TRANSMITTING TO COM1  
TEST  
ID INET COM1 COM2  
EXIT  
EXIT returns to  
COMM menu  
EXIT  
Select which  
COM port to  
test.  
Test runs  
automatically  
107  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.4. ANALYZER ID  
Each type of Teledyne API analyzer is configured with a default ID code. The default  
ID code for all T200H/M analyzers is either 0 or 200. The ID number is only important  
if more than one analyzer is connected to the same communications channel such as  
when several analyzers are on the same Ethernet LAN (see Section 4.11.7); in a RS-232  
multidrop chain (see Section 4.11.9) or operating over a RS-485 network (see Section  
4.11.6). If two analyzers of the same model type are used on one channel, the ID codes  
of one or both of the instruments needs to be changed so that they are unique to the  
instruments. To edit the instrument’s ID code, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
SETUP X.X  
COMMUNICATIONS MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
ID INET COM1 COM2  
EXIT  
Toggle these buttons  
to cycle through the  
available character set:  
0-9  
ENTR button accepts the  
SETUP X.  
MACHINE ID: 200 ID  
new settings  
EXIT key ignores the new  
0
2
0
0
ENTR EXIT  
settings  
The ID can be any 4 digit number and can also be used to identify analyzers in any  
number of ways (e.g. location numbers, company asset number, etc.)  
108  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11.5. RS-232 COM PORT CABLE CONNECTIONS  
In its default configuration, the T200H/M analyzer has two available RS-232 com ports  
accessible via 2 DB-9 connectors on the back panel of the instrument. The COM1  
connector, labeled RS232, is a male DB-9 connector and the COM2 is a female DB9  
connector.  
Figure 4-5:  
Default Pin Assignments for Rear Panel com Port Connectors (RS-232 DCE & DTE)  
The signals from these two connectors are routed from the motherboard via a wiring  
harness to two 10-pin connectors on the CPU card, J11 (COM1) and J12 (COM2).  
109  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 4-6:  
CPU COM1 & COM2 Connector Pin-Outs for RS-232 Mode  
Teledyne API offers two mating cables, one of which should be applicable for your use.  
Part number WR000077, a DB-9 female to DB-9 female cable, 6 feet long. Allows  
connection of COM1 with the serial port of most personal computers. Also available  
as Option 60 (see Section 5.9.1).  
Part number WR000024, a DB-9 female to DB-25 male cable. Allows connection to  
the most common styles of modems (e.g. Hayes-compatible) and code activated  
switches.  
Both cables are configured with straight-through wiring and should require no additional  
adapters.  
Note  
Cables that appear to be compatible because of matching connectors may  
incorporate internal wiring that make the link inoperable. Check cables  
acquired from sources other than Teledyne API for pin assignments  
before using.  
To assist in properly connecting the serial ports to either a computer or a modem, there  
are activity indicators LEDs labeled RX and TX) just above the rear panel RS-232 port.  
Once a cable is connected between the analyzer and a computer or modem, both the red  
and green LEDs should be on. If the RX TX LEDs for RS232 are not lit, change  
position of rear panel DCE DTE mode switch (see 4.11.1). If both LEDs are still not  
illuminated, check the cable for proper wiring.  
110  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11.6. RS-485 CONFIGURATION OF COM2  
Opting to use RS-485 communications for the COM2 port will disable the USB port. To  
configure your instrument for RS-485 communications, please consult the factory.  
4.11.7. ETHERNET INTERFACE CONFIGURATION  
When using the Ethernet interface, the analyzer can be connected to any standard  
10BaseT or 100BaseT Ethernet network via low-cost network hubs, switches or routers.  
The interface operates as a standard TCP/IP device on port 3000. This allows a remote  
computer to connect through the network to the analyzer using APICOM, terminal  
emulators or other programs.  
The Ethernet cable connector on the rear panel has two LEDs indicating the Ethernet’s  
current operating status.  
Table 4-12 Ethernet Status Indicators  
LED  
FUNCTION  
amber (link)  
On when connection to the LAN is valid.  
green (activity Flickers during any activity on the LAN.  
The analyzer is shipped with DHCP enabled by default. This allows the instrument to be  
connected to a network or router with a DHCP server. The instrument will automatically  
be assigned an IP address by the DHCP server (Section Configuring Ethernet  
Communication Using DHCP). This configuration is useful for quickly getting an  
instrument up and running on a network. However, for permanent Ethernet connections,  
a static IP address should be used. Section 4.11.7.2 below details how to configure the  
instrument with a static IP address.  
111  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.7.1. Configuring Ethernet Communication Using DHCP  
1. Consult with your network administrator to affirm that your network server is running  
DHCP.  
2. Access the Ethernet Menu (SETUP>MORE>COMM>INET).  
3. After pressing ENTR at the password menu, press SET> to view the DHCP  
settings:  
SETUP X.X  
COMMUNICATIONS MENU  
ID INET COM1 COM2  
EXIT  
From this point on,  
EXIT returns to  
COMMUNICATIONS  
MENU  
SAMPLE  
ENTER SETUP PASS : 818  
8
8
1
ENTR EXIT  
DHCP: ON is  
default setting.  
If it has been  
set to OFF,  
press EDIT  
and set to ON.  
SETUP X.X  
DHCP: OFF  
DHCP: ON  
SETUP X.X  
DHCP: ON  
OFF  
ENTR EXIT  
SET> EDIT  
EXIT  
EXIT  
EXIT  
SETUP X.X  
ON  
ENTR EXIT  
SETUP X.X  
<SET SET>  
INST IP: 0.0.0.0  
SETUP X.X GATEWAY IP: 0.0.0.0  
THE EDIT button is disabled. Each string of octets  
should be assigned numbers by the DHCP; if all 0’s,  
DHCP failed. Consult your network administrator.  
<SET SET>  
SETUP X.X SUBNET MASK: 0.0.0.0  
<SET SET>  
EXIT  
Do not alter unless  
directed to by Teledyne  
Instruments Customer  
Service personnel  
SETUP X.X  
TCP PORT: 3000  
<SET SET> EDIT  
EXIT  
EXIT  
EXIT  
SETUP X.X  
TCP PORT2: 502  
<SET SET> EDIT  
SETUP X.X HOSTNAME:  
<SET  
EDIT  
112  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Table 4-13: LAN/Internet Configuration Properties  
DEFAULT STATE DESCRIPTION  
Operating Instructions  
PROPERTY  
This displays whether the DHCP is  
turned ON or OFF.  
DHCP STATUS  
On  
Editable  
EDIT key  
This string of four packets of 1 to 3  
disabled when numbers each (e.g. 192.168.76.55.) is  
INSTRUMENT  
IP ADDRESS  
Configured by  
DHCP  
DHCP is ON  
the address of the analyzer itself.  
A string of numbers very similar to the  
Instrument IP address (e.g.  
disabled when 192.168.76.1.)that is the address of  
EDIT key  
GATEWAY IP  
ADDRESS  
Configured by  
DHCP  
DHCP is ON  
the computer used by your LAN to  
access the Internet.  
Also a string of four packets of 1 to 3  
numbers each (e.g. 255.255.252.0)  
that defines that identifies the LAN the  
device is connected to.  
EDIT key  
disabled when  
DHCP is ON  
All addressable devices and  
Configured by  
DHCP  
SUBNET MASK  
computers on a LAN must have the  
same subnet mask. Any transmissions  
sent devices with different assumed to  
be outside of the LAN and are routed  
through gateway computer onto the  
Internet.  
This number defines the terminal  
control port by which the instrument is  
addressed by terminal emulation  
software, such as Internet or Teledyne  
API’ APICOM.  
TCP PORT1  
3000  
Editable  
Editable  
The name by which your analyzer will  
appear when addressed from other  
computers on the LAN or via the  
Internet. While the default setting for  
all Teledyne API analyzers is the  
model number, the host name may be  
changed to fit customer needs.  
HOST NAME  
[initially blank]  
1 Do not change the setting for this property unless instructed to by Teledyne API Technical  
Support personnel.  
Note  
It is recommended that you check these settings the first time you power  
up your analyzer after it has been physically connected to the  
LAN/Internet to confirm that the DHCP server has successfully  
downloaded the appropriate information from you network. If the gateway  
IP, instrument IP and subnet mask are all zeroes (e.g. “0.0.0.0”), the  
DHCP was not successful. It may be necessary to manually configure the  
analyzer’s Ethernet properties. Consult your network administrator.  
113  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.7.2. Configuring Ethernet Communication Manually (Static IP Address)  
1. Connect a cable from the analyzer’s Ethernet port to a Local Area Network (LAN) or  
Internet port.  
2. From the analyzer’s front panel touch screen, access the Ethernet Menu:  
(SETUP>MORE>COMM>INET).  
3. Follow the setup sequence as shown in Figure 4-7, and edit the Instrument and  
Gateway IP addresses and the Subnet Mask to the desired settings.  
4. From the computer, enter the same information through an application such as  
HyperTerminal.  
5. Table 4-13 shows the default Ethernet configuration settings.  
114  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
Internet Configuration Button Functions  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
BUTTON  
[0]  
FUNCTION  
COM1  
EXIT  
Location of cursor. Press to cycle through the range of  
numerals and available characters (“0 – 9” & “ . ”)  
<CH CH> Moves the cursor one character left or right.  
SAMPLE  
ENTER SETUP PASS : 818  
DEL  
Deletes a character at the cursor location.  
Accepts the new setting and returns to the previous  
menu.  
8
1
8
ENTR EXIT  
ENTR  
Ignores the new setting and returns to the previous  
menu.  
EXIT  
DHCP: ON is  
default setting.  
Skip this step  
if it has been  
set to OFF.  
SETUP X.X  
DHCP: ON  
Some buttons appear only when relevant.  
SET> EDIT  
EXIT  
SETUP X.X  
DHCP: OFF  
SET> EDIT  
EXIT  
SETUP X.X INST IP: 000.000.000.000  
<SET SET> EDIT  
EXIT  
Cursor  
location is  
indicated by  
brackets  
SETUP X.X INST IP: [0] 00.000.000  
<CH CH>  
DEL [0]  
ENTR EXIT  
SETUP X.X GATEWAY IP: 000.000.000.000  
<SET SET> EDIT  
EXIT  
ENTR  
accepts  
the new  
assigned  
numbers;  
EXIT  
SETUP X.X GATEWAY IP: [0] 00.000.000  
<CH CH> DEL [?] ENTR EXIT  
SETUP X.X SUBNET MASK:255.255.255.0  
ignores  
<SET SET> EDIT  
EXIT  
SETUP X.X SUBNET MASK:[2]55.255.255.0  
<CH CH> DEL [?] ENTR EXIT  
SETUP X.X TCP PORT 3000  
<SET  
EDIT  
EXIT  
The PORT number must remain at 3000.  
Do not change this setting unless instructed to by  
Teledyne Instruments Customer Service personnel.  
Pressing EXIT from  
any of the above  
display menus  
causes the Ethernet  
option to reinitialize  
its internal interface  
firmware  
SETUP X.X  
INITIALIZING INET 0%  
INITIALIZING INET 100%  
SETUP X.X  
INITIALIZATI0N SUCCEEDED  
SETUP X.X  
INITIALIZATION FAILED  
Contact your IT  
Network Administrator  
SETUP X.X  
COMMUNICATIONS MENU  
ID  
INET  
COM1  
EXIT  
Figure 4-7:  
COM – LAN / Internet Manual Configuration  
115  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.7.3. Changing the Analyzer’s HOSTNAME  
The HOSTNAME is the name by which the analyzer appears on your network. The  
default name for all Teledyne API Model T200H/M analyzers is initially blank. To  
create or later change this name (particularly if you have more than one analyzer on  
your network), press.  
SETUP X.X  
DHCP: ON  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SET> EDIT  
EXIT  
< TST TST > CAL  
SETUP  
Continue pressing SET> UNTIL …  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X HOSTNAME:  
<SET EDIT  
SETUP X.X SECONDARY SETUP MENU  
EXIT  
COMM VARS DIAG ALRM  
EXIT  
EXIT  
SETUP X.X HOSTNAME: T200  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
<CH CH> INS DEL [?]  
ENTR EXIT  
COM1  
Press to edit HOSTNAME  
SAMPLE  
ENTER SETUP PASS : 818  
SETUP X.X HOSTNAME: T200X STATION 1  
8
1
8
ENTR EXIT  
<SET  
EDIT  
EXIT  
SETUP X.X  
INITIALIZING INET 0%  
INITIALIZING INET 100%  
SETUP X.X  
INITIALIZATI0N SUCCEEDED  
SETUP X.X  
INITIALIZATION FAILED  
SETUP X.X  
ID INET  
COMMUNICATIONS MENU  
Contact your IT Network  
Administrator  
COM1  
EXIT  
Table 4-14: Internet Configuration Menu Button Functions  
FUNCTION  
BUTTON  
<CH  
CH>  
INS  
DEL  
[?]  
Moves the cursor one character to the left.  
Moves the cursor one character to the right.  
Inserts a character before the cursor location.  
Deletes a character at the cursor location.  
Press this key to cycle through the range of numerals and characters available for insertion.  
0-9, A-Z, space ’ ~ ! # $ % ^ & * ( ) - _ = +[ ] { } < >\ | ; : , . / ?  
ENTR  
EXIT  
Accepts the new setting and returns to the previous menu.  
Ignores the new setting and returns to the previous menu.  
Some keys only appear as needed.  
116  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11.8. USB PORT SETUP  
The analyzer can be operated through a personal computer by downloading the TAPI  
USB driver and directly connecting their respective USB ports.  
1. Install the Teledyne T-Series USB driver on your computer, downloadable from the  
Teledyne API website under Help Center>Software Downloads (www.teledyne-  
api.com/software).  
2. Run the installer file: “TAPIVCPInstaller.exe”  
3. Connect the USB cable between the USB ports on your personal computer and your  
analyzer. The USB cable should be a Type A – Type B cable, commonly used as a  
USB printer cable.  
4. Determine the Windows XP Com Port number that was automatically assigned to  
the USB connection. (Start Control Panel System Hardware Device  
Manager). This is the com port that should be set in the communications software,  
such as APIcom or Hyperterminal.  
Refer to the Quick Start (Direct Cable Connection) section of the Teledyne APIcom  
Manual, PN 07463.  
117  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
5. In the instrument’s SETUP>MORE>COMM>COM2 menu, make the following settings:  
Baud Rate: 115200  
COM2 Mode Settings:  
Quiet Mode  
ON  
Computer Mode  
MODBUS RTU  
MODBUS ASCII  
E,8,1 MODE  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
E,7,1 MODE  
RS-485 MODE  
SECURITY MODE  
MULTIDROP MODE  
ENABLE MODEM  
ERROR CHECKING  
XON/XOFF HANDSHAKE OFF  
HARDWARE HANDSHAKE OFF  
HARDWARE FIFO  
ON  
COMMAND PROMPT  
OFF  
6. Next, configure your communications software, such as APIcom. Use the COM port  
determined in Step 4 and the baud rate set in Step 5. The figures below show how  
these parameters would be configured in the Instrument Properties window in  
APIcom when configuring a new instrument. See the APIcom manual (PN 07463)  
for more details.  
Note  
USB configuration requires that instrument and PC baud rates match; check the  
PC baud rate and change if needed. Using the USB port disallows use of the rear  
panel COM2 port except for multidrop communication.  
118  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.11.9. MULTIDROP RS-232 SET UP  
When the RS-232 Multidrop option is installed, connection adjustments and  
configuration through the menu system are required. This section provides instructions  
for the internal connection adjustments, then for external connections, and ends with  
instructions for menu-driven configuration.  
Note that because the RS-232 Multidrop option uses both the RS232 and COM2 DB9  
connectors on the analyzer’s rear panel to connect the chain of instruments, COM2 port  
is no longer available for separate RS-232 or RS-485 operation.  
CAUTION – Risk of Instrument Damage and Warranty Invalidation  
Printed circuit assemblies (PCAs) are sensitive to electro-static discharges too small to be felt by  
the human nervous system. Damage resulting from failure to use ESD protection when working  
with electronic assemblies will void the instrument warranty. See A Primer on Electro-Static  
Discharge section in this manual for more information on preventing ESD damage.  
In each instrument with the Multidrop option there is a shunt jumpering two pins on the  
serial Multidrop and LVDS printed circuit assembly (PCA), as shown in Figure 4-8.  
This shunt must be removed from all instruments except that designated as last in the  
multidrop chain, which must remain terminated. This requires powering off and opening  
each instrument and making the following adjustments:  
1. With NO power to the instrument, remove its top cover and lay the rear panel open  
for access to the multidrop PCA, which is seated on the CPU.  
2. On the Multidrop/LVDS PCA’s JP2 connector, remove the shunt that jumpers Pins  
21 22 as indicated in Figure 4-8. (Do this for all but the last instrument in the  
chain where the shunt should remain at Pins 21 22).  
3. Check that the following cable connections are made in all instruments (again refer  
to Figure 4-8).  
J3 on the Multidrop/LVDS PCA to the CPU’s COM1 connector  
(Note that the CPU’s COM2 connector is not used in Multidrop)  
J4 on the Multidrop/LVDS PCA to J12 on the motherboard  
J1 on the Multidrop/LVDS PCS to the front panel LCD  
119  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 4-8:  
Jumper and Cables for Multidrop Mode  
Note: If you are adding an instrument to the end of a previously configured chain,  
remove the shunt between Pins 21 22 of the Multidrop PCA in the instrument that  
was previously the last instrument in the chain.  
4. Close the instrument.  
5. Referring to Figure 4-9, use straight-through DB9 male-DB9 female cables to  
interconnect the host RS232 port to the first analyzer’s RS232 port; then from the  
first analyzer’s COM2 port to the second analyzer’s RS232 port; from the second  
analyzer’s COM2 port to the third analyzer’s RS232 port, etc., connecting in this  
fashion up to eight analyzers, subject to the distance limitations of the RS-232  
standard.  
6. On the rear panel of each analyzer, adjust the DCE DTE switch so that the green  
and the red LEDs (RX and TX) of the COM1 connector (labeled RS232) are both lit.  
(Ensure you are using the correct RS-232 cables that are internally wired specifically  
for RS232 communication).  
120  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
Female DB9  
Male DB9  
Host  
RS-232 port  
Analyzer  
Analyzer  
Analyzer  
Last Analyzer  
COM2  
COM2  
COM2  
COM2  
RS-232  
RS-232  
RS-232  
RS-232  
Ensure jumper is  
installed between  
JP2 pins 21  
last instrument of  
multidrop chain.  
22 in  
Figure 4-9:  
RS-232-Multidrop Host-to-Analyzer Interconnect Diagram  
7. BEFORE communicating from the host, power on the instruments and check that  
the Machine ID (Section 4.11.1) is unique for each. On the front panel menu, use  
SETUP>MORE>COMM>ID. The default ID is typically the model number or “0”; to  
change the 4-digit identification number, press the button below the digit to be  
changed; once changed, press/select ENTER to accept the new ID for that  
instrument.  
8. Next, in the SETUP>MORE>COMM>COM1 menu (do not use the COM2 menu for  
multidrop), edit the COM1 MODE parameter as follows: press/select EDIT and set  
only QUIET MODE, COMPUTER MODE, and MULTIDROP MODE to ON. Do not  
change any other settings.  
9. Press/select ENTER to accept the changed settings, and ensure that COM1 MODE  
now shows 35.  
10. Press/select SET> to go to the COM1 BAUD RATE menu and ensure it reads the  
same for all instruments (edit as needed so that all instruments are set at the same  
baud rate).  
NOTES:  
The (communication) Host instrument can address only one instrument at a time,  
each by its unique ID (see Step 7 above).  
Teledyne API recommends setting up the first link, between the Host and the first  
analyzer, and testing it before setting up the rest of the chain.  
121  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.11.10. MODBUS SETUP  
The following set of instructions assumes that the user is familiar with MODBUS  
communications, and provides minimal information to get started. For additional  
instruction, please refer to the Teledyne API MODBUS manual, PN 06276. Also refer to  
www.modbus.org for MODBUS communication protocols.  
MINIMUM REQUIREMENTS  
Instrument firmware with MODBUS capabilities installed.  
MODBUS-compatible software (TAPI uses MODBUS Poll for testing; see  
www.modbustools.com)  
Personal computer  
Communications cable (Ethernet or USB or RS232)  
Possibly a null modem adapter or cable  
ACTIONS  
Set Com Mode parameters  
Comm Ethernet:  
Using the front panel menu, go to SETUP – MORE – COMM – INET; scroll through the INET  
submenu until you reach TCP PORT 2 (the standard setting is 502), then continue to TCP  
PORT 2 MODBUS TCP/IP; press EDIT and toggle the menu button to change the setting  
to ON, then press ENTR. (Change Machine ID if needed: see “Slave ID”).  
USB/RS232: Using the front panel menu, go to SETUP – MORE – COMM – COM2 – EDIT; scroll  
through the COM2 EDIT submenu until the display shows COM2 MODBUS RTU: OFF  
(press OFF to change the setting to ON. Scroll NEXT to COM2 MODBUS ASCII and  
ensure it is set to OFF. Press ENTR to keep the new settings. (If RTU is not available with  
your communications equipment, set the COM2 MODBUS ASCII setting to ON and  
ensure that COM2 MODBUS RTU is set to OFF. Press ENTR to keep the new settings).  
If your analyzer is connected to a network with at least one other analyzer of the same model, a unique  
Slave ID must be assigned to each. Using the front panel menu, go to SETUP – MORE – COMM – ID.  
The MACHINE ID default is the same as the model number. Toggle the menu buttons to change the ID.  
Slave ID  
Reboot analyzer  
For the settings to take effect, power down the analyzer, wait 5 seconds, and power up the analyzer.  
Connect your analyzer either:  
Make appropriate cable  
connections  
via its Ethernet or USB port to a PC (this may require a USB-to-RS232 adapter for your PC; if so, also  
install the software driver from the CD supplied with the adapter, and reboot the computer if required), or  
via its COM2 port to a null modem (this may require a null modem adapter or cable).  
Specify MODBUS software  
settings  
1. Click Setup / [Read / Write Definition] /.  
a. In the Read/Write Definition window (see example that follows) select a Function (what you wish  
to read from the analyzer).  
(examples used here are for  
MODBUS Poll software)  
b. Input Quantity (based on your firmware’s register map).  
c. In the View section of the Read/Write Definition window select a Display (typically Float Inverse).  
d. Click OK.  
2. Next, click Connection/Connect.  
a. In the Connection Setup window (see example that follows), select the options based on your  
computer.  
b. Press OK.  
Read the Modbus Poll Register Use the Register Map to find the test parameter names for the values displayed (see example that follows  
If desired, assign an alias for each.  
122  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
Example Read/Write Definition window:  
Example Connection Setup window:  
Example MODBUS Poll window:  
123  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.12. SETUP MORE VARS: INTERNAL VARIABLES (VARS)  
The T200H/M has several-user adjustable software variables, which define certain  
operational parameters.  
Usually, these variables are automatically set by the  
instrument’s firmware, but can be manually re-defined using the VARS menu. Table  
4-15 lists all variables that are available within the 818 password protected level. See  
Appendix A2 for a detailed listing of all of the T200H/M variables that are accessible  
through the remote interface.  
Table 4-15: Variable Names (VARS)  
NO.  
VARIABLE  
DESCRIPTION  
ALLOWED VALUES  
Duration of no data storage in the DAS. This is the time when  
the analyzer returns from one of its calibration modes to the  
SAMPLE mode. The DAS_HOLD_OFF can be disabled in each  
DAS channel.  
Can be between 0.5  
and 20 minutes  
Default=15 min.  
DAS_HOLD_OFF  
0
Selects the gas measurement mode in which the instrument is to  
operate. NOx only, NO only or dual gas measurement of NOx  
and NO simultaneously. Dual gas mode requires that a special  
switching optional be installed.  
NO; NOx;  
NOx–NO  
MEASURE_MODE  
1
Selects which gas measurement is displayed when the STABIL  
test function is selected.  
NO; NOx;  
NO2; O2  
STABIL_GAS  
TPC_ENABLE  
1
2
3
Enables or disables the temperature and pressure  
compensation (TPC) feature (Section 8.8.3).  
ON/OFF  
Default=ON  
Dynamic zero automatically adjusts offset and slope of the NO  
and NOX response when performing a zero point calibration  
during an AutoCal (Section 7.7).  
ON/OFF  
Default=OFF  
DYN_ZERO  
DYN_SPAN  
4
Dynamic span automatically adjusts the offsets and slopes of  
the NO and NOx response when performing a zero point  
calibration during an AutoCal (Section 7.7).  
ON/OFF  
Default=OFF  
5
Note that the DYN_ZERO and DYN_SPAN features are not  
allowed for applications requiring EPA equivalency.  
Allows to set the number of decimal points of the concentration  
and stability parameters displayed on the front panel.  
AUTO, 1, 2, 3, 4  
Default=AUTO  
CONC_PRECISION  
CLOCK_ADJ  
6
7
Adjusts the speed of the analyzer’s clock. Choose the + sign if  
the clock is too slow, choose the - sign if the clock is too fast.  
-60 to +60 s/day  
Default=0  
Resets the service interval timer . (Changing the setting to ON  
resets the timer and then returns the setting back to default  
OFF).  
ON/OFF  
SERVICE_CLEAR  
8
Default=OFF  
0-500000  
Default=0  
0-100000  
Default=0  
Tracks the time since last service (restarts the time when the  
service interval timer, SERVICE_CLEAR, is reset).  
TIME_SINCE_SVC  
SVC_INTERVAL  
9
Sets the interval between service reminders.  
10  
1 Only available in analyzers with O2 sensor options installed.  
Note  
There is a 2-second latency period between the time a VARS value is  
changed and the time the new value is stored into the analyzer’s memory.  
DO NOT turn the analyzer off during this period or the new setting will be  
lost.  
124  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
To access and navigate the VARS menu, use the following touchscreen button sequence:  
SAMPLE  
RANGE = 500.0 PPB  
NOX=X.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
EXIT ignores the new setting.  
SETUP X.X  
ENTER VARS PASS: 818  
ENTR EXIT  
ENTR accepts the new setting.  
8
1
8
SETUP X.X  
0 ) DAS_HOLD_OFF=15.0 Minutes  
SETUP X.X  
.0  
0) DAS_HOLD_OFF=15.0 Minutes  
NEXT JUMP  
EDIT PRNT EXIT  
1
5
ENTR EXIT  
Toggle this keys to change setting  
SETUP X.X  
1 ) MEASURE_MODE=NOX-NO  
NEXT JUMP  
EDIT PRNT EXIT  
See Section 6.12.1. for  
information on setting the  
MEASRUE MODE  
SETUP X.X  
2 ) STABIL_GAS=NOX  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
2 ) STABIL GAS =NOX  
NO NO2 NOX O2  
ENTR EXIT  
Choose Gas  
3 ) TPC_ENABLE=ON  
SETUP X.X  
3 ) TPC_ENABLE=ON  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
ON  
ENTR EXIT  
SETUP X.X  
4 ) DYN_ZERO=ON  
Toggle this keys to change setting  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
4 ) DYN_ZERO=ON  
ENTR EXIT  
ON  
SETUP X.X  
5) DYN_SPAN=ON  
Toggle this keys to change setting  
PREV NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
5 ) DYN_SPAN=ON  
ENTR EXIT  
ON  
Toggle this keys to change setting  
SETUP X.X  
6) CONC_PRECUISION : 1  
SETUP X.X  
6) CONC_PRECUISION : 3  
PREV NEXT JUMP  
EDIT PRNT EXIT  
AUTO  
0
1
2
3
4
ENTR EXIT  
Toggle these keys to change setting  
7) CLOCK_ADJ=0 Sec/Day  
ENTR EXIT  
SETUP X.X  
7) CLOCK_ADJ=0 Sec/Day  
SETUP X.X  
+
0
0
PREV NEXT JUMP  
EDIT PRNT EXIT  
Toggle to change setting  
125  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.12.1. SETTING THE GAS MEASUREMENT MODE  
In its standard operating mode the T200H/M measures NO, NO2 and NOx. It can also  
be set to measure only NO or only NOX. To select one of these three measurement  
modes, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
ENTR EXIT  
SETUP X.X  
0 ) DAS_HOLD_OFF=15 minutes  
NEXT JUMP  
EDIT PRNT EXIT  
SETUP X.X  
1 ) MEASURE_MODE=NOX-NO  
PREV NEXT JUMP  
EDIT PRNT EXIT  
EXIT ignores the new  
setting.  
NOX-NO mode is the  
default mode for the  
200EH/M  
SETUP X.X  
MEASURE MODE: NOX-NO  
ENTR EXIT  
ENTR accepts the  
PREV  
new setting.  
Press the PREV  
and NEXT buttons  
to move back and  
forth between gas  
modes  
SETUP X.X  
MEASURE MODE: NOX  
PREV NEXT  
ENTR EXIT  
ENTR EXIT  
SETUP X.X  
MEASURE MODE: NO  
NEXT  
126  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13. SETUP MORE DIAG: DIAGNOSTICS MENU  
A series of diagnostic tools is grouped together under the SETUP-MORE-DIAG menu.  
These parameters are dependent on firmware revision. These tools can be used in a  
variety of troubleshooting and diagnostic procedures and are referred to in many places  
of the maintenance and trouble-shooting sections.  
An overview of the entire DIAG menu can be found in menu tree A-6 of Appendix A.1.  
Table 4-16: T200H/M Diagnostic (DIAG) Functions  
FRONT PANEL  
DIAGNOSTIC FUNCTION AND MEANING  
MODE  
INDICATOR  
SECTION  
SIGNAL I/O: Allows observation of all digital and analog signals in the  
instrument. Allows certain digital signals such as valves and heaters to be  
toggled ON and OFF.  
DIAG I/O  
ANALOG OUTPUT: When entered, the analyzer performs an analog output  
step test. This can be used to calibrate a chart recorder or to test the analog  
output accuracy.  
DIAG AOUT  
ANALOG I/O CONFIGURATION: This submenu allows the user to configure  
the analyzer’s four analog output channels, including choosing what parameter  
will be output on each channel. Instructions that appear here allow adjustment  
and calibration the voltage signals associated with each output as well as  
calibration of the analog to digital converter circuitry on the motherboard.  
6.13.4,  
through  
6.13.6  
DIAG AIO  
DISPLAY SEQUENCE CONFIGURATION: Allows the user to program which  
concentration values are displayed in the .  
DIAG DISP  
6.13.7.1  
6.13.7.2  
OPTIC TEST: When activated, the analyzer performs an optic test, which turns  
on an LED located inside the sensor module near the PMT (Fig. 10-15). This  
diagnostic tests the response of the PMT without having to supply span gas.  
DIAG OPTIC  
ELECTRICAL TEST: When activated, the analyzer performs an electric test,  
which generates a current intended to simulate the PMT output to verify the  
signal handling and conditioning of the PMT preamp board.  
DIAG ELEC  
DIAG OZONE  
DIAG FCAL  
6.13.7.3  
6.13.7.4  
6.13.7.5  
OZONE GEN OVERRIDE: Allows the user to manually turn the O3 generator on  
or off. This setting is retained when exiting DIAG. During initial power up TMR  
(timer) is displayed while the Ozone brick remains off for the first 30 minutes.  
FLOW CALIBRATION: This function is used to calibrate the gas flow output  
signals of sample gas and ozone supply. These settings are retained when  
exiting DIAG.  
127  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.1. ACCESSING THE DIAGNOSTIC FEATURES  
To access the DIAG functions press the following keys:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
DIAG  
ANALOG I / O CONFIGURATION  
< TST TST > CAL  
SETUP  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG  
DISPLAY SEQUENCE CONFIG.  
EXIT returns  
to the main  
SAMPLE  
display  
SETUP X.X  
PRIMARY SETUP MENU  
PREV  
NEXT  
ENTR  
ENTR  
CFG DAS RNGE PASS CLK MORE  
EXIT  
DIAG  
OPTIC TEST  
At this point EXIT  
returns  
to the PRIMARY  
SETUP X.X  
SECONDARY SETUP MENU  
PREV  
NEXT  
NEXT  
NEXT  
EXIT  
EXIT  
EXIT  
SETUP MENU  
COMM VARS DIAG  
EXIT  
DIAG  
ELECTRICAL TEST  
ENTR  
From this point  
forward, EXIT returns  
to the  
SECONDARY  
SETUP MENU  
SETUP X.X  
ENTER DIAG PASS: 818  
PREV  
8
1
8
ENTR EXIT  
DIAG  
OZONE GEN OVERRIDE  
DIAG  
SIGNAL I / O  
PREV  
ENTR  
NEXT  
ENTR  
EXIT  
DIAG  
PREV  
ANALOG OUTPUT  
DIAG  
FLOW CALIBRATION  
NEXT  
ENTR  
EXIT  
PREV  
NEXT  
ENTR  
EXIT  
4.13.2. SIGNAL I/O  
The signal I/O diagnostic mode allows to review and change the digital and analog  
input/output functions of the analyzer. See Appendix A-4 for a complete list of the  
parameters available for review under this menu.  
Note  
Changes to signal I/O settings will remain in effect only until the signal I/O  
menu is exited. Exceptions are the ozone generator override and the flow  
sensor calibration, which remain as entered when exiting.  
128  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
To enter the signal I/O test mode, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
returns  
to the main  
SAMPLE  
display  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
EXIT  
SETUP X.X  
ENTER DIAG PASS: 818  
8
1
8
ENTR EXIT  
DIAG  
SIGNAL I / O  
Use the NEXT & PREV  
keys to move between  
signal types.  
NEXT  
ENTR  
EXIT  
Press JUMP to go  
directly to a specific  
signal  
DIAG I / O  
Test Signals Displayed Here  
See Appendix A-4 for  
a complete list of  
available SIGNALS  
PREV NEXT JUMP  
PRNT EXIT  
ENTR EXIT  
EXAMPLE  
DIAG I / O  
Enter 05 to Jump  
to Signal 5:  
(CAL_LED)  
JUMP TO: 5  
0
5
DIAG I / O  
CAL_LED = ON  
Exit to return  
to the  
DIAG menu  
PREV NEXT JUMP  
ON PRNT EXIT  
Pressing the PRNT key will send a formatted printout to the serial port and can be  
captured with a computer or other output device.  
129  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.3. ANALOG OUTPUT STEP TEST  
This test can be used to check the accuracy and proper operation of the analog outputs.  
The test forces all four analog output channels to produce signals ranging from 0% to  
100% of the full scale range in 20% increments. This test is useful to verify the  
operation of the data logging/recording devices attached to the analyzer.  
To begin the Analog Output Step Test press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X SECONDARY SETUP MENU  
COMM VARS DIAG  
SETUP X.X  
ENTER DIAG PASS: 818  
ENTR EXIT  
8
1
8
DIAG  
SIGNAL I / O  
ENTR  
NEXT  
EXIT  
DIAG  
ANAL OG OUTPUT  
PREV  
NEXT  
ENTR  
EXIT  
Performs  
analog output  
step test.  
DIAG AOUT  
0%  
ANALOG OUTPUT  
ANALOG OUTPUT  
EXIT  
0% - 100%  
DIAG AOUT  
Exit-Exit  
returns to the  
DIAG menu  
[0%]  
EXIT  
Pressing the key under “0%” while performing the test will  
pause the test at that level. Brackets will appear around  
the value: example: [20%] Pressing the same key again  
will resume the test.  
130  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.4. ANALOG OUTPUTS AND REPORTING RANGES  
4.13.4.1. Analog Output Signals Available on the T200H/M  
The analyzer has four analog output signals, accessible through a connector on the rear  
panel.  
ANALOG OUT  
A1  
A2  
A3  
A4  
+
-
+
-
+
-
+
-
0-20 mA current loop  
output available for these  
channels only  
Figure 4-10:  
Analog Output Connector Key  
The signal levels of each output can be independently configured as follows. An over-  
range feature is available that allows each range to be usable from -5% to + 5% of its  
nominal scale:  
Table 4-17: Analog Output Voltage Ranges with Over-Range Active  
RANGE  
0-0.1 V  
0-1 V  
MINIMUM OUTPUT  
-5 mV  
MAXIMUM OUTPUT  
+105 mV  
-0.05 V  
+1.05 V  
0-5 V  
-0.25 V  
+5.25 V  
0-10 V  
-0.5 V  
+10.5 V  
The default offset for all ranges is 0 VDC.  
Pin assignments for the ANALOG output connector at the rear panel of the instrument:  
Table 4-18: Analog Output Pin Assignments  
PIN  
ANALOG  
OUTPUT  
VOLTAGE  
SIGNAL  
CURRENT  
SIGNAL  
1
2
3
4
5
6
7
8
V Out  
Ground  
V Out  
I Out +  
I Out -  
A1  
A2  
A3  
A4  
I Out +  
Ground  
V Out  
I Out -  
I Out +  
Ground  
V Out  
I Out -  
Not Available  
Not Available  
Ground  
131  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Additionally A1, A2 andA3 may be equipped with optional 0-20 mA current loop  
drivers. A4 is not available for the current loop option.  
Table 4-19: Analog Output Current Loop Range  
RANGE  
MINIMUM OUTPUT  
MAXIMUM OUTPUT  
0-20 mA  
0 mA  
20 mA  
These are the physical limits of the current loop modules, typical applications use 2-20 or 4-20 mA for the  
lower and upper limits. Please specify desired range when ordering this option. The default offset for all  
ranges is 0 mA.  
All of these outputs can be configured output signals representing any of the DAS  
parameters available on this model (See Table A-6 of Appendix A.5 for a complete list).  
The ability to select any one of the T200H/M’s 40+ DAS data types coupled with the  
ability to select from a variety of signal ranges and scales makes the analog outputs of  
the T200H/M extremely flexible.  
Table 4-20: Example of Analog Output Configuration for T200H/M  
DAS  
PARAMETER  
ASSIGNED  
SIGNAL  
SCALE  
OUTPUT  
A1  
A2  
A3  
A4  
NXCNC1  
N2CNC2  
PMTDET  
O2CONC  
0-5 V  
4-20 mA1  
0 - 1 V  
0-10 V  
1 With current loop option installed  
4.13.4.2. Physical Range versus Analog Output Reporting Ranges  
The entire measurement range of the analyzer is quite large, 0 – 5,000 ppm for the  
T200H and 0-200 PPM for the T200M, but many applications use only a small part of  
the analyzer’s full measurement range. This creates two performance challenges:  
1. The width of the analyzer’s physical range can create data resolution problems for  
most analog recording devices. For example, in an application where a T200H is  
being used to measure an expected concentration of typically less than 200 ppm  
NOx, the full scale of expected values is only 4% of the instrument’s full 5000 ppm  
measurement range. Unmodified, the corresponding output signal would also be  
recorded across only 4% of the range of the recording device.  
The T200H/M solves this problem by allowing the user to select a scaled reporting  
range for the analog outputs that only includes that portion of the physical range  
relevant to the specific application. Only the reporting range of the analog outputs  
is scaled, the physical range of the analyzer and the readings displayed on the front  
panel remain unaltered.  
2. Applications where low concentrations of NO, NO2 and NOx are measured require  
greater sensitivity and resolution than typically necessary for measurements of  
higher concentrations.  
The T200H/M solves this issue by using two hardware physical ranges that cover  
the instruments entire measurement range The analyzer’s software automatically  
132  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
selects which physical range is in effect based on the analog output reporting range  
selected by the user:  
FOR THE T200M:  
Low range spans 0 to 20 ppm NOX (20 ppm = 5 V);  
High range spans 0-200 ppm NOX (200 ppm = 5 V).  
If the high end of the selected reporting range is 20 ppm. The low physical  
range is selected. If the high end of the selected reporting range is > 20 ppm.  
The high physical range is selected.  
FOR THE T200H:  
Low range spans 0 to 500 ppm NOX (500 ppm = 5 V);  
High range spans 0-5000 ppm NOX (5000 ppm = 5 V).  
If the high end of the selected reporting range is 500 ppm. The low physical  
range is selected. If the high end of the selected reporting range is > 500 ppm.  
The high physical range is selected.  
Once properly calibrated, the analyzer’s front panel will accurately report concentrations  
along the entire span of its 0 and 200 ppm or 5,000 ppm physical range regardless of  
which reporting range has been selected for the analog outputs and which physical range  
is being used by the instruments software.  
Both reporting ranges need to be calibrated independently to the same span gas  
concentrations in order to allow switching back and forth between high and low ranges.  
133  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.5. ANALOG I/O CONFIGURATION  
4.13.5.1. The Analog I/O Configuration Submenu.  
Table 4-21 lists the analog I/O functions that are available in the T200H/M.  
Table 4-21: DIAG - Analog I/O Functions  
SUB MENU  
FUNCTION  
AOUTS  
CALIBRATED:  
Shows the status of the analog output calibration (YES/NO) and initiates a calibration  
of all analog output channels.  
DATA_OUT_1:  
Configures the A1 analog output:  
RANGE1: Selects the signal type (voltage or current loop) and full scale value of the  
output.  
OVERRANGE: Turns the ± 5% over-range feature ON/OFF for this output channel.  
REC_OFS1: Sets a voltage offset (not available when RANGE is set to CURRent loop.  
AUTO_CAL1: Sets the channel for automatic or manual calibration  
CALIBRATED1: Performs the same calibration as AOUT CALIBRATED, but on this  
one channel only.  
OUTOUT: Turns the output channel ON/OFF. A signal. Equal to the low end of the  
output scale (zero point) is still output by the analyzer, but no data is sent.  
DATA: Allows the user to select which DAS parameter to be output.  
SCALE: Sets the top end of the reporting range scale for this channel. The analyzer  
automatically chooses the units of measure appropriate for the DAS parameter chosen  
(e.g. ppm for concentration parameters; in-Hg-A for pressure measurements, etc.)  
UPDATE: Sets the time interval at which the analyzer updates the data being output  
on the channel.  
DATA_OUT_2  
DATA_OUT_3  
Same as for DATA_OUT_1 but for analog channel 2 (NO)  
Same as for DATA_OUT_1 but for analog channel 3 (NO2)  
Same as for DATA_OUT_1 but for analog channel 4 (O2)  
DATA_OUT_4  
AIN CALIBRATED  
Shows the calibration status (YES/NO) and initiates a calibration of the analog to digital  
converter circuit on the motherboard.  
XIN1  
For each of 8 external analog input channels, shows the gain, offset, engineering units,  
and whether the channel is to show up as a Test function.  
.
.
.
XIN8  
1Changes to RANGE or REC_OFS require recalibration of this output.  
To configure the analyzer’s four analog outputs, set the electronic signal type of each  
channel and calibrate the outputs. This consists of:  
1. Selecting an output type (voltage or current, if an optional current output driver has  
been installed) and the signal level that matches the input requirements of the  
recording device attached to the channel.  
2. Determine if the over-range feature is needed and turn it on or off accordingly.  
3. If a Voltage scale is in use, a bipolar recorder offset may be added to the signal if  
required (Section 4.13.5).  
4. Choose an DAS parameter to be output on the channel.  
134  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
5. Set the reporting range scale for the data type chosen.  
6. Set the update rate for the channel.  
Operating Instructions  
7. Calibrating the output channel. This can be done automatically or manually for  
each channel (see Sections 4.13.6).  
To access the analog I/O configuration sub menu, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
DIAG AIO  
A OUTS CALIBRATED: NO  
< TST TST >  
CAL  
SETUP  
<SET SET> CAL  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
DIAG AIO  
DATA_OUT_1: 5V, NXCNC1, NOCAL  
EXIT  
<SET SET> EDIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
ENTR EXIT  
EXIT  
DIAG AIO  
DATA_OUT_2: 5V, NXCNC1, NOCAL  
EXIT  
<SET SET> EDIT  
SETUP X.X  
ENTER PASSWORD:818  
8
1
8
DIAG AIO  
DATA_OUT_3: 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
EXIT  
EXIT  
DIAG  
SIGNAL I/O  
NEXT  
ENTR  
DIAG AIO  
DATA_OUT_4: 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
Continue pressing NEXT until ...  
AIO Configuration Submenu  
DIAG AIO  
AIN CALIBRATED: NO  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
<SET SET> CAL  
PREV NEXT  
EXIT  
135  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.5.2. Analog Output Signal Type and Range Selection  
To select an output signal type (DC Voltage or current) and level for one output channel  
press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_3: 5V, NXCNC1, NOCAL  
Pressing ENTR records  
the new setting and  
returns to the previous  
menu.  
<SET SET> EDIT  
EXIT  
These keys set  
the signal level  
and type of the  
selected  
Pressing EXIT ignores the  
new setting and returns to  
the previous menu.  
DIAG AIO  
0.1V  
DATA_OUT_3: RANGE: 5V  
1V  
5V  
10V CURR  
ENTR EXIT  
channel  
136  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.5.3. Turning the Analog Output Over-Range Feature ON/OFF  
In its default configuration a ± 5% over-range is available on each of the T200H/M’s  
analog output channels. This over-range can be disabled if your recording device is  
sensitive to excess voltage or current.  
Note  
Instruments with current range options installed on one or more of the  
outputs often are delivered from the factory with the over-range feature  
turned OFF on those channels.  
137  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To Turn the over-range feature on or off, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 RANGE: 5V  
SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OVERRANGE: ON  
<SET SET> EDIT  
EXIT  
DIAG AIO  
ON  
DATA_OUT_2 OVERRANGE: ON  
Toggle this button  
to turn the Over-  
Range feature ON  
or OFF  
ENTR EXIT  
DIAG AIO  
OFF  
DATA_OUT_2 OVERRANGE: OFF  
ENTR EXIT  
4.13.5.4. Adding a Recorder Offset to an Analog Output  
Some analog signal recorders require that the zero signal is significantly different from  
the baseline of the recorder in order to record slightly negative readings from noise  
138  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
around the zero point. This can be achieved in the T200H/M by defining a zero offset, a  
small voltage (e.g., 10% of span).  
To add a zero offset to a specific analog output channel, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
PREV NEXT  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OUTPUT: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_2 REC OFS: 0 mV  
<SET SET> EDIT  
EXIT  
Toggle these  
buttons to set  
ther value of  
the desired  
offset.  
DIAG AIO  
+
DATA_OUT_2 REC OFS: 0 mV  
0
0
0
0
ENTR EXIT  
EXAMPLE  
DIAG AIO  
DATA_OUT_2 REC OFS: -10 mV  
ENTR EXIT  
0
0
1
0
DIAG AIO  
DATA_OUT_2 REC OFS: -10 mV  
EXIT  
<SET SET> EDIT  
139  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.5.5. Assigning a DAS Parameter to an Analog Output Channel  
The T200H/M analog output channels can be assigned to output data from any of the  
40+ available DAS parameters (see Table A-6 of Appendix A.5). The default settings  
for the four output channels are:  
Table 4-22: Analog Output Data Type Default Settings  
CHANNEL DEFAULT SETTING  
PARAMETER  
A1  
A2  
A3  
A43  
DATA TYPE1  
RANGE  
NXCNC1  
NOCNC1  
N2CNC1  
NXCNC2  
0 - 5 VDC2  
REC OFS  
AUTO CAL.  
CALIBRATED  
OUTPUT  
0 mVDC  
ON  
NO  
ON  
SCALE  
100 ppm  
5 sec  
UPDATE  
1 See Table A-6 of T200H/M Appendix A for definitions of these DAS data types  
2 Optional current loop outputs are available for analog output channels A1-A3.  
3 On analyzers with O2 sensor options installed, DAS parameter O2CONC is assigned to output A4.  
4.13.5.6. DAS Configuration Limits  
The number of DAS objects are limited by the instrument’s finite storage capacity. For  
information regarding the maximum number of channels, parameters, and records and  
how to calculate the file size for each data channel, refer to the DAS manual  
downloadable from the T-API website at http://www.teledyne-api.com/manuals/ under  
Special Manuals.  
4.13.5.7. Reporting Gas Concentrations via the T200H/M Analog Output Channels  
While the DAS parameters available for output over via the analog channels A1 thru A4  
include a vide variety internal temperatures, gas flows and pressures as well as certain  
key internal voltage levels, most of the DAS parameters are related to gas concentration  
levels.  
Two parameters exist for each gas type measured by the T200H/M. They are generally  
referred to as range 1 and range 2 (e.g. NXCNC1 and NXCNC2; NOCNC1 and  
NOCNC2; etc.). These take the place of the high and low concentration ranges of  
previous versions of the analyzer software. Concentrations for each range are computed  
using separate slopes and offsets which are also stored via separate DAS parameters.  
If an analog output channel is set to report a gas concentration (e.g.  
NXCNC1; NOx concentration; Range 1) it is generally a good idea to use  
Note  
80% of the reporting range for that channel for the span point calibration.  
If both available parameters for a specific gas type are being reported  
(e.g. NXCNC1 and NXCNC2) separate calibrations should be carried out  
for each parameter.  
140  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
The available gas concentration DAS parameters for output via the T200H/M analog  
output channels are:  
Table 4-23: Analog Output DAS Parameters Related to Gas Concentration Data  
REPORTING  
RANGE  
PARAMETER  
DESCRIPTION  
NAME1  
NXCNC1  
NXSLP1  
NXOFS1  
NXZSC1  
Concentration  
Slope  
NOx Range 1  
(LOW)  
Offset  
Concentration during calibration, prior to computing new slope and offset  
NXCNC2  
NXSLP2  
NXOFS2  
NXZSC2  
Concentration  
NOx RANGE 2  
(HIGH)  
Slope  
Offset  
Concentration during calibration, prior to computing new slope and offset  
NOCNC1  
NOSLP1  
NOOFS1  
NOZSC1  
Concentration  
Slope  
NO Range 1  
(LOW)  
Offset  
Concentration during calibration, prior to computing new slope and offset  
NOCNC2  
NOSLP2  
NOOFS2  
NOZSC2  
Concentration  
NO RANGE 2  
(HIGH)  
Slope  
Offset  
Concentration during calibration, prior to computing new slope and offset  
NO2 Range 12  
(LOW)  
N2CNC1  
N2ZSC1  
Concentration - Computed with data from NOx Range 1 and NO Range 1  
Concentration during calibration, prior to computing new slope and offset  
NO2 RANGE 22  
(HIGH)  
N2CNC2  
N2ZSC2  
Concentration - Computed with data from NOx Range 2 and NO Range 2  
Concentration during calibration, prior to computing new slope and offset  
O2CONC3  
O2OFST3  
O2SLPE3  
O2ZSCN 3  
Concentration  
Slope  
O2 Range3  
Offset  
Concentration during calibration, prior to computing new slope and offset  
1 Parameters are not listed in the order they appear on the DAS list (see Table A-6 or Appendix A.5 for the proper order of the full list of  
parameters)  
2 Since NO2 values are computed rather than measured directly, no separate slope or offset exist.  
3 Only available on instruments with O2 sensor options installed.  
141  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To assign a DAS parameter to a specific analog output channel, press,  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OUTPUT: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_2 DATA: NOCNC1  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 DATA: NOCNC1  
PREV NEXT  
ENTR EXIT  
Use these buttons to move  
up and down the list if  
available DAS parameters  
(See Table A-6 of Appendix A.5)  
EXAMPLE  
DIAG AIO  
DATA_OUT_2 DATA: STABIL  
<CH CH> INS DEL  
[1]  
ENTR EXIT  
DIAG AIO  
DATA_OUT_2 DATA: STABIL  
<SET SET> EDIT  
EXIT  
142  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.5.8. Setting the Reporting Range Scale for an Analog Output  
Once the DAS parameter has been set, the top end of the scale must be selected. For  
concentration values this should be equal to the expected maximum value for the  
application. The analog channel will scale its output accordingly.  
EXAMPLE:  
DAS parameter being output: NXCNC1  
Maximum value expected: 800 ppm  
Output range; 10 V  
Output:...0 ppm 0.000 V  
100 ppm  
200 ppm  
400 ppm  
750 ppm  
1.250 V  
2.500 V  
5.000 V  
9.375 V  
Note  
Regardless of how the reporting range for an analog output channel is  
set, the instrument will continue to measure NO, NO2 and NOx accurately  
for the entire physical range of the instrument (See Section 4.13.4.2 for  
information on Physical range versus reporting range).  
Each output channel can be programmed for a separate gas with independent reporting  
range.  
EXAMPLE:  
A1 NXCNC1 (NOx Range 1)0-1000 ppm NOX.  
A1 NXCNC2 (NOx Range 2)0-1250 ppm NOX.  
A3 NOCNC1 (NOx Range 1)0-500 ppm NO.  
A4 N2CNC1 (NO2 Range 1)0-750 ppm NO2.  
Note  
While Range 1 for each gas type is often referred to as the LOW range and  
Range 2 as the HIGH range, this is simply a naming convention. The  
upper limit for each range can be set to any value.  
EXAMPLE: A1 NXCNC1 (NOx Range 1)0-1500 ppm NOX  
A2 NXCNC2 (NOx Range 2)0-1000 ppm NOX  
143  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To set the reporting range for an analog output, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OUTPUT: 5V  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
SET> EDIT  
EXIT  
CAL  
Continue pressing SET> until ...  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 SCALE: 100.00 PPM  
EXIT  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 SCALE: [1]00.00 PPM  
<CH CH> INS DEL  
[1]  
ENTR EXIT  
Use these  
buttons to  
change the  
range scale.  
EXAMPLE  
DIAG AIO  
DATA_OUT_2 SCALE: 12[5]0. PPM  
[1] ENTR EXIT  
<CH CH> INS DEL  
DIAG AIO  
DATA_OUT_2 SCALE: 1250.00 PPM  
EXIT  
<SET SET> EDIT  
RANGE SELECTION TOUCH SCREEN CONTROL BUTTON FUNCTIONS  
BUTTON  
FUNCTION  
<CH  
CH>  
INS  
DEL  
[?]  
Moves the cursor one character to the left.  
Moves the cursor one character to the right.  
Inserts a character before the cursor location.  
Deletes a character at the cursor location.  
Press this key to cycle through the range of numerals and characters available for insertion:  
0-9; as well as “+” & “-“.  
ENTR  
EXIT  
Accepts the new setting and returns to the previous menu.  
Ignores the new setting and returns to the previous menu.  
Some keys only appear as needed.  
144  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.5.9. Setting Data Update Rate for an Analog Output  
The data update rate for the T200H/M analog outputs can be adjusted to match the  
requirements of the specific DAS parameter chosen for each channel. For instance, if  
the parameter NXCNC1 (NOx concentration; Range 1) is chosen for channel A1 on an  
instrument set for dual gas measurement mode, it would be meaningless to have an  
update rate of less than 30 seconds, since the NOx-No measurement cycle takes that long  
to complete. On the other hand, if the channel were set to output the PMTDET voltage  
or the temperature of the moly converter, it might be useful to have output updated more  
frequently.  
145  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To change the update rate for an individual analog output channel, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OUTPUT: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_2 UPDATE: 5 SEC  
<SET SET> EDIT  
EXIT  
Toggle these  
buttons to set  
DIAG AIO  
DATA_OUT_2 UPDATE: 5 SEC  
the data update  
rate for this  
channel.  
0
0
5
ENTR EXIT  
EXAMPLE  
DIAG AIO  
DATA_OUT_2 UPDATE: 30 SEC  
0
3
0
ENTR EXIT  
DIAG AIO  
DATA_OUT_2 UPDATE: 30 SEC  
<SET SET> EDIT  
EXIT  
146  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.5.10. Turning an Analog Output On or Off  
Each output can be temporarily turned off. When off, no data is sent to the output.  
Electronically, it is still active, but there is simply no data being output, so the signal  
level at the rear of the instrument will fall to zero.  
To turn an individual analog output channel ON/OFF, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
PREV NEXT  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 OUTPUT: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_2 OUTPUT: ON  
<SET SET> EDIT  
EXIT  
DIAG AIO  
ON  
DATA_OUT_2 OUTPUT: ON  
Toggle this  
button to turn  
the channel  
ON/OFF  
ENTR EXIT  
DIAG AIO  
OFF  
DATA_OUT_2 OUTPUT: OFF  
ENTR EXIT  
147  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.6. ANALOG OUTPUT CALIBRATION  
Analog calibration needs to be carried out on first startup of the analyzer (performed in  
the factory as part of the configuration process) or whenever recalibration is required.  
The analog outputs can be calibrated automatically, either as a group or individually  
(Section 4.13.6.1), or adjusted manually (see Section 4.13.6). (Manual calibration should  
be used for the 0.1V range or in cases where the outputs must be closely matched to the  
characteristics of the recording device. Manual calibration requires the AUTOCAL  
feature to be disabled).During automatic calibration the analyzer tells the output  
circuitry to generate a zero mV signal and high-scale point signal (usually about 90% of  
chosen analog signal scale) then measures actual signal of the output. Any error at zero  
or high-scale is corrected with a slope and offset.  
To enable or disable the Auto-Cal feature for one output channel, press.  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
PREV NEXT  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_3: 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_3 RANGE: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_3 AUTO CAL.:ON  
<SET SET> EDIT  
EXIT  
ENTR accepts  
the new setting.  
Toggle this button  
to turn AUTO CAL  
ON or OFF  
(OFF = manual  
calibration mode).  
DIAG AIO  
ON  
DATA_OUT_3 AUTO CAL.:ON  
ENTR EXIT  
EXIT ignores the  
new setting  
DIAG AIO  
OFF  
DATA_OUT_3 AUTO CAL.:OFF  
ENTR EXIT  
Channels with current loop output options cannot be calibrated  
automatically. Outputs Configured for 0.1V full scale should always be  
calibrated manually.  
Note  
148  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.6.1. Automatic Analog Output Calibration  
To calibrate the outputs as a group with the AOUTS CALIBRATION command, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
PREV NEXT  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
DIAG AIO  
DIAG AIO  
AUTO CALIBRATING DATA_OUT_1  
AUTO CALIBRATING DATA_OUT_2  
Analyzer  
automatically  
calibrates all  
This message  
appears when  
AUTO-CAL is  
Turned OFF for  
a channel  
channels for which  
AUTO-CAL is turned  
ON  
DIAG AIO  
DIAG AIO  
NOT AUTO CAL. DATA_OUT_3  
AUTO CALIBRATING DATA_OUT_4  
If any of the channels  
DIAG AIO  
AOUTS CALIBRATED: YES  
have not been calibrated  
ot if at least one channel  
has AUTO-CAL turned  
OFF, this message will  
read NO.  
SET> CAL  
EXIT  
Note  
Manual calibration should be used for the 0.1V range or in cases where  
the outputs must be closely matched to the characteristics of the  
recording device.  
149  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To initiate an automatic calibration for an individual output channel, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
DIAG AIO  
DATA_OUT_2 CALIBRATED:NO  
EXIT  
<SET SET> CAL  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
AUTO CALIBRATING DATA_OUT_2  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 CALIBRATED: YES  
<SET SET> CAL  
EXIT  
DIAG AIO  
DATA_OUT_2 RANGE: 5V  
SET> EDIT  
EXIT  
Continue pressing SET> until ...  
150  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.6.2. Manual Calibration of Analog Output Configured for Voltage Ranges  
For highest accuracy, the voltages of the analog outputs can be manually calibrated.  
Note  
The menu for manually adjusting the analog output signal level will only  
appear if the AUTO-CAL feature is turned off for the channel being  
adjusted.  
Calibration is performed with a voltmeter connected across the output terminals (See  
Figure 6-14) and by changing the actual output signal level using the front panel keys in  
100, 10 or 1 count increments.  
See the Electrical  
Connections  
V
section for pin  
assignments of  
Analog Out  
connector on the  
+DC Gnd  
rear panel  
V OUT +  
V OUT -  
V IN +  
V IN -  
Recording  
Device  
ANALYZER  
Figure 4-11:  
Setup for Calibrating Analog Outputs  
Table 4-24: Voltage Tolerances for Analog Output Calibration  
MINIMUM  
ADJUSTMENT  
(1 count)  
FULL  
SCALE  
ZERO  
TOLERANCE  
SPAN  
TOLERANCE  
SPAN VOLTAGE  
0.1 VDC  
1 VDC  
±0.0005V  
±0.001V  
±0.002V  
±0.004V  
90 mV  
900 mV  
4500 mV  
4500 mV  
±0.001V  
±0.001V  
±0.003V  
±0.006V  
0.02 mV  
0.24 mV  
1.22 mV  
2.44 mV  
5 VDC  
10 VDC  
151  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To manually adjust the signal levels of an analog output channel, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
DATA_OUT_2 RANGE: 5V  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
SET> EDIT  
EXIT  
CAL  
Continue pressing SET> until ...  
Continue pressing SET> until you reach the  
output to be configured  
DIAG AIO  
DATA_OUT_2 CALIBRATED:NO  
EXIT  
DIAG AIO  
DATA_OUT_2 5V, NXCNC1, NOCAL  
EXIT  
<SET SET> CAL  
<SET SET> EDIT  
DIAG AIO  
DATA_OUT_2 VOLT-Z: 0 mV  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
These buttons increase /  
These menus  
only appear if  
AUTO-CAL is  
turned OFF  
decrease the analog output  
signal level (not the value on the  
display)  
by 100, 10 or 1 counts.  
DIAG AIO  
DATA_OUT_2 VOLT-S: 4500 mV  
Continue adjustments until the  
voltage measured at the output  
of the analyzer and/or the input  
of the recording device matches  
the value in the upper right hand  
corner of the display (within the  
tolerances  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
DIAG AIO  
DATA_OUT_2 CALIBRATED: YES  
EXIT  
listed in Table 6-24).  
<SET SET> CAL  
152  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.6.3. Manual Calibration of Analog Outputs Configured for Current Loop Ranges  
The current loop output option (see Section 5.4) uses a small converter assembly to  
change the DC voltage output by the standard voltage output to a current signal ranging  
between 0-20 mA. Since the exact current increment per voltage count varies from  
converter to converter and from instrument to instrument, analog outputs with this  
option installed cannot be calibrated automatically and must be adjusted manually.  
Adjusting the signal zero and full scale values of the current loop output is done in a  
similar manner as manually adjusting analog outputs configured for voltage output  
except that:  
In this case calibration is performed with a current meter connected in series with  
the output circuitry (See Figure 4-12).  
Adjustments to the output are made using the front panel touchscreen, also in 100,  
10 or 1 count increments, but the change in the voltage driving the converter  
assembly is displayed on the front panel.  
As before, adjustment of the output is performed until the current reading of the  
meter reaches the desired point (e.g. 2 mA, 4 mA, 20 mA, etc.)  
See Table 3-2 for  
pin assignments of  
the Analog Out  
mA  
connector on the  
rear panel.  
Current  
Meter  
IN  
OUT  
I OUT +  
I OUT -  
I IN +  
I IN -  
Recording  
Device  
Analyzer  
Figure 4-12:  
Setup for Calibrating Current Outputs  
Note  
153  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
If a current meter is not available, an alternative method for calibrating the current loop  
outputs is to connect a 250  1% resistor across the current loop output. Using a  
voltmeter, connected across the resistor, follow the procedure above but adjust the  
output to the following values:  
V
Volt  
Meter  
+DC  
Gnd  
V OUT +  
V IN +  
V IN -  
250 O  
V OUT -  
Recording  
Device  
ANALYZER  
Figure 4-13:  
Alternative Setup for Calibrating Current Outputs  
Table 4-25: Current Loop Output Calibration with Resistor  
VOLTAGE FOR 2-20 MA  
(measured across 250resistor)  
VOLTAGE FOR 4-20 MA  
(measured across 250resistor)  
FULL SCALE  
0%  
0.5 V  
5.0 V  
1.0 V  
5.0 V  
100%  
154  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
To adjust the zero and span values of the current outputs, press:  
Operating Instructions  
From the  
AIO CONFIGURATION SUBMENU  
DIAG  
ANALOG I/O CONFIGURATION  
PREV NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
DIAG AIO  
DATA_OUT_2 CURR-Z: 0 mV  
CAL  
Increase or decrease  
the current output by  
100, 10 or 1 counts.  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
The resulting change in  
output voltage is  
displayed in the upper  
line.  
Continue pressing SET> until you reach the  
EXAMPLE  
output to be configured  
DIAG AIO  
DATA_OUT_2 CURR-Z: 13 mV  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
Continue adjustments  
until the correct current  
is measured with the  
current meter.  
DIAG AIO DATA_OUT_2: CURR, NXCNC1, NOCAL  
<SET SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 CURR-S: 5000 mV  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
DIAG AIO  
DATA_OUT_2 RANGE: CURR  
EXAMPLE  
SET> EDIT  
EXIT  
DIAG AIO  
DATA_OUT_2 CURR-S: 4866 mV  
U100 UP10 UP DOWN DN10 D100 ENTREXIT  
Continue pressing SET> until ...  
DIAG AIO  
DATA_OUT_2 CALIBRATED: YES  
EXIT  
<SET SET> CAL  
DIAG AIO  
DATA_OUT_2 CALIBRATED:NO  
<SET SET> CAL  
EXIT  
155  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.6.4. AIN Calibration  
This is the sub-menu calibrates the analyzer’s A-to-D conversion circuitry. This  
calibration should only be necessary after major repair such as a replacement of CPU,  
motherboard or power supplies.  
To perform a AIN CALIBRATION, press:  
From the  
AIO CONFIGURATION SUBMENU  
(See Section 6.13.4.1)  
DIAG  
ANALOG I/O CONFIGURATION  
ENTR  
PREV NEXT  
EXIT  
EXIT  
DIAG AIO  
SET>  
AOUTS CALIBRATED: NO  
CAL  
Continue pressing SET> until ….  
DIAG AIO  
AIN CALIBRATED: NO  
CAL  
<SET  
EXIT  
DIAG AIO  
CALIBRATING A/D ZERO  
DIAG AIO  
CALIBRATING A/D SPAN  
DIAG AIO  
AIN CALIBRATED: YES  
CAL  
<SET  
EXIT  
156  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.6.5. Configuring External Analog Inputs (Option) Channels  
To configure the analyzer’s external analog inputs option, define for each channel:  
gain (number of units represented by 1 volt)  
offset (volts)  
engineering units to be represented in volts (each press of the touch screen button  
scrolls the list of alphanumeric characters from A-Z and 0-9)  
whether to display the channel in the Test functions  
To access and adjust settings for the external Analog Inputs option channels press:  
DIAG  
ANALOG I / O CONFIGURATION  
PREV  
NEXT  
ENTR  
EXIT  
EXIT  
DIAG AIO  
AOUTS CALIBRATED: NO  
Press SET> to scroll to the first  
channel. Continue pressing SET>  
to view each of 8 channels.  
< SET SET> CAL  
DIAG AIO  
XIN1:1.00,0.00,V,OFF  
Press EDIT at any channel  
< SET SET> EDIT  
EXIT  
to to change Gain, Offset,  
Units and whether to display  
the channel in the Test  
functions (OFF/ON).  
DIAG AIO  
XIN1 GAIN:1.00V/V  
SET> EDIT  
EXIT  
DIAG AIO  
XIN1 OFFSET:0.00V  
DIAG AIO  
XIN1 GAIN:1.00V/V  
< SET SET> EDIT  
EXIT  
+
0
0
1
.0  
0
ENTR EXIT  
DIAG AIO  
XIN1 UNITS:V  
Press to change  
Gain value  
< SET SET> EDIT  
EXIT  
EXIT  
DIAG AIO  
< SET  
XIN1 DISPLAY:OFF  
EDIT  
Pressing ENTR records the new setting  
and returns to the previous menu.  
Pressing EXIT ignores the new setting and  
returns to the previous menu.  
Figure 4-14.  
DIAG – Analog Inputs (Option) Configuration Menu  
157  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.7. OTHER DIAG MENU FUNCTIONS  
4.13.7.1. Display Sequence Configuration  
The model T200H/M analyzer allows the user to choose which gas concentration  
measurement and reporting range is to be displayed in the concentration field on the  
instrument’s front panel display as well as what order and how long each will appear  
before analyzer cycle to the next item on the display list.  
Note  
This T200H/M is constantly monitoring all of the gas measurements it is  
configured to make regardless of which range is being displayed. This  
feature merely changes how that display sequence occurs, not how the  
instrument makes measurements.  
The software permits the user to choose from the following list of display values:  
Table 4-26: T200H/M Available Concentration Display Values  
DISPLAY  
VALUE  
ASSOCIATED DAS  
DESCRIPTION  
PARAMETER  
NOx value computed with the slope and offset values for the currently selected  
NOX  
NXL  
NXH  
--  
NOx range.1  
NOx value computed with the slope and offset values for NOx reporting range  
1 (Low)  
NXCNC1  
NOx value computed with the slope and offset values for NOx reporting range  
2 (High)  
NXCNC2  
NO value of computed with the slope and offset values for the currently  
NO  
--  
selected NO range 1  
NO value computed with the slope and offset values for NO reporting range 1  
(Low)  
NOL  
NOH  
NOCNC1  
NO value computed with the slope and offset values for NO reporting range 2  
(High)  
NOCNC2  
NO2 value of computed with the slope and offset values for the currently  
N2  
N2L  
N2H  
O2  
--  
selected NO2 range 1  
NO2 value computed for with the slope and offset values for NOx reporting  
N2CNC1  
range 1 (Low) & N0 reporting range 1 (Low)  
NO2 value computed for with the slope and offset values for NOx reporting  
N2CNC2  
range 2 (High) & N0 reporting range 2 (High)  
O2 concentration value.  
O2CONC2  
1 With the following exceptions this will be reporting range 1 (Low) for the appropriate gas type:  
If the analyzer is in calibration mode, this will be the concentration value computed with the slope and offset for which ever range  
is being calibrated.  
If the instrument is in either E-Test or O-Test mode, this will be the value computed with the slope and offset values used by  
those tests.  
2 Only appears if O2 sensor option is installed.  
158  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
The default settings for this feature are:  
Table 4-27: T200H/M Concentration Display Default Values  
DISPLAY VALUE  
DISPLAY DURATION  
NOX  
NO  
4 sec.  
4 sec.  
4 sec.  
4 sec.  
NO2  
O2  
1 Only appears if O2 sensor option is installed.  
To change these settings, press:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
DIAG DISP  
1) NOX, 4 SEC  
INS DEL EDIT ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
PREV NEXT  
CFG DAS RNGE PASS CLK MORE  
EXIT  
Moves back and forth  
along existing list of  
display values  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
ENTR EXIT  
EXIT  
INSERT adds a new entry on the display list  
SETUP X.X  
ENTER PASSWORD:818  
before the currently selected value.  
8
1
8
DIAG DISP  
PREV NEXT  
DISPLAY DATA: NOX  
DIAG  
SIGNAL I/O  
ENTR EXIT  
NEXT  
ENTR  
Toggle PREV and NEXT keys until desired  
display value appears.  
Continue pressing NEXT until ...  
DIAG DISP  
DISPLAY DATA: N2H  
DIAG  
DISPLAY SEQUENCE CONFIG.  
PREV NEXT  
ENTR EXIT  
ENTR Accepts the  
new setting.  
PREV NEXT  
ENTR  
EXIT  
EXIT discards the  
new setting.  
DIAG DISP  
DISPLAY DURATION: 4 SEC  
ENTR EXIT  
0
4
Toggle these buttons to set desired  
display duration in seconds  
159  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To delete an entry in the display value list, press:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
ENTR EXIT  
EXIT  
SETUP X.X  
ENTER PASSWORD:818  
8
1
8
DIAG  
SIGNAL I/O  
NEXT  
ENTR  
Continue pressing NEXT until ...  
DIAG  
DISPLAY SEQUENCE CONFIG.  
PREV NEXT  
ENTR  
EXIT  
DIAG DISP  
1) NOX, 4 SEC  
INS DEL EDIT ENTR EXIT  
PREV NEXT  
Moves back and forth  
along existing list of  
display values  
DIAG DISP  
YES NO  
DELETE?  
DIAG DISP  
DELETED  
160  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.7.2. Optic Test  
The optic test function tests the response of the PMT sensor by turning on an LED  
located in the cooling block of the PMT (Fig. 10-15). The analyzer uses the light  
emitted from the LED to test its photo-electronic subsystem, including the PMT and the  
current to voltage converter on the pre-amplifier board. To make sure that the analyzer  
measures only the light coming from the LED, the analyzer should be supplied with zero  
air. The optic test should produce a PMT signal of about 2000±1000 mV. To activate  
the electrical test press the following touchscreen button sequence.  
SAMPLE  
RANGE = 500.0 PPB  
NOX=X.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
SETUP X.X  
ENTER DIAG PASS: 818  
8
1
8
ENTR EXIT  
DIAG  
SIGNAL I / O  
NEXT  
ENTR EXIT  
Press NEXT until…  
DIAG  
OPTIC TEST  
PREV NEXT  
ENTR EXIT  
DIAG OPTIC  
<TST TST>  
A1:NXCNC1=100PPM  
NOX=XXX.X  
EXIT  
Press TST until…  
While the optic test is  
activated, PMT should be  
2000 mV ± 1000 mV  
DIAG ELEC  
PMT = 2751 MV  
NOX=X.X  
<TST TST>  
EXIT  
This is a coarse test for functionality and not an accurate calibration tool.  
The resulting PMT signal can vary significantly over time and also  
changes with low-level calibration.  
Note  
161  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.13.7.3. Electrical Test  
The electrical test function creates a current, which substitutes the PMT signal, and  
feeds it into the preamplifier board. This signal is generated by circuitry on the pre-  
amplifier board itself and tests the filtering and amplification functions of that assembly  
along with the A/D converter on the motherboard. It does not test the PMT itself. The  
electrical test should produce a PMT signal of about 2000 ±1000 mV.  
To activate the electrical test press the following buttons:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
SETUP X.X  
ENTER DIAG PASS: 818  
8
1
8
ENTR EXIT  
DIAG  
SIGNAL I / O  
NEXT  
ENTR EXIT  
Press NEXT until…  
DIAG  
ELECTRICAL TEST  
PREV NEXT  
ENTR EXIT  
DIAG ELEC  
<TST TST>  
A1:NXCNC1=100PPM  
NOX=XXX.X  
EXIT  
Press TST until…  
While the electrical test is  
activated, PMT should equal:  
DIAG ELEC  
PMT = 1732 MV  
NOX=X.X  
2000 mV ± 1000 mV  
<TST TST>  
EXIT  
162  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.7.4. Ozone Generator Override  
This feature allows the user to manually turn the ozone generator off and on. This can  
be done before disconnecting the generator, to prevent ozone from leaking out, or after a  
system restart if the user does not want to wait for 30 minutes during warm-up time.  
Note that this is one of the two settings in the DIAG menu that is retained after you exit  
the menu. (During initial power up TMR (timer) is displayed while the Ozone brick  
remains off for the first 30 minutes). Also note that the ozone generator does not turn on  
if the ozone flow conditions are out of specification (e.g., if there is no flow through the  
system or the pump is broken).  
163  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To access this feature press the following menu sequence:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
SETUP X.X  
ENTER DIAG PASS: 818  
8
1
8
ENTR EXIT  
DIAG  
SIGNAL I / O  
NEXT JUMP  
ENTR EXIT  
Press NEXT until…  
DIAG  
OZONE GEN OVERRIDE  
PREV NEXT  
ENTR EXIT  
DIAG OZONE OZONE GEN OVERRIDE  
OFF  
EXIT  
Toggle this button to turn the O3  
generator ON/OFF.  
164  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.13.7.5. Flow Calibration  
The flow calibration allows the user to adjust the values of the sample flow rates as they  
are displayed on the front panel and reported through COM ports to match the actual  
flow rate measured at the sample inlet. This does not change the hardware measurement  
of the flow sensors, only the software-calculated values.  
To carry out this adjustment, connect an external, sufficiently accurate flow meter to the  
sample inlet. Once the flow meter is attached and is measuring actual gas flow, press:  
SAMPLE A1:NXCNC1=100PPM  
< TST TST > CAL  
NOX=XXX.X  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG ACAL DAS RNGE PASS CLK MORE EXIT  
Exit at  
any time  
to return  
to main  
the  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG  
EXIT  
SETUP  
menu  
SETUP X.X  
ENTER DIAG PASS: 818  
8
1
8
ENTR EXIT  
DIAG  
SIGNAL I / O  
NEXT  
ENTR EXIT  
Repeat Pressing NEXT until . . .  
DIAG  
FLOW CALIBRATION  
Exit returns  
to the  
PREV NEXT  
ENTR EXIT  
previous menu  
DIAG  
FLOW SENSOR TO CAL: SAMPLE  
SAMPLE OZONE  
ENTR EXIT  
Choose between  
sample and ozone  
flow sensors.  
ENTR accepts the  
new value and  
returns to the  
previous menu  
EXIT ignores the  
new value and  
returns to the  
DIAG FCAL  
ACTUAL FLOW: 480 CC / M  
Adjust these values  
until the displayed  
flow rate equals the  
flow rate being  
measured by the  
independent flow  
meter.  
0
4
8
0
ENTR EXIT  
previous menu  
165  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.14. SETUP – ALRM: USING THE OPTIONAL GAS  
CONCENTRATION ALARMS (OPT 67)  
The optional alarm relay outputs (Option 67) are installed includes two concentration  
alarms. Each alarm has a user settable limit, and is associated with an opto-isolated TTL  
relay accessible via the status output connector on the instrument’s back panel. If the  
concentration measured by the instrument rises above that limit, the alarm‘s status  
output relay is closed NO2.  
The default settings for ALM1 and ALM2 are:  
Table 4-28: Concentration Alarm Default Settings  
OUTPUT RELAY  
DESIGNATION  
1
ALARM  
STATUS  
LIMIT SET POINT  
ALM1  
ALM2  
Disabled  
Disabled  
100 ppm  
300 ppm  
133.9 mg/m3  
401.6 mg/m3  
AL2  
AL3  
1
Set points listed are for PPM. Should the reporting range units of measure be changed the analyzer will automatically  
scale the set points to match the new range unit setting.  
Note  
To prevent the concentration alarms from activating during span  
calibration operations make sure to press CAL or CALS button prior to  
introducing span gas into the analyzer.  
To enable either of the concentration alarms and set the Limit points, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
ALARM MENU  
SETUP X.X  
PRIMARY SETUP MENU  
ALM1 ALM2  
EXIT  
ENTR EXIT  
ENTR EXIT  
ENTR EXIT  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
SETUP X.  
ALARM 1 LIMIT: OFF  
ALARM 1 LIMIT: ON  
ALARM 1 LIMIT: 200 PPM  
SETUP X.X SECONDARY SETUP MENU  
OFF  
COMM VARS DIAG ALRM  
SETUP X.  
ON  
Toggle these buttons  
to cycle through the  
available character set:  
0-9  
ENTR accepts the new  
SETUP X.  
settings  
EXIT ignores the new  
0
1
0
0
.0  
0
settings  
166  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15. Remote Operation  
4.15.1. REMOTE OPERATION USING THE EXTERNAL DIGITAL I/O  
4.15.1.1. Status Outputs  
The status outputs report analyzer conditions via optically isolated NPN transistors,  
which sink up to 50 mA of DC current. These outputs can be used interface with  
devices that accept logic-level digital inputs, such as programmable logic controllers  
(PLCs). Each Status bit is an open collector output that can withstand up to 40 VDC.  
All of the emitters of these transistors are tied together and available at D.  
Note  
Most PLCs have internal provisions for limiting the current that the input  
will draw from an external device. When connecting to a unit that does  
not have this feature, an external dropping resistor must be used to limit  
the current through the transistor output to less than 50 mA. At 50 mA,  
the transistor will drop approximately 1.2V from its collector to emitter.  
The status outputs are accessed through a 12 pin connector on the analyzer’s rear panel  
labeled STATUS (see Figure 6-17). The function of each pin is defined in Table 6–29  
STATUS  
1
2
3
4
5
6
7
8
D
+
Figure 4-15:  
Status Output Connector  
167  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
Status Output Pin Assignments  
CONDITION (ON=CONDUCTING)  
Table 4-29:  
STATUS  
CONNECTOR  
PIN  
1
2
3
4
5
6
7
8
SYSTEM OK  
CONC VALID  
HIGH RANGE  
ZERO CAL  
ON if no faults are present.  
ON if concentration measurement is valid, OFF when invalid.  
ON if unit is in high range of any AUTO range mode.  
ON whenever the instrument is in ZERO calibration mode.  
ON whenever the instrument is in SPAN calibration mode.  
ON whenever the instrument is in DIAGNOSTIC mode.  
ON if unit is in low range of any AUTO range mode.  
Unused.  
SPAN CAL  
DIAG MODE  
LOW RANGE  
The emitters of the transistors on pins 1-8 are bussed together. For  
most applications, this pin should be connected to the circuit ground  
of the receiving device.  
D
+
EMITTER BUS  
DC POWER  
+ 5 VDC, 30 mA maximum (combined rating with Control Inputs).  
DIGITAL  
GROUND  
The ground from the analyzer’s internal, 5 VDC power supply.  
4.15.1.2. Control Inputs  
Control inputs allow the user to remotely initiate ZERO and SPAN calibration modes  
are provided through a 10-pin connector labeled CONTROL IN on the analyzer’s rear  
panel. These are opto-isolated, digital inputs that are activated when a 5 VDC signal  
from the “U” pin is connected to the respective input pin.  
Table 4-30: Control Input Pin Assignments  
INPUT  
STATUS  
CONDITION WHEN ENABLED  
EXTERNAL ZERO  
CAL  
Zero calibration mode is activated. The mode field of the display  
will read ZERO CAL R.  
A
EXTERNAL SPAN  
CAL  
Span calibration mode is activated. The mode field of the display  
will read SPAN CAL R.  
B
EXTERNAL LOW  
SPAN CAL  
Low span (mid-point) calibration mode is activated. The mode field  
of the display will read LO CAL R.  
C
D, E & F  
Unused  
DIGITAL GROUND  
Provided to ground an external device (e.g., recorder).  
DC power for Input  
pull ups  
Input for +5 VDC required to activate inputs A - F. This voltage can  
be taken from an external source or from the “+” pin.  
U
+
Internal source of +5V which can be used to activate inputs when  
connected to pin U.  
Internal +5V Supply  
168  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
There are two methods to activate control inputs. The internal +5V available from the  
“+” pin is the most convenient method (see Figure 6-18). However, to ensure that these  
inputs are truly isolated, a separate, external 5 VDC power supply should be used (see  
Figure 6-19).  
CONTROL IN  
A
B
C
D
E
F
U
+
Figure 4-16:  
Control Inputs with Local 5 V Power Supply  
CONTROL IN  
A
B
C
D
E
F
U
+
+
-
5 VDC Power  
Supply  
Figure 4-17:  
Control Inputs with External 5 V Power Supply  
4.15.2. REMOTE OPERATION  
4.15.2.1. Terminal Operating Modes  
The Model T200H/M can be remotely configured, calibrated or queried for stored data  
through the serial ports. As terminals and computers use different communication  
schemes, the analyzer supports two communicate modes specifically designed to  
interface with these two types of devices.  
Computer mode is used when the analyzer is connected to a computer with a  
dedicated interface program such as APICOM. More information regarding  
APICOM can be found in later in this section or on the Teledyne API website at  
http://www.teledyne-api.com/software/apicom/.  
Interactive mode is used with a terminal emulation programs such as  
HyperTerminal or a “dumb” computer terminal. The commands that are used to  
operate the analyzer in this mode are listed in Table 6-31 and in Appendix A-6.  
169  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.15.2.2. Help Commands in Terminal Mode  
Table 4-31: Terminal Mode Software Commands  
COMMAND  
Control-T  
FUNCTION  
Switches the analyzer to terminal mode (echo, edit). If mode flags 1 & 2 are OFF, the interface  
can be used in interactive mode with a terminal emulation program.  
Control-C  
Switches the analyzer to computer mode (no echo, no edit).  
A carriage return is required after each command line is typed into the terminal/computer. The  
command will not be sent to the analyzer to be executed until this is done. On personal  
computers, this is achieved by pressing the ENTER key.  
CR  
(carriage return)  
BS  
Erases one character to the left of the cursor location.  
Erases the entire command line.  
(backspace)  
ESC  
(escape)  
This command prints a complete list of available commands along with the definitions of their  
functionality to the display device of the terminal or computer being used. The ID number of  
the analyzer is only necessary if multiple analyzers are on the same communications line, such  
as the multi-drop setup.  
? [ID] CR  
Control-C  
Control-P  
Pauses the listing of commands.  
Restarts the listing of commands.  
4.15.2.3. Command Syntax  
Commands are not case-sensitive and all arguments within one command (i.e. ID  
numbers, keywords, data values, etc.) must be separated with a space character.  
All Commands follow the syntax:  
X [ID] COMMAND <CR>  
Where  
X
is the command type (one letter) that defines the type of command.  
Allowed designators are listed in Table 4-32 and Appendix A.  
[ID]  
is the analyzer identification number (see Section 4.11.4.). Example: the  
Command “? 200” followed by a carriage return would print the list of  
available commands for the revision of software currently installed in the  
instrument assigned ID Number 200.  
COMMAND is the command designator: This string is the name of the command being  
issued (LIST, ABORT, NAME, EXIT, etc.). Some commands may have  
additional arguments that define how the command is to be executed.  
Press ? <CR> or refer to Appendix A for a list of available command  
designators.  
<CR>  
is a carriage return. All commands must be terminated by a carriage  
return (usually achieved by pressing the ENTER key on a computer).  
Table 4-32: Command Types  
COMMAND  
COMMAND TYPE  
C
D
L
Calibration  
Diagnostic  
Logon  
T
Test measurement  
Variable  
V
W
Warning  
170  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15.2.4. Data Types  
Data types consist of integers, hexadecimal integers, floating-point numbers, Boolean  
expressions and text strings.  
Integer data are used to indicate integral quantities such as a number of records, a  
filter length, etc. They consist of an optional plus or minus sign, followed by one or  
more digits. For example, +1, -12, 123 are all valid integers.  
Hexadecimal integer data are used for the same purposes as integers. They  
consist of the two characters “0x,” followed by one or more hexadecimal digits (0-9,  
A-F, a-f), which is the ‘C’ programming language convention. No plus or minus sign  
is permitted. For example, 0x1, 0x12, 0x1234abcd are all valid hexadecimal  
integers.  
Floating-point numbers are used to specify continuously variable values such as  
temperature set points, time intervals, warning limits, voltages, etc. They consist of  
an optional plus or minus sign, followed by zero or more digits, an optional decimal  
point, and zero or more digits. (At least one digit must appear before or after the  
decimal point.) Scientific notation is not permitted. For example, +1.0, 1234.5678, -  
0.1, 1 are all valid floating-point numbers.  
Boolean expressions are used to specify the value of variables or I/O signals that  
may assume only two values. They are denoted by the keywords ON and OFF.  
Text strings are used to represent data that cannot be easily represented by other  
data types, such as data channel names, which may contain letters and numbers.  
They consist of a quotation mark, followed by one or more printable characters,  
including spaces, letters, numbers, and symbols, and a final quotation mark. For  
example, “a”, “1”, “123abc”, and “()[]<>” are all valid text strings. It is not possible to  
include a quotation mark character within a text string.  
Some commands allow you to access variables, messages, and other items, such  
as DAS data channels, by name. When using these commands, you must type the  
entire name of the item; you cannot abbreviate any names.  
171  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.15.2.5. Status Reporting  
Reporting of status messages as an audit trail is one of the three principal uses for the  
RS-232 interface (the other two being the command line interface for controlling the  
instrument and the download of data in electronic format). You can effectively disable  
the reporting feature by setting the interface to quiet mode (see Communication Mode).  
Status reports include DAS data (when reporting is enabled), warning messages,  
calibration and diagnostic status messages. Refer to Appendix A-3 for a list of the  
possible messages, and this section for information on controlling the instrument  
through the RS-232 interface.  
GENERAL MESSAGE FORMAT  
All messages from the instrument (including those in response to a command line  
request) are in the format:  
X DDD:HH:MM [Id] MESSAGE<CRLF>  
Where  
X
is a command type designator, a single character indicating the message  
type, as shown in the Table 6-31.  
DDD:HH:MM is the time stamp, the date and time when the message was issued. It  
consists of the Day-of-year (DDD) as a number from 1 to 366, the hour of  
the day (HH) as a number from 00 to 23, and the minute (MM) as a  
number from 00 to 59.  
[ID]  
is the analyzer ID, a number with 1 to 4 digits.  
MESSAGE  
is the message content that may contain warning messages, test  
measurements, DAS reports, variable values, etc.  
<CRLF>  
is a carriage return / line feed pair, which terminates the message.  
The uniform nature of the output messages makes it easy for a host computer to parse  
them into an easy structure. Keep in mind that the front panel display does not give any  
information on the time a message was issued, hence it is useful to log such messages  
for trouble-shooting and reference purposes. Terminal emulation programs such as  
HyperTerminal can capture these messages to text files for later review.  
172  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15.2.6. Remote Access by Modem  
The T200H/M can be connected to a modem for remote access. This requires a cable  
between the analyzer’s COM port and the modem, typically a DB-9F to DB-25M cable  
(available from Teledyne API with part number WR0000024).  
Once the cable has been connected, check to make sure the DTE-DCE is in the correct  
position. Also make sure the T200H/M COM port is set for a baud rate that is  
compatible with the modem, which needs to operate with an 8-bit word length with one  
stop bit.  
The first step is to turn on the MODEM ENABLE communication mode (Mode 64).  
Once this is completed, the appropriate setup command line for your modem can be  
entered into the analyzer. The default setting for this feature is  
AT Y0 &D0 &H0 &I0 S0=2 &B0 &N6 &M0 E0 Q1 &W0  
This string can be altered to match your modem’s initialization and can be up to 100  
characters long.  
Note  
If Hessen Protocol Mode is active for a com port, operation via a modem  
is not available on that port.  
To change this setting press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
EXIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
COM1 BAUD RATE:19200  
<SET SET> EDIT  
EXIT returns  
SETUP X.X  
SECONDARY SETUP MENU  
to the  
previous  
menu  
COMM VARS DIAG ALRM  
EXIT  
EXIT  
SETUP X.X  
COM1 MODEM INIT:AT Y&D&H  
EXIT  
<SET SET> EDIT  
SETUP X.X  
COMMUNICATIONS MENU  
Select which  
COM Port is  
tested  
ID INET COM1 COM2  
ENTR accepts the  
new string and returns  
to the previous menu.  
EXIT ignores the new  
string and returns to  
the previous menu.  
SETUP X.X  
COM1 MODEM INIT:[A]T Y&D&H  
ENTR EXIT  
<CH CH> INS DEL [A]  
Press the [?]  
key repeatedly to cycle through the  
available character set:  
0-9  
INS inserts a  
character before  
the cursor location.  
DEL deletes a  
character at the  
cursor location.  
A-Z  
The <CH and CH> buttons  
move the [ ] cursor left and  
right along the text string  
space ’ ~ ! # $ % ^ & * ( ) - _ =  
+[ ] { } < >\ | ; : , . / ?  
173  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To initialize the modem press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
EXIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
COM1 BAUD RATE:19200  
EXIT returns  
to the  
<SET SET> EDIT  
SETUP X.X  
SECONDARY SETUP MENU  
previous  
menu  
COMM VARS DIAG ALRM  
EXIT  
SETUP X.X  
COM1 MODEM INIT:AT Y&D&H  
SETUP X.X  
COMMUNICATIONS MENU  
<SET SET> EDIT  
EXIT  
Select which  
COM Port is  
tested  
ID COM1 COM2  
EXIT  
SETUP X.X  
COM1 INITIALIZE MODEM  
EXIT  
<SET SET> INIT  
SETUP X.X  
INITIALIZING MODEM  
<SET SET> INIT  
EXIT  
EXIT returns to the  
Communications Menu.  
4.15.2.7. COM Port Password Security  
In order to provide security for remote access of the T200H/M, a LOGON feature can be  
enabled to require a password before the instrument will accept commands. This is done  
by turning on the SECURITY MODE (see Section 4.9). Once the SECURITY  
MODE is enabled, the following items apply.  
A password is required before the port will respond or pass on commands.  
If the port is inactive for one hour, it will automatically logoff, which can also be  
achieved with the LOGOFF command.  
Three unsuccessful attempts to log on with an incorrect password will cause  
subsequent logins to be disabled for 1 hour, even if the correct password is used.  
If not logged on, the only active command is the '?' request for the help screen.  
The following messages will be returned at logon:  
o
o
o
LOGON SUCCESSFUL - Correct password given  
LOGON FAILED - Password not given or incorrect  
LOGOFF SUCCESSFUL - Connection terminated successfully  
To log on to the T200H/M analyzer with SECURITY MODE feature enabled, type:  
LOGON 940331  
940331 is the default password. To change the default password, use the variable  
RS232_PASS issued as follows:  
V RS232_PASS=NNNNNN  
Where N is any numeral between 0 and 9.  
174  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15.2.8. APICOM Remote Control Program  
APICOM is an easy-to-use, yet powerful interface program that allows to access and  
control any of Teledyne API’ main line of ambient and stack-gas instruments from a  
remote connection through direct cable, modem or Ethernet. Running APICOM, a user  
can:  
Establish a link from a remote location to the T200H/M through direct cable  
connection via RS-232 modem or Ethernet.  
View the instrument’s front panel and remotely access all functions that could be  
accessed when standing in front of the instrument.  
Remotely edit system parameters and set points.  
Download, view, graph and save data for predictive diagnostics or data analysis.  
Retrieve, view, edit, save and upload DAS configurations.  
Check on system parameters for trouble-shooting and quality control.  
APICOM is very helpful for initial setup, data analysis, maintenance and trouble-  
shooting. Figure 6-20 shows examples of APICOM’s main interface, which emulates  
the look and functionality of the instruments actual front panel  
Figure 4-18:  
APICOM Remote Control Program Interface  
APICOM is included free of cost with the analyzer and the latest versions can also be  
downloaded for free at http://www.teledyne-api.com/software/apicom/.  
175  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.15.3. ADDITIONAL COMMUNICATIONS DOCUMENTATION  
Table 4-33: Serial Interface Documents  
Interface / Tool  
APICOM  
Document Title  
Part Number  
039450000  
021790000  
028370000  
Available Online*  
APICOM User Manual  
YES  
YES  
YES  
Multi-drop  
RS-232 Multi-drop Documentation  
Detailed description of the DAS.  
DAS Manual  
* These documents can be downloaded at http://www.teledyne-api.com/manuals/  
4.15.4. USING THE T200H/M WITH A HESSEN PROTOCOL NETWORK  
4.15.4.1. General Overview of Hessen Protocol  
The Hessen protocol is a multidrop protocol, in which several remote instruments are  
connected via a common communications channel to a host computer. The remote  
instruments are regarded as slaves of the host computer. The remote instruments are  
unaware that they are connected to a multidrop bus and never initiate messages. They  
only respond to commands from the host computer and only when they receive a  
command containing their own unique ID number.  
The Hessen protocol is designed to accomplish two things: to obtain the status of remote  
instruments, including the concentrations of all the gases measured; and to place remote  
instruments into zero or span calibration or measure mode. API’s implementation  
supports both of these principal features.  
The Hessen protocol is not well defined, therefore while API’s application is completely  
compatible with the protocol itself, it may be different from implementations by other  
companies.  
The following subsections describe the basics for setting up your instrument to operate  
over a Hessen Protocol network. For more detailed information as well as a list of host  
computer commands and examples of command and response message syntax,  
download the Manual Addendum for Hessen Protocol from the Teledyne API’ web site:  
http://www.teledyne-api.com/manuals/index.asp .  
176  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15.4.2. Hessen Com Port Configuration  
Hessen protocol requires the communication parameters of the T200H/M’s com ports to  
be set differently than the standard configuration as shown in the table below.  
Table 4-34:  
RS-232 Communication Parameters for Hessen Protocol  
Parameter  
Data Bits  
Stop Bits  
Parity  
Standard  
Hessen  
7
8
1
2
None  
Full  
Even  
Half  
Duplex  
Note  
Ensure that the communication parameters of the host computer are  
properly set  
Be aware that the instrument software has a 200 ms latency response to  
commands issued by the host computer.  
Operation via modem is not available over any com port on which  
HESSEN protocol is active.  
The first step in configuring the T200H/M to operate over a Hessen protocol network is  
to activate the Hessen mode for com ports and configure the communication parameters  
for the port(s) appropriately. Press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP X.X  
COM1 QUIET MODE: OFF  
ENTR EXIT  
Repeat the  
entire process to  
set up the  
< TST TST > CAL  
SETUP  
NEXT OFF  
COM2 port  
SETUP X.X  
PRIMARY SETUP MENU  
Continue pressing next until …  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
EXIT  
EXIT  
SETUP X.X COM1 HESSEN PROTOCOL : OFF  
SETUP X.X SECONDARY SETUP MENU  
PREV NEXT OFF  
ENTR EXIT  
COMM VARS DIAG  
ALRM  
Toggle OFF/ON  
buttons to change  
activate/deactivate  
selected mode.  
SETUP X.X COM1 HESSEN PROTOCOL : ON  
SETUP X.X  
COMMUNICATIONS MENU  
Select which COMM  
port to configure  
PREV NEXT ON  
ENTR EXIT  
ID COM1 COM2  
The sum of the mode  
IDs of the selected  
modes is displayed  
here  
SETUP X.X  
COM1 E,7,1 MODE: OFF  
SETUP X.X  
SET> EDIT  
COM1 MODE:0  
PREV NEXT OFF  
ENTR EXIT  
ENTR button accepts the  
SETUP X.X  
COM1 E,7,1 MODE: ON  
new settings  
EXIT key ignores the new  
PREV NEXT ON  
ENTR EXIT  
settings  
177  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.15.4.3. Selecting a Hessen Protocol Type  
Currently there are two version of Hessen Protocol in use. The original implementation,  
referred to as TYPE 1, and a more recently released version, TYPE 2 that has more  
flexibility when operating with instruments that can measure more than one type of gas.  
For more specific information about the difference between TYPE 1and TYPE 2  
download the Manual Addendum for Hessen Protocol from the Teledyne API’ web site:  
http://www.teledyne-api.com/manuals/index.asp .  
To select a Hessen Protocol Type press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.  
HESSEN VARIATION: TYPE 1  
SETUP X.X  
PRIMARY SETUP MENU  
SET> EDIT  
EXIT  
CFG DAS RNGE PASS CLK MORE  
EXIT  
ENTR accepts the new  
settings  
SETUP X.X HESSEN VARIATION: TYPE 1  
EXIT ignores the new  
settings  
SETUP X.X SECONDARY SETUP MENU  
TYPE1 TYPE 2  
COMM VARS DIAG ALRM  
EXIT  
Press to change  
protocol type.  
SETUP X.X HESSEN VARIATION: TYPE 2  
SETUP X.X  
COMMUNICATIONS MENU  
PREV NEXT OFF  
ENTR EXIT  
ID HESN COM1 COM2  
Note  
While Hessen Protocol Mode can be activated independently for COM1  
and COM2, the TYPE selection affects both ports.  
4.15.4.4. Setting The Hessen Protocol Response Mode  
The Teledyne API’ implementation of Hessen Protocol allows the user to choose one of  
several different modes of response for the analyzer.  
Table 6-28: T200H/M Hessen Protocol Response Modes  
MODE ID  
CMD  
MODE DESCRIPTION  
This is the Default Setting. Reponses from the instrument are encoded as the traditional command format.  
Style and format of responses depend on exact coding of the initiating command.  
Responses from the instrument are always delimited with <STX> (at the beginning of the response, <ETX>  
(at the end of the response followed by a 2 digit Block Check Code (checksum), regardless of the command  
encoding.  
BCC  
Responses from the instrument are always delimited with <CR> at the beginning and the end of the string,  
regardless of the command encoding.  
TEXT  
178  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
To Select a Hessen response mode, press:  
Operating Instructions  
SAMPLE  
RANGE = 500.000 PPB  
SO2 =XXX.X  
< TST TST > CAL  
SETUP  
ENTR EXIT  
EXIT  
SAMPLE  
ENTER SETUP PASS : 818  
8
1
8
SETUP X.X  
COMMUNICATIONS MENU  
ID HESN COM1 COM2  
EXIT  
EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
SETUP X.X  
HESSEN VARIATION: TYPE 1  
SET> EDIT  
SETUP X.X SECONDARY SETUP MENU  
ENTR accepts the new  
settings  
COMM VARS DIAG ALRM  
EXIT  
EXIT ignores the new  
SETUP X.X  
HESSEN RESPONSE MODE :CMD  
settings  
<SET SET> EDIT  
EXIT  
Press to  
change  
response  
mode.  
SETUP X.X  
HESSEN RESPONSE MODE :CMD  
BCC TEXT EDIT  
ENTR EXIT  
179  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
4.15.4.5. Hessen Protocol Gas ID  
Since the T200H/M measures NOx, NO2, NO and O2 (if the optional sensor is installed),  
all of these gases are listed in the Hessen protocol gas list. In its default state the  
Hessen protocol firmware assigns each of these gases a Hessen ID number and actively  
reports all of them even if the instrument is only measuring one (see  
MEASURE_MODE, Section 4.12) .  
To change or edit these settings press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
BUTTON  
FUNCTION  
< TST TST > CAL  
SETUP  
Moves to next gas entry in list  
<PREV  
NEXT>  
INS  
Moves the cursor previous gas entry in list  
Inserts a new gas entry into the list.  
SETUP X.X  
PRIMARY SETUP MENU  
Deletes the >>>>>.  
DEL  
Accepts the new setting and returns to the previous menu.  
Ignores the new setting and returns to the previous menu.  
ENTR  
EXIT  
CFG DAS RNGE PASS CLK MORE  
EXI  
SETUP X.X SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
SETUP X.X  
HESSEN RESPONSE MODE :CMD  
<SET SET> EDIT  
EXIT  
SETUP X.X  
COMMUNICATIONS MENU  
ID HESN COM1 COM2  
EXIT  
EXIT  
SETUP X.X  
HESSEN GAS LIST  
SETUP X.X  
HESSEN VARIATION: TYPE 1  
<SET SET> EDIT  
EXIT  
SET> EDIT  
SETUP X.X  
NOX, 211, REPORTED  
<PREV NEXT>  
INS DEL EDIT PRNT EXIT  
Use the PREV & NEXT keys to cycle  
existing entries in Hessen gas list  
SETUP X.X  
GAS TYPE NOX  
<PREV NEXT>  
ENTR EXIT  
ENTR EXIT  
Use the PREV & NEXT keys to cycle  
through available gases  
ENTR accepts the  
new settings  
SETUP X.X  
GAS ID: 211  
0
EXIT ignores the  
new settings  
0
0
Toggle to change the gas ID number for the  
chosen gas.  
SETUP X.X  
REPORTED : ON  
ON  
ENTR EXIT  
Toggle to switch reporting Between ON and  
OFF  
Table 4-35: T200H/M Hessen GAS ID List  
GAS DEFAULT  
HESSEN GAS ID  
NOx  
NO  
NO2  
O2  
211  
212  
213  
214  
180  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Operating Instructions  
4.15.4.6. Setting Hessen Protocol Status Flags  
Teledyne API’ implementation of Hessen protocols includes a set of status bits that are  
included in responses to inform the host computer of the T200H/M’s condition. The  
default settings for these bit/flags are:  
Table 4-36: Default Hessen Status Bit Assignments  
STATUS FLAG NAME  
WARNING FLAGS  
DEFAULT BIT ASSIGNMENT  
SAMPLE FLOW WARNING  
OZONE FLOW WARNING  
RCELL PRESS WARN  
BOX TEMP WARNING  
RCELL TEMP WARNING  
PMT TEMP WARNING  
CONVERTER TEMP WARNING  
WARMUP MODE  
0001  
0002  
0004  
0008  
0010  
0040  
0080  
1000  
8000  
INVALID CONC  
OPERATIONAL FLAGS  
In Manual Calibration Mode  
In O2 Calibration Mode  
In Zero Calibration Mode  
In Low Span Calibration Mode  
In Span Calibration Mode  
UNITS OF MEASURE FLAGS  
MGM  
0200  
0400  
0400  
0800  
0800  
2000  
6000  
PPM  
SPARE/UNUSED BITS  
UNASSIGNED FLAGS  
Box Temp Warning  
0020, 0100  
Analog Cal Warning  
Cannot Dyn Zero  
Cannot Dyn Span  
O2 Cell Temp Warn  
AutoZero Warning  
Conc Alarm 2  
System Reset  
Rear Board Not Detected  
Relay Board Warning  
Manifold Temp Warn  
Ozone Gen Off  
Conc Alarm 1  
In MP Calibration Mode  
HVPS Warning  
Note  
It is possible to assign more than one flag to the same Hessen status bit.  
This allows the grouping of similar flags, such as all temperature  
warnings, under the same status bit. Be careful not to assign conflicting  
flags to the same bit as each status bit will be triggered if any of the  
assigned flags is active.  
181  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Operating Instructions  
Teledyne API - Model T200H/T200M Operation Manual  
To assign or reset the status flag bit assignments, press:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
EXIT  
SETUP X.X  
COMMUNICATIONS MENU  
ID HESN COM1 COM2  
Repeat pressing SET> until …  
SETUP X.  
HESSEN STATUS FLAGS  
<SET SET> EDIT  
EXIT  
SETUP X.  
PMT DET WARNING: 0002  
PREV NEXT  
EDIT PRNT EXIT  
Repeat pressing NEXT or PREV until the desired  
message flag is displayed. See Table 6-29.  
For example …  
SETUP X.  
SYSTEM RESET: 0000  
EDIT PRNT EXIT  
PREV NEXT  
<CH and CH>  
move the [ ]  
cursor left and  
right along the  
bit string.  
SETUP X.  
SYSTEM RESET: [0]000  
[0]  
ENTR key accepts the  
new settings  
<CH CH>  
ENTR EXIT  
EXIT key ignores the new  
settings  
Press the [?] key repeatedly to cycle through the available character set: 0-9  
Note: Values of A-F can also be set but are meaningless.  
4.15.4.7. Instrument ID Code  
Each instrument on a Hessen Protocol network must have a unique ID code. The  
T200H/M has a default ID of either 0 or 200. To change this code see Section 4.11.1  
182  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5. CALIBRATION PROCEDURES  
This section describes calibration procedures for the T200H/M. All of the methods  
described here can be initiated and controlled through the front panel or the COM ports.  
Interferents should be considered prior to calibration.  
5.1.1. INTERFERENTS FOR NOX MEASUREMENTS  
The chemiluminescence method for detecting NOX is subject to interference from a  
number of sources including water vapor (H2O), ammonia (NH3), sulfur dioxide (SO2)  
and carbon dioxide (CO2) but the Model T200H/M has been designed to reject most of  
these interferents. Section 8.2.4 contains more detailed information on interferents.  
Ammonia is the most common interferent, which is converted to NO in the analyzer’s  
NO2 converter and creates a NOX signal artifact. If the Model T200H/M is installed in  
an environment with high ammonia, steps should be taken to remove the interferent  
from the sample gas before it enters the reaction cell. Teledyne API offers a sample gas  
conditioning option to remove ammonia and water vapor (contact Sales).  
Carbon dioxide diminishes the NOX signal when present in high concentrations. If the  
analyzer is used in an application with excess CO2, contact Teledyne API Technical  
Support for possible solutions. Excess water vapor can be removed with one of the  
dryer options described in Section 1.4. In ambient air applications, SO2 interference is  
usually negligible.  
5.1.1.1. Conditioners for High Moisture Sample Gas  
Several permeation devices using Nafion® permeation gas exchange tubes are available  
for applications with high moisture and/or moderate levels of NH3 in the sample gas.  
This type of sample conditioner is part of the standard T200H/M equipment to remove  
H2O and NH3 from the ozone generator supply gas stream but can be purchased for the  
sample gas stream as well. All gas conditioners remove water vapor to a dew point of  
about –20° C (~600 ppm H2O) and effectively remove concentrations of ammonia up to  
about 1 ppm. More information about these dryers and their performance is available at  
http://www.permapure.com/.  
It is MANDATORY that for calibrations and operation to be valid, the analyzer be  
calibrated using the same background gas (or dilutent) for zero and span, as the  
background gas in the sample stream. Any other combinations will lead to calibration or  
operational errors since the efficiency of the analyzer’s chemluminescent reaction varies  
with the background gas, since the background gas acts as a quencher.  
Note  
CALIBRATION vs. CALIBRATION CHECK:  
DO NOT press the ENTR button during the following procedures if you are  
performing only a calibration check. ENTR recalculates the stored values  
for OFFSET and SLOPE, altering the instrument’s calibration.  
183  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
5.2. CALIBRATION PREPARATIONS  
5.2.1. REQUIRED EQUIPMENT, SUPPLIES, AND EXPENDABLES  
Calibration of the Model T200H/M analyzer requires a certain amount of equipment and  
supplies. These include, but are not limited to, the following:  
Zero-air source (defined in Section 3.5.1.1).  
Span gas source (defined in Section 3.5.1.2).  
Gas lines - all gas line materials should be stainless steel or Teflon-type (PTFE or  
FEP). High concentration NO gas transported over long distances may require  
stainless steel to avoid oxidation of NO with O2 diffusing into the tubing.  
A recording device such as a strip-chart recorder and/or data logger (optional). For  
electronic documentation, the internal data acquisition system can be used.  
5.2.2. ZERO AIR  
Zero air is similar in chemical composition to the Earth’s atmosphere but scrubbed of all  
components that might affect the analyzer’s readings. For NOX measuring devices, zero  
air should be devoid of NOX and large amounts of CO2, NH3 and water vapor. Water  
vapor and moderate amounts of NH3 can be removed using a sample gas conditioner  
(Section 5.10).  
Devices such as the API Model 701 zero air generator that condition ambient air by  
drying and removal of pollutants are available. We recommend this type of device for  
generating zero air. Please contact our sales department for more information on this.  
184  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.2.3. SPAN CALIBRATION GAS STANDARDS & TRACEABILITY  
Note  
We strongly recommend that span calibration is carried out with NO span  
gas, although it is possible to use NO2. Quick span checks may be done  
with either NO, NO2 or a mixture of NO and NO2.  
Span gas is specifically mixed to match the chemical composition of the gas being  
measured at about 80% of the desired full measurement range. For example, if the  
measurement range is 120 ppm, the span gas should have an NO concentration of about  
96 ppm.  
Span gases should be certified to a specific accuracy to ensure accurate calibration of the  
analyzer. Typical gas accuracy for NOX gases is 1 or 2%. NO standards should be  
mixed in nitrogen (to prevent oxidation of NO to NO2 over time).  
For oxygen measurements, we recommend s reference gas of 21% O2 in N2. the user  
can either utilize the NOX standards (if mixed in air). For quick checks. ambient air can  
be used at an assumed concentration of 20.8%. Generally, O2 concentration in dry,  
ambient air varies by less than 1%.  
5.2.3.1. Traceability  
All equipment used to produce calibration gases should be verified against standards of  
the National Institute for Standards and Technology (NIST). To ensure NIST  
traceability, we recommend to acquire cylinders of working gas that are certified to be  
traceable to NIST standard reference materials (SRM). These are available from a variety  
of commercial sources.  
Table 5-1: NIST-SRM's Available for Traceability of NOx Calibration Gases  
NOMINAL  
CONCENTRATION  
NIST-SRM4  
TYPE  
2627a  
2628a  
2629a  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
5 ppm  
10 ppm  
20 ppm  
1683b  
1684b  
1685b  
1686b  
1687b  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
50 ppm  
100 ppm  
250 ppm  
5000 ppm  
1000 ppm  
2630  
2631a  
2635  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
Nitric Oxide (NO) in N2  
1500 ppm  
3000 ppm  
800 ppm  
2636a  
2000 ppm  
2656  
2660a  
Oxides of Nitrogen (NOx) in Air  
Oxides of Nitrogen (NOx) in Air  
2500 ppm  
100 ppm  
2659a  
Oxygen in Nitrogen (O2)  
21 mol %  
185  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
5.2.4. DATA RECORDING DEVICES  
A strip chart recorder, data acquisition system or digital data acquisition system should  
be used to record data from the serial or analog outputs of the T200H/M. If analog  
readings are used, the response of the recording system should be checked against a  
NIST traceable voltage source or meter. Data recording devices should be capable of bi-  
polar operation so that negative readings can be recorded. For electronic data recording,  
the T200H/M provides an internal data acquisition system (DAS), which is described in  
detail in Section 4.7. APICOM, a remote control program, is also provided as a  
convenient and powerful tool for data handling, download, storage, quick check and  
plotting.  
5.2.5. NO2 CONVERSION EFFICIENCY (CE)  
To ensure accurate operation of the T200H/M, it is important to check the NO2  
conversion efficiency (CE) periodically and to update this value as necessary.  
The default setting for the NO2 converter efficiency is 1.0000. For the analyzer to  
function correctly, the converter efficiency must be between 0.9600 and 1.0200 (96-  
102% conversion efficiency) as per US-EPA requirements. If the converter’s efficiency  
is outside these limits, the NO2 converter should be replaced.  
Note  
The currently programmed CE is recorded along with the calibration data  
in the DAS for documentation and performance analysis.  
186  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.2.5.1. Determining / Updating the NO2 Converter Efficiency  
The following procedure will cause the Model T200H/M to automatically calculate the  
current NO2 conversion efficiency.  
STEP ONE:  
Connect a source of calibrated NO2 span gas as shown below.  
VENT here if input  
Source of  
MODEL T700  
Gas Dilution  
is pressurized  
SAMPLE GAS  
Removed during  
calibration  
Calibrator  
NO2 Gas  
(High Concentration)  
SAMPLE  
EXHAUST  
MODEL 701  
Zero Gas  
VENT if not vented  
at calibrator  
Instrument  
Chassis  
Generator  
PUMP  
Figure 5-1:  
Gas Supply Setup for Determination of NO2 Conversion Efficiency  
187  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
STEP TWO:  
Set the expected NO2 span gas concentration:  
M-P CAL  
A1:NXCNC1 =100PPM  
NOX=X.XXX  
EXIT  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
<TST TST> ZERO SPAN CONC  
< TST TST >  
SETUP  
M-P CAL  
CONCENTRATION MENU  
SAMPLE  
GAS TO CAL:NOX  
NOX NO CONV  
EXIT  
EXIT  
NOX  
O2  
ENTR EXIT  
M-P CAL  
CONVERTER EFFICIENCY MENU  
SAMPLE  
RANGE TO CAL:LOW  
NO2 CAL SET  
LOW HIGH  
ENTR EXIT  
M-P CAL  
0
NO2 CE CONC:80.0 Conc  
.0  
EXIT ignores the new  
setting and returns to  
the previous display.  
0
8
0
ENTR EXIT  
ENTR accepts the new  
setting and returns to  
the  
The NOX & NO span concentration  
values automatically default to  
80.0 Conc.  
If this is not the the concentration of  
the span gas being used, toggle  
these buttons to set the correct  
concentration of the NOX and NO  
calibration gases.  
CONVERTER  
EFFICIENCY  
MENU.  
If using NO span gas  
in addition to NOX  
repeat last step.  
188  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
STEP THREE  
Activate NO2 measurement stability function.  
SAMPLE  
RANGE = 50.000 PPM  
CAL  
CO =X.XXX  
SETUP  
SETUP X.X  
0) DAS_HOLD_OFF=15.0 Minutes  
< TST TST >  
<PREV NEXT> JUMP  
EDIT PRNT EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
EXIT  
Continue pressing NEXT until ...  
SETUP X.X  
SECONDARY SETUP MENU  
SETUP X.X  
2) STABIL_GAS=NOX  
COMM VARS DIAG ALRM  
<PREV NEXT> JUMP  
EDIT PRNT EXIT  
SETUP X.X  
ENTER PASSWORD:818  
SETUP X.X  
STABIL_GAS:NOX  
8
1
8
ENTR EXIT  
NO  
NO2 NOX O2  
ENTR EXIT  
SETUP X.X  
STABIL_GAS:NO2  
NO  
NO2 NOX O2  
ENTR EXIT  
Press ENTR first,  
then press EXIT 3  
times to return to  
SAMPLE menu  
189  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
STEP FOUR:  
Perform the converter efficiency calculation procedure:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NO2 STB test  
function.  
< TST TST >  
This function calculates  
the stability of the  
measurement  
Toggle TST> button until ...  
SAMPLE  
NO2 STB= XXX.X PPM  
CAL  
NOX=XXX.X  
SETUP  
< TST TST >  
SAMPLE  
GAS TO CAL:NOX  
RANGE TO CAL:LOW  
STB = XXX.X PPM  
NOX  
O2  
ENTR EXIT  
ENTR EXIT  
SAMPLE  
LOW HIGH  
M-P CAL  
OX=X.XXX  
EXIT  
<TST TST> ZERO SPAN CONC  
M-P CAL  
CONCENTRATION MENU  
NOX NO CONV  
EXIT  
M-P CAL  
CONVERTER EFFICIENCY MENU  
NO2 CAL SET  
EXIT  
M-P CAL  
1
CE FACTOR:1.000 Gain  
.0  
0
0
0
ENTR EXIT  
Allow NO2 to enter the sample port  
at the rear of the analyzer.  
M-P CAL  
CONVERTER EFFICIENCY MENU  
Wait until NO2 STB  
falls below 0.5 ppm  
and the ENTR button  
appears.  
NO2 CAL SET  
EXIT  
When ENTR is  
pressed, the ratio of  
observed NO2  
concentration to  
expected NO2  
concentration is  
calculated and  
stored.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
ENTR  
NOX=XXX.X  
SETUP  
< TST TST >  
M-P CAL  
CONVERTER EFFICIENCY MENU  
NO2 CAL SET  
EXIT  
M-P CAL  
1
CE FACTOR:1.012 Gain  
Press EXIT 3 times  
top return to the  
SAMPLE display  
.0  
0
1
2
ENTR EXIT  
190  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.3. MANUAL CALIBRATION  
The following section describes the basic method for manually calibrating the Model  
T200H/M NOX analyzer.  
If both available DAS parameters for a specific gas type are being reported via the  
instruments analog outputs e.g. NXCNC1 and NXCNC2, separate calibrations should  
be carried out for each parameter.  
Use the LOW button when calibrating for NXCNC1  
Use the HIGH button when calibrating for NXCNC2.  
See Section 4.13.4 for more information on analog output reporting ranges  
STEP ONE:  
Connect the sources of zero air and span gas as shown below.  
MODEL T700  
Gas Dilution  
VENT here if input  
is pressurized  
Calibrator  
Source of  
SAMPLE Gas  
VENT if not  
vented at  
calibrator  
MODEL 701  
Zero Gas  
Sample  
Exhaust  
PUMP  
Generator  
Span Point  
Instrument  
Chassis  
External Zero  
Air Scrubber  
Zero Air  
Filter  
Figure 5-2:  
Pneumatic Connections–With Zero/Span Valve Option (50A)  
191  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
On/Off  
Valves  
Source of  
SAMPLE Gas  
VENT here if input  
is pressurized  
PUMP  
Sample  
Exhaust  
High Span Point  
Low Span Point  
Zero Air  
Instrument  
Chassis  
External Zero  
Air Scrubber  
Filter  
Figure 5-3:  
Pneumatic Connections–With 2-Span point Option (50D) –Using Bottled Span Gas  
192  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
STEP TWO:  
Set Expected NO and NOX Span Gas Concentrations.  
These should be 80% of range of concentration values likely to be encountered in this  
application. The default factory setting is 100 ppm. If one of the configurable analog  
outputs is to be set to transmit concentration values, use 80% of the reporting range set  
for that output (see Section 4.13.4)  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
< TST TST >  
CAL  
SAMPLE  
GAS TO CAL:NOX  
RANGE TO CAL:LOW  
A1:NXCNC1 =100PPM  
NOX O2  
ENTR EXIT  
SAMPLE  
LOW HIGH  
ENTR EXIT  
M-P CAL  
NOX=X.XXX  
EXIT  
<TST TST> ZERO SPAN CONC  
M-P CAL  
CONCENTRATION MENU  
NOX NO CONV  
EXIT  
M-P CAL  
0
NOX SPAN CONC:80.0 Conc  
.0  
EXIT ignores the new  
setting and returns to  
the previous display.  
0
8
0
ENTR EXIT  
ENTR accepts the new  
setting and returns to  
the  
CONCENTRATION  
MENU.  
If using NO span gas  
in addition to NOX  
repeat last step.  
The NOX & NO span concentration  
values automatically default to  
80.0 Conc.  
If this is not the the concentration of  
the span gas being used, toggle  
these buttons to set the correct  
concentration of the NOX and NO  
calibration gases.  
Note  
The expected concentrations for both NOX and NO are usually set to the  
same value unless the conversion efficiency is not equal to 1.000 or not  
entered properly in the conversion efficiency setting. When setting  
expected concentration values, consider impurities in your span gas  
source (NO often contains 1-3% NO2 and vice versa).  
193  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
STEP THREE:  
Perform Zero/Span Calibration:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NOX STB test  
function.  
Analyzer continues to  
< TST TST >  
CAL  
cycle through NOx,  
NO, and NO2  
measurements  
throughout this  
procedure.  
This function calculates  
the stability of the NO/NOx  
measurement  
Toggle TST> button until ...  
SAMPLE  
NOX STB= XXX.X PPM  
NOX=XXX.X  
SETUP  
< TST TST >  
CAL  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
RANGE TO CAL:LOW  
NOX STB= XXX.X PPM  
NOX  
O2  
ENTR EXIT  
SAMPLE  
LOW HIGH  
ENTR EXIT  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
M-P CAL  
NOX=XXX.X  
<TST TST>  
ZERO  
CONC  
EXIT  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
M-P CAL  
NOX STB= XXX.X PPM  
CONC  
NOX=X.XXX  
EXIT  
<TST TST> ENTR  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
RANGE TO CAL:LOW  
NOX STB= XXX.X PPM  
NOX  
O2  
ENTR EXIT  
SAMPLE  
LOW HIGH  
ENTR EXIT  
The SPAN key now appears  
during the transition from  
zero to span.  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
M-P CAL  
NOX=X.XXX  
EXIT  
You may see both keys.  
If either the ZERO or SPAN  
buttons fail to appear see  
Section 11 for  
<TST TST> ZERO SPAN CONC  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
troubleshooting tips.  
M-P CAL  
NOX STB= XXX.X PPM  
CONC  
NOX=X.XXX  
EXIT  
<TST TST> ENTR  
M-P CAL  
NOX STB= XXX.X PPM  
CONC  
NOX=X.XXX  
EXIT at this point  
returns to the  
<TST TST> ENTR  
EXIT  
SAMPLE menu.  
194  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.4. CALIBRATION CHECKS  
Informal calibration checks, which only evaluate but do not alter the analyzer’s response  
curve, are recommended as a regular maintenance item and in order to monitor the  
analyzer’s performance. To carry out a calibration check rather than a full calibration,  
follow these steps.  
STEP ONE:  
STEP TWO:  
Connect the sources of zero air and span gas as shown in Figure 7.2 or 7.3.  
Perform the zero/span calibration check procedure:  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NOX STB test  
function.  
< TST TST >  
This function calculates  
the stability of the NO/NOx  
measurement  
Analyzer display  
continues to cycle  
through all of the  
available gas  
Toggle TST> button until ...  
measurements  
throughout this  
procedure.  
SAMPLE  
NOX STB= XXX.X PPM  
NOX=XXX.X  
< TST TST >  
CAL  
SETUP  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
Record NOX, NO, NO2 or O2 zero point  
readings  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
The ZERO and/or SPAN  
keys will appear at various  
points of this process.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
It is not necessary to press  
them.  
Record NOX, NO, NO2 or O2 span point  
readings  
195  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
5.5. MANUAL CALIBRATION WITH ZERO/SPAN VALVES  
Zero and Span calibrations using the Zero/Span Valve option are similar to that  
described in Section 7.2, except that:  
Zero air and span gas is supplied to the analyzer through the zero gas and span  
gas inlets rather than through the sample inlet.  
The zero and cal operations are initiated directly and independently with dedicated  
keys (CALZ & CALS)  
If both available DAS parameters for a specific gas type are being reported via the  
instruments analog outputs e.g. NXCNC1 and NXCNC2, separate calibrations should  
be carried out for each parameter.  
Use the LOW button when calibrating for NXCNC1  
Use the HIGH button when calibrating for NXCNC2.  
See Section 4.13.4 for more information on analog output reporting ranges  
STEP ONE:  
Connect the sources of zero air and span gas to the respective ports on the rear panel as  
shown below.  
MODEL T700  
Gas Dilution  
VENT here if input  
is pressurized  
Calibrator  
Source of  
SAMPLE Gas  
VENT if not  
vented at  
calibrator  
MODEL 701  
Zero Gas  
Sample  
Exhaust  
PUMP  
Generator  
Span Point  
Instrument  
Chassis  
External Zero  
Air Scrubber  
Zero Air  
Filter  
Figure 5-4:  
Pneumatic Connections–With Zero/Span Valve Option (50)  
196  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
STEP TWO:  
Set Expected NO and NOX Span Gas Concentrations.  
Set the expected NO and NOx span gas concentration. These should be 80% of range of  
concentration values likely to be encountered in this application. The default factory  
setting is 100 ppm. If one of the configurable analog outputs is to be set to transmit  
concentration values, use 80% of the reporting range set for that output.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
SAMPLE  
GAS TO CAL:NOX  
NOX O2  
ENTR EXIT  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
SPAN CAL M A1:NXCNC1 =100PPM NOX=X.XXX  
<TST TST> ZERO SPAN CONC  
EXIT  
EXIT  
SPAN CAL M CONCENTRATION MENU  
NOX NO CONV  
SPAN CAL M NOX SPAN CONC:80.0 Conc  
EXIT ignores the new  
setting and returns to  
the previous display.  
0
0
8
0
.0  
ENTR EXIT  
The NOX & NO span concentration  
values automatically default to  
80.0 Conc.  
ENTR accepts the new  
setting and returns to  
the  
If this is not the the concentration of  
the span gas being used, toggle  
these buttons to set the correct  
concentration of the NOX and NO  
calibration gases.  
CONCENTRATION  
MENU.  
If using NO span gas  
in addition to NOX  
repeat last step.  
Note  
The expected concentrations for both NOX and NO are usually set to the  
same value unless the conversion efficiency is not equal to 1.000 or not  
entered properly in the conversion efficiency setting. When setting  
expected concentration values, consider impurities in your span gas  
source (NO often contains 1-3% NO2 and vice versa).  
197  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
STEP THREE:  
Perform Zero/Span Calibration:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NOX STB test  
function.  
Analyzer continues to  
< TST TST > CAL CALZ CALS  
cycle through NOx,  
NO, and NO2  
measurements  
throughout this  
procedure.  
This function calculates  
the stability of the NO/NOx  
measurement  
Toggle TST> button until ...  
SAMPLE  
NOX STB= XXX.X PPM  
NOX=XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
NOX=XXX.X  
< TST TST > CAL CALZ CALS  
SETUP  
SAMPLE  
GAS TO CAL:NOX  
NOX  
O2  
ENTR EXIT  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
Analyzers enters  
ZERO cal  
mode.  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
ZERO CAL M  
<TST TST>  
NOX STB= XXX.X PPM NOX=XXX.X  
ZERO CONC EXIT  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
ZERO CAL M  
NOX STB= XXX.X PPM NOX=XXX.X  
CONC EXIT  
<TST TST> ENTR  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
falls below 0.5 ppm.  
This may take several  
minutes.  
SAMPLE  
NOX STB= XXX.X PPM  
NOX=XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
SAMPLE  
GAS TO CAL:NOX  
NOX  
O2  
ENTR EXIT  
Analyzers enters SPAN cal  
mode and the SPAN key  
appears.  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
You may see both  
keysduring the transition  
from ZERO to SPAN modes.  
Press ENTR to changes  
the OFFSET & SLOPE  
values for both the NO  
and NOx measurements.  
If either the ZERO or SPAN  
buttons fail to appear see  
Section 11 for  
SPAN CAL M NOX STB= XXX.X PPM  
NOX=X.XXX  
EXIT  
<TST TST> ZERO SPAN CONC  
troubleshooting tips.  
Press EXIT to leave the  
calibration unchanged and  
return to the previous  
menu.  
SPAN CAL M NOX STB= XXX.X PPM  
NOX=X.XXX  
EXIT  
<TST TST> ENTR  
CONC  
SPAN CAL M NOX STB= XXX.X PPM  
<TST TST> ENTR CONC  
NOX=X.XXX  
EXIT at this point  
returns to the  
SAMPLE menu.  
EXIT  
198  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.6. CALIBRATION CHECKS WITH ZERO/SPAN VALVES  
Zero and span checks using the zero/span valve option are similar to that described in  
Section 7.4, except that zero air and span gas are supplied to the analyzer through the  
zero gas and span gas inlets from two different sources.  
Informal calibration checks, which only evaluate but do not alter the analyzer’s response  
curve, are recommended as a regular maintenance item and in order to monitor the  
analyzer’s performance. To carry out a calibration check rather than a full calibration,  
follow these steps.  
To perform a manual calibration check with zero/span valve:  
STEP ONE:  
Connect the sources of Zero Air and Span Gas as shown in section 7-4.  
STEP TWO:  
Perform the zero/span check.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
Set the Display to show  
the NOX STB test  
function.  
< TST TST > CAL CALZ CALS  
This function calculates  
the stability of the NO/NOx  
measurement  
ZERO CAL M NOX STB= XXX.X PPM NOX=XXX.X  
Toggle TST> button until ...  
<TST TST> ZERO  
CONC  
EXIT  
Return to  
SAMPLE  
Display  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SETUP  
< TST TST > CAL CALZ CALS  
< TST TST > CAL CALZ CALS  
Allow zero gas to enter the sample port  
at the rear of the analyzer.  
Allow span gas to enter the sample port  
at the rear of the analyzer.  
Wait until NOX STB  
Wait until NOX STB  
falls below 0.5 ppm.  
falls below 0.5 ppm.  
This may take several  
minutes.  
This may take several  
minutes.  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL CALZ CALS  
SETUP  
< TST TST > CAL CALZ CALS  
SETUP  
The ZERO and/or SPAN  
keys will appear at various  
points of this process.  
SAMPLE  
GAS TO CAL:NOX  
SAMPLE  
GAS TO CAL:NOX  
NOX O2  
ENTR EXIT  
It is not necessary to press  
them.  
NOX O2  
ENTR EXIT  
SAMPLE  
RANGE TO CAL:LOW  
SAMPLE  
RANGE TO CAL:LOW  
LOW HIGH  
ENTR EXIT  
Analyzers enters  
ZERO cal  
LOW HIGH  
ENTR EXIT  
Analyzers enters  
SPAN cal  
mode.  
ZERO CAL M NOX STB= XXX.X PPM NOX=XXX.X  
<TST TST> ZERO CONC EXIT  
mode.  
SPAN CAL M NOX STB= XXX.X PPM NOX=X.XXX  
<TST TST> ZERO SPAN CONC  
EXIT  
Record NOX, NO, NO2 or O2 zero point  
readings  
Record NOX, NO, NO2 or O2 span point  
readings  
SPAN CAL  
M
NOX STB= XXX.X PPM NOX=XXX.X  
CONC EXIT  
<TST TST> ZERO  
Return to  
SAMPLE  
Display  
199  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
5.7. CALIBRATION WITH REMOTE CONTACT CLOSURES  
Contact closures for controlling calibration and calibration checks are located on the rear  
panel CONTROL IN connector. Instructions for setup and use of these contacts can be  
found in Section 4.15.1.2.  
When the appropriate contacts are closed for at least 5 seconds, the instrument switches  
into zero, low span or high span mode and internal zero/span valves (if installed) will be  
automatically switched to the appropriate configuration. The remote calibration contact  
closures may be activated in any order. It is recommended that contact closures remain  
closed for at least 10 minutes to establish a reliable reading; the instrument will stay in  
the selected mode for as long as the contacts remain closed.  
If contact closures are used in conjunction with the analyzer’s AutoCal (Section 5.8)  
feature and the AutoCal attribute CALIBRATE is enabled, the T200H/M will not re-  
calibrate the analyzer until the contact is opened. At this point, the new calibration  
values will be recorded before the instrument returns to SAMPLE mode. If the AutoCal  
attribute CALIBRATE is disabled, the instrument will return to SAMPLE mode,  
leaving the instrument’s internal calibration variables unchanged.  
200  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
5.8. AUTOMATIC CALIBRATION (AUTOCAL)  
The AutoCal feature allows unattended, periodic operation of the zero/span valve  
options by using the analyzer’s internal time of day clock. The AutoCal feature is only  
available on the front panel menu (ACAL) if either the zero/span valve or the IZS  
option is installed.  
AutoCal operates by executing user-defined sequences to initiate the various calibration  
modes of the analyzer and to open and close valves appropriately. It is possible to  
program and run up to three separate sequences (SEQ1, SEQ2 and SEQ3). Each  
sequence can operate in one of three modes or be disabled:  
Table 5-2: AutoCal Modes  
MODE  
DISABLED  
ZERO  
BEHAVIOR  
Disables the sequence  
Causes the sequence to perform a zero calibration or check  
Causes the sequence to perform a zero calibration or check followed by a mid-span  
concentration calibration or check  
ZERO-LO1  
Causes the sequence to perform a zero calibration or check followed by a mid-span  
concentration calibration or check and finally a high-span point calibration or check.  
ZERO-LO-HI1  
Causes the sequence to perform a zero calibration or check followed by a high-span  
point calibration or check.  
ZERO-HI  
LO1  
Causes the sequence to perform a mid-span concentration calibration or check  
Causes the sequence to perform a mid-span concentration calibration or check  
followed by a high-span point calibration or check  
LO-HI1  
Causes the sequence to perform a high-span point calibration or check.  
Causes the sequence to do a zero-point calibration for the O2 sensor.  
HI  
O2 –ZERO2  
Causes the sequence to perform a zero calibration of the or check O2 sensor followed  
by a mid-span concentration calibration or check of the O2 sensor.  
O2 ZERO-SP2  
O2 SPAN2  
Causes the sequence to perform a zero calibration or check of the O2 sensor.  
1 Only applicable if analyzer is equipped with the second span point valve option (52)  
2 Only applicable if instrument is equipped wit the O2 sensor option (65(.  
Each mode has seven parameters to control operational details of the sequence:  
Table 5-3: AutoCal Attribute Setup Parameters  
PARAMETER  
BEHAVIOR  
TIMER  
Turns on the sequence timer  
ENABLED  
STARTING DATE Sequence will operate on Starting Date  
STARTING TIME Sequence will operate at Starting Time  
DELTA DAYS  
Number of days between each sequence trigger. If set to 7, for example, the AutoCal feature  
will be enabled once every week on the same day.  
DELTA TIME  
Incremental delay on each delta day that the sequence starts. If set to 0, the sequence will start  
at the same time each day. Delta Time is added to Delta Days for the total time between  
cycles.  
This parameter prevents the analyzer from being calibrated at the same daytime of each  
calibration day and prevents a lack of data for one particular daytime on the days of calibration.  
DURATION  
Duration of the each sequence step in minutes. This parameter needs to be set such that there  
is enough time for the concentration signal to stabilize. The STABIL parameter shows if the  
analyzer response is stable at the end of the calibration. This parameter is logged with  
calibration values in the DAS.  
CALIBRATE  
Enable to do a true, dynamic zero or span calibration; disable to do a calibration check only.  
RANGE TO CAL  
LOW calibrates the low range, HIGH calibrates the high range. Applies only to auto and remote  
range modes; this property is not available in single and independent range modes.  
201  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
The following example sets sequence #2 to carry out a zero-span calibration every other  
day starting at 14:00 on 01 January, 2003, lasting 30 minutes (15 for zero and 15 for  
span). This sequence will start 30 minutes later each day.  
Table 5-4: Example Auto-Cal Sequence  
MODE AND ATTRIBUTE  
SEQUENCE  
VALUE  
2
COMMENT  
Define sequence #2  
Select zero and span mode  
Enable the timer  
MODE  
ZERO-HI  
ON  
TIMER ENABLE  
STARTING DATE  
STARTING TIME  
DELTA DAYS  
01-JAN-03  
14:00  
2
Start on or after 01 January 2003  
First sequence starts at 14:00 (24-hour clock format)  
Repeat this sequence every 2 days  
Repeat sequence 30 minutes later each time  
(every 2 days and 30 minutes)  
DELTA TIME  
DURATION  
CALIBRATE  
00:30  
15.0  
ON  
Each sequence step will last 15 minutes (total of 30 minutes when  
using zero-span mode)  
The instrument will recalculate the slope and offset values for the  
NO and NOX channel at the end of the AutoCal sequence.  
Please the following suggestions for programming the AutoCal feature.  
The programmed Starting Time must be 5 minutes later than the real time clock.  
Avoid setting two or more sequences at the same time of the day. Any new  
sequence which is initiated from a timer, the COM ports, or the contact closures will  
override any sequence in progress.  
increments may eventually overlap.  
that two sequences with different daily  
If at any time an illegal entry is selected, (for example: Delta Days > 366) the ENTR  
button will disappear from the display.  
With CALIBRATE turned on, the state of the internal setup variables  
DYN_SPAN and DYN_ZERO is set to ON and the instrument will reset the slope  
and offset values for the NO and NOX response each time the AutoCal program  
runs. This continuous re-adjustment of calibration parameters can often mask  
subtle fault conditions in the analyzer. It is recommended that, if CALIBRATE is  
enabled, the analyzer’s test functions, slope and offset values be checked  
frequently to assure high quality and accurate data from the instrument.  
202  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Calibration Procedures  
To program the sample sequence shown above, follow this flow chart:  
SAMPLE  
RANGE = 500.0 PPB  
NOX=X.X  
SETUP C.4 STARTING TIME:14:15  
< TST TST > CAL CALZ CZLS  
SETUP  
<SET SET> EDIT  
EXIT  
EXIT  
SETUP C.4  
DELTA DAYS: 1  
SETUP X.X  
PRIMARY SETUP MENU  
<SET SET> EDIT  
CFG ACAL DAS RNGE PASS CLK MORE EXIT  
Toggle  
numbers to  
set  
SETUP X.X SEQ 1) DISABLED  
SETUP C.4 DELTA DAYS: 1  
number of  
days  
between  
procedures  
NEXT MODE  
EXIT  
EXIT  
0
0
2
ENTR EXIT  
SETUP X.X SEQ 2) DISABLED  
SETUP C.4 DELTA DAYS:2  
PREV NEXT MODE  
<SET SET> EDIT  
EXIT  
EXIT  
SETUP X.X MODE: DISABLED  
SETUP C.4 DELTA TIME00:00  
NEXT  
ENTR EXIT  
<SET SET> EDIT  
Toggle keys  
to set  
delay time for  
each iteration  
of the  
SETUP C.4 DELTA TIME: 00:00  
Toggle NEXT button until ...  
0
0
:3  
0
ENTR EXIT  
sequence:  
HH:MM  
(0 – 24:00)  
SETUP X.X MODE: ZERO–HI  
SETUP C.4 DELTA TIME:00:30  
PREV NEXT  
ENTR EXIT  
<SET SET> EDIT  
EXIT  
SETUP X.X SEQ 2) ZERO–HI, 1:00:00  
SETUP C.4 DURATION:15.0 MINUTES  
Toggle keys  
to set  
duration for  
each  
iteration of  
the  
sequence:  
PREV NEXT MODE SET  
EXIT  
EXIT  
<SET SET> EDIT  
EXIT  
ENTR EXIT  
EXIT  
Default  
value  
is ON  
SETUP X.X TIMER ENABLE: ON  
SETUP C.4 DURATION 15.0MINUTES  
SET> EDIT  
Set in  
3
0
.0  
Decimal  
minutes  
from  
SETUP X.X STARTING DATE: 01–JAN–02  
0.1 – 60.0  
SETUP C.4 DURATION:30.0 MINUTES  
<SET SET> EDIT  
EXIT  
<SET SET> EDIT  
Toggle to  
set day,  
month &  
year: DD-  
MON-YY  
SETUP X.X STARTING DATE: 01–JAN–02  
SETUP C.4  
CALIBRATE: OFF  
0
4
SEP  
0
3
ENTR EXIT  
<SET SET> EDIT  
EXIT  
ENTR EXIT  
EXIT  
Toggle key  
between  
Off and  
ON  
SETUP X.X STARTING DATE: 04–SEP–03  
SETUP C.4  
ON  
CALIBRATE: OFF  
<SET SET> EDIT  
EXIT  
EXIT  
SETUP C.4 STARTING DATE: 04–SEP–03  
SETUP C.4  
CALIBRATE: ON  
<SET SET> EDIT  
<SET SET> EDIT  
SETUP C.4 STARTING TIME:00:00  
Toggle to set  
time: HH:MM.  
This is a 24 hr  
clock. PM  
SETUP C.4 SEQ 2) ZERO–SPAN, 2:00:30  
EXIT returns  
to the SETUP  
Menu  
<SET SET> EDIT  
EXIT  
PREV NEXT MODE SET  
EXIT  
ho
u
r
s are 13-  
203  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Calibration Procedures  
Teledyne API - Model T200H/T200M Operation Manual  
5.9. CALIBRATION QUALITY ANALYSIS  
After completing one of the calibration procedures described above, it is important to  
evaluate the analyzer’s calibration SLOPE and OFFSET parameters. These values  
describe the linear response curve of the analyzer, separately for NO and NOX. The  
values for these terms, both individually and relative to each other, indicate the quality  
of the calibration. To perform this quality evaluation, you will need to record the values  
of the following test functions (Section 4.2.1 or Appendix A-3), all of which are  
automatically stored in the DAS channel CALDAT for data analysis, documentation  
and archival.  
NO OFFS  
NO SLOPE  
NOX OFFS  
NOX SLOPE  
Make sure that these parameters are within the limits listed in Table 5-5 and frequently  
compare them to those values on the Final Test and Checkout Sheet that came attached  
to your manual, which should not be significantly different. If they are, refer to the  
troubleshooting Section 7.  
Table 5-5: Calibration Data Quality Evaluation  
FUNCTION  
NOX SLOPE  
NO SLOPE  
NOX OFFS  
NO OFFS  
MINIMUM VALUE  
-0.700  
OPTIMUM VALUE  
1.000  
MAXIMUM VALUE  
1.300  
-0.700  
1.000  
1.300  
-20.0 mV  
-20.0 mV  
0.0 mV  
150.0 mV  
150.0 mV  
0.0 mV  
The default DAS configuration records all calibration values in channel CALDAT as  
well as all calibration check (zero and span) values in its internal memory. Up to 200  
data points are stored for up 4 years of data (on weekly calibration checks) and a lifetime  
history of monthly calibrations. Review these data to see if the zero and span responses  
change over time. These channels also store the STABIL value (standard deviation of  
NOX concentration) to evaluate if the analyzer response has properly leveled off during  
the calibration procedure. Finally, the CALDAT channel also stores the converter  
efficiency for review and documentation.  
204  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
6. INSTRUMENT MAINTENANCE  
Predictive diagnostic functions, including data acquisition records, failure warnings and  
test functions built into the analyzer, allow the user to determine when repairs are  
necessary without performing unnecessary, preventative maintenance procedures. There  
is, however, a minimal number of simple procedures that, when performed regularly,  
will ensure that the analyzer continues to operate accurately and reliably over its  
lifetime. Repair and troubleshooting procedures are covered in Section 7 of this manual.  
Pertinent information associated with the proper care, operation or  
maintenance of the analyzer or its parts.  
A span and zero calibration check must be performed following some of the  
maintenance procedures listed below. Refer to Section 5.  
WARNING  
Risk of electrical shock. Disconnect power before performing any  
operations that require entry into the interior of the analyzer.  
CAUTION  
The operations outlined in this Section must be performed by  
qualified maintenance personnel only.  
6.1. MAINTENANCE SCHEDULE  
Table 9-1 shows the recommended maintenance schedule for the T200H/M. Please that  
in certain environments with high levels of dust, humidity or pollutant levels some  
maintenance procedures may need to be performed more often than shown.  
205  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Table 6-1: T200H/M Preventive Maintenance Schedule  
CAL  
CHECK  
MANUAL  
SECTION  
ITEM  
ACTION  
FREQUENCY  
DATE PERFORMED  
1Particulate Filter  
Change filter  
Weekly  
No  
No  
--  
9.3.1  
Review and  
evaluate  
9.2; Appendix  
C
Verify Test Functions  
Zero/Span Check  
Weekly  
Weekly  
Evaluate offset and  
slope  
7.3, 7.5, 7.7  
1Zero/Span  
Calibration  
Zero and span  
calibration  
7.2, 7.4, 7.6,  
7.7, 7,8  
Every 3 months  
--  
Every 3 years or if  
conversion efficiency  
< 96%  
Yes if CE  
factor is  
used  
Replace converter  
& check efficiency  
NO2 Converter  
--  
3.5.3.2  
6.3.5  
1External Zero Air  
Scrubber (Optional)  
Exchange chemical  
Every 3 months  
Yes  
No  
1Reaction Cell  
Window  
Clean optics,  
Change O-rings  
Annually or as  
necessary  
1Air Inlet Filter Of  
Perma Pure Dryer  
Change particle  
filter  
Annually  
6.3.2  
Annually or after  
repairs involving  
pneumatics  
Yes on  
leaks, else  
no  
Pneumatic Sub-  
System  
Check for leaks in  
gas flow paths  
7.5.1, 7.5.2  
6.3.6  
1All Critical Flow  
Orifice O-Rings &  
Sintered Filters  
Replace  
Rebuild head  
Replace  
Annually  
Annually  
Annually  
Yes  
Yes  
No  
1, 2 Pump  
9.3.4  
Inline Exhaust  
Scrubber  
On PMT/ preamp  
changes & if  
0.7< SLOPE >1.3  
Pmt Sensor  
Hardware Calibration  
Low-level hardware  
calibration  
Yes  
11.6.5  
1 These Items are required to maintain full warranty, all other items are strongly recommended.  
2 A pump rebuild kit is available from Teledyne API Technical Support including all instructions and required parts (the pump part number is on the label of the pump itself).  
206  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Instrument Maintenance  
6.2. PREDICTIVE DIAGNOSTICS  
The analyzer’s test functions can be used to predict failures by looking at trends in their  
values. Initially it may be useful to compare the state of these test functions to the  
values measured on your instrument at the factory and recorded on the T200H/M Final  
Test and Validation Data Form (Teledyne API part number 04490, attached to the  
manual). Table 6-2 can be used as a basis for taking action as these values change with  
time. The internal data acquisition system (DAS) is a convenient way to record and  
track these changes. APICOM control software can be used to download and review  
these data even from remote locations (Section 4.15.2.8 describes APICOM).  
Table 6-2: Predictive Uses for Test Functions  
FUNCTION  
EXPECTED  
ACTUAL  
INTERPRETATION & ACTION  
Fluctuating  
Developing leak in pneumatic system. Check for leaks  
RCEL  
pressure  
Constant to  
within ± 0.5  
Pump performance is degrading. Replace pump head  
when pressure is above 10 in-Hg-A  
Slowly increasing  
Fluctuating  
Developing leak in pneumatic system. Check for leaks  
Flow path is clogging up. Replace orifice filters  
Constant within  
atmospheric  
changes  
SAMPLE  
pressure  
Slowly decreasing  
Developing leak in pneumatic system to vacuum  
(developing valve failure). Check for leaks  
Slowly increasing  
Slowly decreasing  
Constant to  
within ± 15  
Ozone Flow  
AZERO  
Flow path is clogging up. Replace orifice filters  
Developing AZERO valve failure. Replace valve  
PMT cooler failure. Check cooler, circuit, and power  
supplies  
Constant within  
±20 of check-out  
value  
Significantly  
increasing  
Developing light leak. Leak check.  
O3 air filter cartridge is exhausted. Change chemical  
Constant for  
constant  
concentrations  
Slowly decreasing  
signal for same  
concentration  
Converter efficiency may be degrading. Replace  
converter.  
NO2 CONC  
NO CONC  
Constant for  
constant  
concentration  
Drift of instrument response; clean RCEL window,  
change O3 air filter chemical.  
Decreasing over time  
6.3. MAINTENANCE PROCEDURES  
The following procedures need to be performed regularly as part of the standard  
maintenance of the Model T200H/M.  
6.3.1. CHANGING THE SAMPLE PARTICULATE FILTER  
The particulate filter should be inspected often for signs of plugging or excess dirt. It  
should be replaced according to the service interval in Table 9-1 even without obvious  
signs of dirt. Filters with 1 µm pore size can clog up while retaining a clean look. We  
recommend to handle the filter and the wetted surfaces of the filter housing with gloves  
and tweezers. We recommend not to touch any part of the housing, filter element, PTFE  
207  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Instrument Maintenance  
Teledyne API - Model T200H/T200M Operation Manual  
retaining ring, glass cover and the O-ring with bare hands as this may cause the pores to  
clog quicker and surfaces to become dirty due to possible oils from your hands.  
Figure 6-1:  
Sample Particulate Filter Assembly  
To change the filter according to the service interval in Table 9-1, follow this procedure:  
1. Turn OFF the pump to prevent drawing debris into the sample line.  
2. Remove the CE Mark locking screw in the center of the front panel and open the  
hinged front panel and unscrew the knurled retaining ring of the filter assembly.  
3. Carefully remove the retaining ring, glass window, PTFE O-ring and filter element.  
We recommend to clean the glass and O-rings at least once monthly, weekly in very  
polluted areas.  
4. Install a new filter element, carefully centering it in the bottom of the holder.  
5. Re-install the PTFE O-ring with the notches facing up (important!), the glass cover,  
then screw on the hold-down ring and hand-tighten the assembly. Inspect the  
(visible) seal between the edge of the glass window and the O-ring to assure proper  
gas tightness.  
6. To fulfill CE Mark safety requirements, the front panel locking screw must be  
installed at all times during operation of the analyzer.  
7. Re-start the analyzer.  
208  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Instrument Maintenance  
6.3.2. CHANGING THE O3 DRYER PARTICULATE FILTER  
The air for the O3 generator passes through a Perma Pure© dryer, which is equipped with  
a small particulate filter at its inlet. This filter prevents dust from entering the Perma  
Pure© dryer and degrading the dryer’s performance over time. To change the filter  
according to the service interval in Table 6-1:  
1. Check and write down the average RCEL pressure and the OZONE flow values.  
2. Turn off the analyzer, unplug the power cord and remove the cover.  
3. Unscrew the nut around the port of the filter using 5/8” and 9/16” wrenches and by  
holding the actual fitting body steady with a 7/16” wrench.  
Note  
RISK OF SIGNIFICANT LEAK  
Make sure to use proper wrenches and to not turn the fitting against the  
Perma Pure© dryer. This may loosen the inner tubing and cause large  
leaks.  
4. Take off the old filter element and replace it with a suitable equivalent  
(TAPI part# FL-3).  
Figure 6-2:  
Particle Filter on O3 Supply Air Dryer  
5. Holding the fitting steady with a 5/8” wrench, tighten the nut with your hands. If  
necessary use a second wrench but do not over-tighten the nut.  
6. Replace the cover, plug in the power cord and restart the analyzer.  
7. Check the O3 flow rate, it should be around 250 cm³/min ± 15. Check the RCEL  
pressure, it should be the same value as before.  
209  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Instrument Maintenance  
Teledyne API - Model T200H/T200M Operation Manual  
6.3.3. MAINTAINING THE EXTERNAL SAMPLE PUMP  
6.3.3.1. Rebuilding the Pump  
The sample pump head periodically wears out and must be replaced when the RCEL  
pressure exceeds 10 in-Hg-A (at sea level, adjust this value accordingly for elevated  
locations). A pump rebuild kit is available from the factory. The part number of the  
pump rebuild kit is located on the label of the pump itself. Instructions and diagrams are  
included in the kit.  
A flow and leak check after rebuilding the sample pump is recommended. A span check  
and re-calibration after this procedure is necessary as the response of the analyzer  
changes with the RCEL pressure.  
6.3.3.2. Changing the Inline Exhaust Scrubber  
CAUTION!  
Do NOT attempt to change the contents of the inline exhaust scrubber  
cartridge; change the entire cartridge.  
1. Through the SETUP>MORE>DIAG menu turn OFF the OZONE  
GEN OVERRIDE. Wait 10 minutes to allow pump to pull room air  
through scrubber before proceeding to step 2.  
2. Disconnect exhaust line from analyzer.  
3. Turn off (unplug) analyzer sample pump.  
4. Disconnect tubing from (NOx or charcoal) scrubber cartridge.  
5. Remove scrubber from system.  
6. Dispose of according to local laws.  
7. Install new scrubber into system.  
8. Reconnect tubing to scrubber and analyzer.  
9. Turn on pump.  
10. Through the SETUP menu (per Step 1 above) turn ON the OZONE  
GEN OVERRIDE.  
Note  
The inline exhaust scrubber is strictly intended for Nitric Acid and NO2  
only.  
210  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Instrument Maintenance  
6.3.4. CHANGING THE NO2 CONVERTER  
The NO2 converter is located in the center of the instrument, see Figure 3-5 for location,  
and Figure 6-3 for the assembly. The converter is designed for replacement of the  
cartridge only, the heater with built-in thermocouple can be reused.  
1. Turn off the analyzer power, remove the cover and allow the converter to cool.  
2. Remove the top lid of the converter as well as the top layers of the insulation until  
the converter cartridge can be seen.  
CAUTION  
THE CONVERTER OPERATES AT 315º C. SEVERE BURNS CAN RESULT IF THE  
ASSEMBLY IS NOT ALLOWED TO COOL. DO NOT HANDLE THE ASSEMBLY UNTIL  
IT IS AT ROOM TEMPERATURE. THIS MAY TAKE SEVERAL HOURS.  
3. Remove the tube fittings from the converter.  
4. Disconnect the power and the thermocouple of the converter. Unscrew the  
grounding clamp of the power leads with a Phillips-head screw driver.  
5. Remove the converter assembly (cartridge and band heater) from the can. Make a  
of the orientation of the tubes relative to the heater cartridge.  
6. Unscrew the band heater and loosen it, take out the old converter cartridge.  
7. Wrap the band heater around the new replacement cartridge and tighten the screws  
using a high-temperature anti-seize agent such as copper paste. Make sure to use  
proper alignment of the heater with respect to the converter tubes.  
8. Replace the converter assembly, route the cables through the holes in the can and  
reconnect them properly. Reconnect the grounding clamp around the heater leads  
for safe operation.  
9. Re-attach the tube fittings to the converter and replace the insulation and cover.  
211  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Instrument Maintenance  
Teledyne API - Model T200H/T200M Operation Manual  
10. Replace the instrument cover and power up the analyzer.  
11. Allow the converter to burn-in for 24 hours, then re-calibrate the instrument.  
6.3.5. CLEANING THE REACTION CELL  
The reaction cell should be cleaned whenever troubleshooting suggests. A dirty reaction  
cell will cause excessive noise, drifting zero or span values, low response or a  
combination of all. To clean the reaction cell, remove it from the sensor housing: refer  
to Section 7.6.5. for an overview of the entire sensor assembly. Use the following guide  
to clean the reaction cell:  
1. Turn off the instrument power and vacuum pump. Refer to Figure 6-4 for the  
following procedure.  
2. Disconnect the black 1/4" exhaust tube and the 1/8” sample and ozone air tubes  
from the reaction cell. Disconnect the heater/thermistor cable.  
3. Remove four screws holding the reaction cell to the PMT housing and lift the cell  
and manifold out as shown in the inset of Figure 6-4.  
212  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Instrument Maintenance  
Figure 6-4:  
Reaction Cell Assembly  
1. The reaction cell will separate into two halves, the stainless steel manifold assembly  
and the black plastic reaction cell with window, stainless steel cylinder and O-rings.  
2. The reaction cell (both plastic part and stainless steel cylinder) and optical glass  
filter should be cleaned with methanol and a clean tissue and dried thereafter.  
3. Usually it is not necessary to clean the ozone flow orifice since it is protected by a  
sintered filter. If tests show that cleaning is necessary, refer to Section 6.3.6 on  
how to perform maintenance on the critical flow orifice.  
4. Do not remove the sample and ozone nozzles. They are Teflon threaded and  
require a special tool for reassembly. If necessary, the manifold with nozzles  
attached can be cleaned in an ultrasonic bath.  
5. Reassemble in proper order and re-attach the reaction cell to the sensor housing.  
Reconnect pneumatics and heater connections, then re-attach the pneumatic  
sensor assembly and the cleaning procedure is complete.  
6. After cleaning the reaction cell, it is also recommended to exchange the ozone  
supply air filter chemical.  
7. After cleaning, the analyzer span response may drop 10 - 15% in the first 10 days  
as the reaction cell window conditions. This is normal and does not require another  
cleaning.  
213  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Instrument Maintenance  
Teledyne API - Model T200H/T200M Operation Manual  
6.3.6. CHANGING CRITICAL FLOW ORIFICES  
There are several critical flow orifices installed in the T200H/M, Figure 6-4 shows one  
of the two most important orifice assemblies, located on the reaction cell. Refer to  
Section 8.3.3 for a detailed description on functionality and locations. Despite the fact  
that these flow restrictors are protected by sintered stainless steel filters, they can, on  
occasion, clog up, particularly if the instrument is operated without sample filter or in an  
environment with very fine, sub-micron particle-size dust.  
The T200H/M introduces an orifice holder that makes changing the orifice very easy. In  
fact, it is recommended to keep spare orifice holder assemblies at hand to minimize  
downtime and swap orifices in a matter of a few minutes. Appendix B lists several  
complete spare part kits for this purpose.  
To replace a critical flow orifice, do the following:  
1. Turn off power to the instrument and vacuum pump. Remove the analyzer cover  
and locate the reaction cell (Figure 3-7 for location in chassis, and Figure 6-4 for  
exploded view of assembly).  
2. Unscrew the 1/8” sample and ozone air tubes from the reaction cell  
3. For orifices on the reaction cell (Figure 6-4): Unscrew the orifice holder with a 9/16”  
wrench. This part holds all components of the critical flow assembly as shown in  
Figure 6-5. Appendix B contains a list of spare part numbers.  
4. For orifices in the vacuum manifold: the assembly is similar to the one shown in  
Figure 6-5, but without the orifice holder, part number 04090, and bottom O-ring  
OR34 and with an NPT fitting in place of the FT 10 fitting. After taking off the  
connecting tube, unscrew the NPT fitting.  
Figure 6-5:  
Critical Flow Orifice Assembly  
5. Take out the components of the assembly: a spring, a sintered filter, two O-rings  
and the orifice. For the vacuum manifold only, you may need to use a scribe or  
pressure from the vacuum port to get the parts out of the manifold.  
214  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Instrument Maintenance  
6. Discard the two O-rings and the sintered filter and the critical flow orifice.  
7. Re-assemble the flow control assembly with new the parts (see Appendix B for part  
number or replacement kit) as shown in Figure 6-5 and re-connect them to the  
reaction cell manifold or the vacuum manifold.  
8. Reconnect all tubing, power up the analyzer and pump and - after a warm-up period  
of 30 minutes, carry out a leak test as described in Section 7.5.  
6.3.7. CHECKING FOR LIGHT LEAKS  
When re-assembled or operated improperly, the T200H/M can develop small leaks  
around the PMT, which let stray light from the analyzer surrounding into the PMT  
housing. To find such light leaks, follow the below procedures. CAUTION: this  
procedure can only be carried out with the analyzer running and its cover removed. This  
procedure should only be carried out by qualified personnel.  
1. Scroll the TEST functions to PMT.  
2. Supply zero gas to the analyzer.  
3. With the instrument still running, carefully remove the analyzer cover. Take extra  
care not to touch any of the inside wiring with the metal cover or your body. Do not  
drop screws or tools into a running analyzer!  
4. Shine a powerful flashlight or portable incandescent light at the inlet and outlet  
fitting and at all of the joints of the reaction cell as well as around the PMT housing.  
The PMT value should not respond to the light, the PMT signal should remain  
steady within its usually noise.  
5. If there is a PMT response to the external light, symmetrically tighten the reaction  
cell mounting screws or replace the 1/4” vacuum tubing with new, black PTFE  
tubing (this tubing will fade with time and become transparent). Often, light leaks  
are also caused by O-rings being left out of the assembly.  
6. Carefully replace the analyzer cover.  
7. If tubing was changed, carry out a leak check (Section 7.5).  
215  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Instrument Maintenance  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
216  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7. TROUBLESHOOTING & REPAIR  
This section contains a variety of methods for identifying and solving performance  
problems with the analyzer.  
CAUTION  
The operations outlined in this Section must be performed by qualified  
maintenance personnel only.  
WARNING  
Risk of electrical shock. Some operations need to be carried out with  
the analyzer open and running. Exercise caution to avoid electrical  
shocks and electrostatic or mechanical damage to the analyzer. Do not  
drop tools into the analyzer or leave those after your procedures. Do  
not shorten or touch electric connections with metallic tools while  
operating inside the analyzer. Use common sense when operating  
inside a running analyzer.  
7.1. GENERAL TROUBLESHOOTING  
The analyzer has been designed so that problems can be rapidly detected, evaluated and  
repaired. During operation, the analyzer continuously performs diagnostic tests and  
provides the ability to evaluate its key operating parameters without disturbing  
monitoring operations.  
A systematic approach to troubleshooting will generally consist of the following five  
steps:  
any warning messages and take corrective action as necessary.  
Examine the values of all TEST functions and compare them to factory values. any  
major deviations from the factory values and take corrective action.  
Use the internal electronic status LED’s to determine whether the electronic  
communication channels are operating properly. Verify that the DC power supplies  
are operating properly by checking the voltage test points on the relay board. that  
the analyzer’s DC power wiring is color-coded and these colors match the color of  
the corresponding test points on the relay board.  
Suspect a leak first! Technical Support data indicate that the majority of all problems  
are eventually traced to leaks in the pneumatic system of the analyzer (including the  
external pump), the source of zero air or span gases or the sample gas delivery  
system. Check for gas flow problems such as clogged or blocked internal/external  
gas lines, damaged seals, punctured gas lines, a damaged pump diaphragm, etc.  
Follow the procedures defined in Section 3.6.3. to confirm that the analyzer’s vital  
functions are working (power supplies, CPU, relay board, PMT cooler, etc.). See  
Figure 3-5 for general layout of components and sub-assemblies in the analyzer.  
See the wiring interconnect diagram and interconnect list in Appendix D.  
217  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.1.1. FAULT DIAGNOSIS WITH WARNING MESSAGES  
The most common and/or serious instrument failures will result in a warning message  
being displayed on the front panel. Table 4-3 lists warning messages, along with their  
meaning and recommended corrective action.  
It should be d that if more than two or three warning messages occur at the same time, it  
is often an indication that some fundamental analyzer sub-system (power supply, relay  
board, motherboard) has failed rather than an indication of the specific failures  
referenced by the warnings. In this case, a combined-error analysis needs to be  
performed.  
The analyzer will alert the user that a Warning message is active by flashing the red  
FAULT LED, displaying the Warning message in the Param field along with the CLR  
button (press to clear Warning message). The MSG button displays if there is more than  
one warning in queue or if you are in the TEST menu and have not yet cleared the  
message. The following display/touch screen examples provide an illustration of each:  
The analyzer also issues an alert via the serial port(s).  
218  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
To view or clear a warning messages press:  
Troubleshooting & Repair  
SAMPLE  
SYSTEM RESET  
CAL  
NOX = XXX.X  
CLR SETUP  
<TST TST> buttonss replaced  
with TEST button. Pressing TEST  
suppresss warning messages.  
TEST  
MSG  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
< TST TST > CAL  
MSG  
CLR SETUP  
MSG indicates that warning  
messages are active.  
SAMPLE  
SYSTEM RESET  
NOX = XXX.X  
If warning messages reappear,  
perform a combined error analysis  
until the problem is resolved. Do  
not repeatedly clear warnings  
without corrective action.  
< TST TST > CAL  
MSG  
CLR SETUP  
Press CLR to clear the current  
warning message. If more than  
one warning is active, the next  
message will take its place.  
Figure 7-1:  
Viewing and Clearing Warning Messages  
7.1.2. FAULT DIAGNOSIS WITH TEST FUNCTIONS  
Besides being useful as predictive diagnostic tools, the TEST functions, viewable from  
the front panel, can be used to isolate and identify many operational problems when  
combined with a thorough understanding of the analyzer’s theory of operation (Section  
8). We recommend using the APICOM remote control program to download, graph and  
archive TEST data for analysis and long-term monitoring of diagnostic data ( Section  
The acceptable ranges for these test functions are listed in Appendix A-3. The actual  
values for these test functions on checkout at the factory were also listed in the Final  
Test and Validation Data Sheet, which was shipped with the instrument. Values outside  
the acceptable ranges indicate a failure of one or more of the analyzer’s subsystems.  
Functions with values that are within the acceptable range but have significantly  
changed from the measurements recorded on the factory data sheet may also indicate a  
failure or a maintenance item. A problem report worksheet has been provided in  
Appendix C (Teledyne API part number 04503) to assist in recording the value of these  
test functions. The following table contains some of the more common causes for these  
values to be out of range.  
219  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Table 7-1: Test Functions - Possible Causes for Out-Of-Range Values  
TEST FUNCTION  
INDICATED FAILURE(S)  
NOX STB  
SAMPLE FL  
OZONE FL  
PMT  
Unstable concentrations; leaks  
Leaks; clogged critical flow orifice  
Leaks; clogged critical flow orifice  
Calibration off; HVPS problem; no flow (leaks)  
NORM PMT  
AZERO  
AutoZero too high  
Leaks; malfunctioning NO/NOx or AutoZero valve; O3 air filter cartridge exhausted  
HVPS broken; calibration off; preamp board circuit problems  
Malfunctioning heater; relay board communication (I2C bus); relay burnt out  
Environment out of temperature operating range; broken thermistor  
TEC cooling circuit broken; relay board communication (I2C bus); 12 V power supply  
HVPS  
RCELL TEMP  
BOX TEMP  
PMT TEMP  
IZS TEMP (OPTION) Malfunctioning heater; relay board communication (I2C bus); relay burnt out  
Malfunctioning heater; disconnected or broken thermocouple; relay board communication  
MOLY TEMP  
(I2C bus); relay burnt out; incorrect AC voltage configuration  
RCEL (PRESSURE)  
SAMP (PRESSURE)  
Leak; malfunctioning valve; malfunctioning pump; clogged flow orifices  
Leak; malfunctioning valve; malfunctioning pump; clogged flow orifices; sample inlet  
overpressure;  
HVPS out of range; low-level (hardware) calibration needs adjustment; span gas  
concentration incorrect; leaks  
NOX SLOPE  
NOX OFF  
NO SLOPE  
NO OFFS  
Incorrect span gas concentration; low-level calibration off  
HVPS out of range; low-level calibration off; span gas concentration incorrect; leaks  
Incorrect span gas concentration; low-level calibration off  
TIME OF DAY  
Internal clock drifting; move across time zones; daylight savings time?  
7.1.3. USING THE DIAGNOSTIC SIGNAL I/O FUNCTION  
The signal I/O parameters found under the diagnostics (DIAG) menu combined with a  
thorough understanding of the instrument’s theory of operation (Section 8) are useful for  
troubleshooting in three ways:  
The technician can view the raw, unprocessed signal level of the analyzer’s critical  
inputs and outputs.  
All of the components and functions that are normally under instrument control can  
be manually changed.  
Analog and digital output signals can be manually controlled.  
This allows to systematically observe the effect of these functions on the operation of  
the analyzer. Figure 7-2 shows an example of how to use the signal I/O menu to view  
the raw voltage of an input signal or to control the state of an output voltage or control  
signal. The specific parameter will vary depending on the situation.  
220  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
SAMPLE  
A1:NXCNC1=100PPM  
CAL  
NOX=XXX.X  
< TST TST >  
SETUP  
SETUP X.X  
PRIMARY SETUP MENU  
CFG DAS RNGE PASS CLK MORE  
EXIT  
SETUP X.X  
SECONDARY SETUP MENU  
COMM VARS DIAG ALRM  
EXIT  
ENTR EXIT  
EXIT  
SETUP X.X  
ENTER PASSWORD:818  
8
1
8
DIAG  
SIGNAL I/O  
NEXT  
ENTR  
DIAG I/O  
0) EXT_ZERO_CAL =OFF  
NEXT JUMP  
ENTR EXIT  
DIAG I/O  
0
JUMP TO:0  
0
7
ENTR EXIT  
Enter 07 to Jump  
to Signal 7:  
(CAL_LED)  
DIAG I/O  
0
JUMP TO:7  
ENTR EXIT  
DIAG AIO  
7) CAL LED=OFF  
PREV NEXT JUMP  
OFF PRNT EXIT  
Toggle to turn the  
CAL LED ON/OFF  
Figure 7-2:  
Switching Signal I/O Functions  
221  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.1.4. STATUS LED’S  
Several color-coded, light-emitting diodes (LED) are located inside the instrument to  
determine if the analyzer’s CPU, I2C communications bus and the relay board are  
functioning properly.  
7.1.4.1. Motherboard Status Indicator (Watchdog)  
A red LED labeled DS5 in the upper portion of the motherboard (Figure 11-3), just to  
the right of the CPU board, flashes when the CPU is running the main program. After  
power-up, DS5 should flash on and off about once per second. If characters are visible  
on the front panel display but DS5 does not flash then the program files have become  
corrupted. Contact Technical Support because it may be possible to recover operation of  
the analyzer. If 30 - 60 seconds after a restart neither DS5 is flashing nor any characters  
are visible on the front panel display, the firmware may be corrupted or the CPU may be  
defective. If DS5 is permanently off or permanently on, the CPU board is likely locked  
up and the analyzer should not respond (either with locked-up or dark front panel).  
Motherboard  
CPU Status LED  
Figure 7-3:  
Motherboard Watchdog Status Indicator  
7.1.4.2. CPU Status Indicator  
The CPU board has two red LEDs, the lower of which is the watchdog timer (the device  
that pulses the motherboard watchdog). This LED is labeled LED2 and blinks about  
twice per second (twice as fast as the motherboard LED) when operating normally.  
LED1 above LED2 should always be on. However, both CPU LEDs only indicate if the  
CPU is powered up properly and generally working. The lower LED can continue to  
blink even if the CPU or firmware are locked up.  
222  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.1.4.3. Relay Board and Status LEDs  
The most important status LED on the relay board is the red I2C Bus watch-dog LED,  
labeled D1, which indicates the health of the I2C communications bus. This LED is the  
left-most in LED row 1 in the center of the relay board when looking at the electronic  
components. If D1 is blinking, then the other LEDs can be used in conjunction with the  
DIAG menu I/O functions to test hardware functionality by manually switching devices  
on and off and watching the corresponding LED go on or off.  
Figure 7-4 illustrates the relay board layout including the two rows of LEDs,  
Table 11-2 lists the individual LED functions and the menu tree below shows how to  
access the manual control of the I/O functions. that only some or the LEDs may be  
functional in your analyzer model; the relay board layout is conceptualized for spare,  
future functionality and is also common to many of the E-series analyzers.  
Status LED’s  
(D2 through D16)  
Thermocouple  
Signal Output  
Watchdog  
Status LED (D1)  
DC Power Supply  
Test Points  
(JP5)  
Thermocouple  
Configuration  
Jumpers  
I2C Connector  
Power  
(J15)  
TC1 Input  
Connection  
for DC  
(J16)  
TC2 Input  
Heaters  
Shutter Control  
Connector  
(T100 Series Only)  
(JP7)  
Pump AC  
Configuration  
Jumper  
Valve Control  
Drivers  
Pump Power  
Output  
Valve Option  
Control  
Connector  
AC Power  
IN  
AC Heater  
Power Output  
DC Power  
Distribution  
Connectors  
Solid State AC  
Power Relays  
(Not Present on  
P/N 45230100)  
(JP6)  
Main AC Heater  
Configuration Jumpers  
(JP2)  
AC Configuration Jumpers  
for Optional IZS Valve  
Heaters & O2Sensors  
AC Power Output for  
Optional O2 sensors  
Figure 7-4:  
Relay Board PCA  
223  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Relay Board Status LEDs  
Table 7-2:  
FUNCTION  
FAULT  
LED  
COLOR  
INDICATED FAILURE(S)  
STATUS  
LED ROW 1  
Failed or halted CPU; faulty motherboard,  
keyboard, relay board; wiring between  
motherboard, keyboard or relay board; +5  
V power supply  
Watchdog Circuit; I2C bus  
operation.  
Continuously  
ON or OFF  
D1  
Red  
Continuously  
ON or OFF  
D2  
D3  
Yellow  
Yellow  
Yellow  
Green  
Green  
Green  
Green  
Relay 0 - reaction cell heater  
Relay 1 - NO2 converter heater  
Relay 2 - manifold heater  
Heater broken, thermistor broken  
Heater broken, thermocouple broken  
Heater broken, thermistor broken  
Continuously  
ON or OFF  
Continuously  
ON or OFF  
D4  
Continuously  
ON or OFF  
Valve broken or stuck, valve driver chip  
broken  
D7 1  
D8 1  
D9  
Valve 0 - zero/span valve status  
Valve 1 - sample/cal valve status  
Valve 2 - auto-zero valve status  
Valve 3 - NO/NOx valve status  
Continuously  
ON or OFF  
Valve broken or stuck, valve driver chip  
broken  
Continuously  
ON or OFF  
Valve broken or stuck, valve driver chip  
broken  
Continuously  
ON or OFF  
Valve broken or stuck, valve driver chip  
broken  
D10  
LED ROW 2  
D6  
Relay 4 – (O2 sensor heater  
T200H/M)  
Yellow  
Green  
N/A  
N/A  
N/A  
N/A  
D11- 16  
Spare  
1 Only active for instruments with Z/S valve options installed  
To enter the signal I/O test mode to manually control I/O functions such as valves and  
heaters, press the following touchscreen button sequence while observing the relay  
board LEDs:  
SAMPLE  
A1:NXCNC1=100PPM  
NOX=XXX.X  
DIAG I/O  
0) EXT_ZERO_CAL =OFF  
< TST TST >  
CAL  
SETUP  
NEXT JUMP  
ENTR EXIT  
SETUP X.X  
PRIMARY SETUP MENU  
DIAG I/O  
0
JUMP TO:0  
CFG DAS RNGE PASS CLK MORE  
EXIT  
0
ENTR EXIT  
Enter 07 to Jump  
to Signal 7:  
(CAL_LED)  
SETUP X.X  
SECONDARY SETUP MENU  
DIAG I/O  
0
JUMP TO:25  
COMM VARS DIAG ALRM  
EXIT  
ENTR EXIT  
EXIT  
7
ENTR EXIT  
SETUP X.X  
ENTER PASSWORD:818  
8
1
8
DIAG AIO  
07) CAL_LED=ON  
PREV NEXT JUMP  
ON PRNT EXIT  
DIAG  
SIGNAL I/O  
See Menu Tree  
A-6 in Appendix  
A.1 for a list of  
I/O Signals  
NEXT  
ENTR  
Toggle to turn the  
CAL LED ON/OFF  
224  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.2. GAS FLOW PROBLEMS  
The T200H/M has two main flow paths, the sample flow and the flow of the ozone  
supply air. With zero/span valve option installed, there is a third (zero air) and a fourth  
(span gas) flow path, but either one of those is only controlled by critical flow orifices  
and not displayed on the front panel or stored to the DAS. The full flow diagrams of the  
standard configuration and with options installed (Appendix D, document 04574) help in  
trouble-shooting flow problems. In general, flow problems can be divided into three  
categories:  
Flow is too high  
Flow is greater than zero, but is too low, and/or unstable  
Flow is zero (no flow)  
When troubleshooting flow problems, it is essential to confirm the actual flow rate  
without relying on the analyzer’s flow display. The use of an independent, external flow  
meter to perform a flow check as described in Section 4.13.7.5 is essential.  
The flow diagrams found in a variety locations within this manual depicting the T200H  
and T200M in their standard configuration and with options installed can help in  
trouble-shooting flow problems. For your convenience they are collected here in  
Sections 11.2.1 (T200H) and 11.2.2 (T200M)  
225  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.2.1. T200H INTERNAL GAS FLOW DIAGRAMS  
Figure 7-5:  
T200H – Basic Internal Gas Flow  
226  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
Figure 7-6:  
T200H – Internal Gas Flow with Ambient Zero Span, OPT 50A  
227  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 7-7:  
T200H – Internal Gas Flow with O2 Sensor, OPT 65A  
228  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.2.2. T200M INTERNAL GAS FLOW DIAGRAMS  
NO/NOX  
VALVE  
NO  
COM  
NC  
VACUUM  
PRESSURE  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
AUTOZERO  
VALVE  
COM  
NC  
NO  
REACTION  
CELL  
PMT  
RMAPURE  
YER  
Figure 7-8:  
T200M – Basic Internal Gas Flow  
229  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 7-9:  
T200M – Internal Gas Flow with Ambient Zero Span, OPT 50A  
230  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
NO/NOX  
VALVE  
NO  
COM  
NC  
VACUUM  
PRESSURE  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
AUTOZERO  
VALVE  
COM  
NO  
NC  
REACTION  
CELL  
PMT  
RMAPURE  
YER  
Figure 7-10:  
T200M – Internal Gas Flow with O2 Sensor, OPT 65A  
7.2.3. ZERO OR LOW FLOW PROBLEMS  
7.2.3.1. Sample Flow is Zero or Low  
The T200H/M does not actually measure the sample flow but rather calculates it from a  
differential pressure between sample and vacuum manifold. On flow failure, the unit  
will display a SAMPLE FLOW WARNING on the front panel display and the  
respective test function reports XXXX instead of a value “0”. This message applies to  
both a flow rate of zero as well as a flow that is outside the standard range (200-600  
cm³/min; 300-700 cm³/min with O2 option installed).  
If the analyzer displays XXXX for the sample flow, confirm that the external sample  
pump is operating and configured for the proper AC voltage. Whereas the T200H/M  
can be internally configured for two different power regimes (100-120 V and 220-240  
V, either 50 or 60 Hz), the external pump is physically different for each of three power  
regimes (100 V / 50 Hz, 115 V / 60 Hz and 230 V / 50 Hz). If the pump is not running,  
use an AC Voltmeter to make sure that the pump is supplied with the proper AC power.  
If AC power is supplied properly, but the pump is not running, replace the pump.  
Note  
Sample and vacuum pressures mentioned in this Section refer to  
operation of the analyzer at sea level. Pressure values need to be  
adjusted for elevated locations, as the ambient pressure decreases by  
about 1 in-Hg per 300 m / 1000 ft.  
231  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
If the pump is operating but the unit reports a XXXX gas flow, do the following:  
Check for actual sample flow. To check the actual sample flow, disconnect the  
sample tube from the sample inlet on the rear panel of the instrument. Make sure  
that the unit is in basic SAMPLE mode. Place a finger over the inlet and see if it  
gets sucked in by the vacuum or, more properly, use a flow meter to measure the  
actual flow. If there is proper flow (see Table 10-3 for flow rates), contact Technical  
Support. If there is no flow or low flow, continue with the next step.  
Check pressures. Check that the sample pressure is at or around 28 in-Hg-A at sea  
level (adjust as necessary when in elevated location, the pressure should be about  
1” below ambient atmospheric pressure) and that the RCEL pressure is below 10 in-  
Hg-A. The T200H/M will calculate a sample flow up to about 14 in-Hg-A RCEL  
pressure but a good pump should always provide less than 10 in.  
If both pressures are the same and around atmospheric pressure, the pump does  
not operate properly or is not connected properly. The instrument does not get any  
vacuum.  
If both pressures are about the same and low (probably under 10 in-Hg-A, or ~20”  
on sample and 15” on vacuum), there is a cross-leak between sample flow path and  
vacuum, most likely through the Perma Pure dryer flow paths. See troubleshooting  
the Perma Pure dryer later in this Section.  
If the sample and vacuum pressures are around their nominal values (28 and  
<10 in-Hg-A, respectively) and the flow still displays XXXX, carry out a leak check  
as described in Section 7.5.  
If gas flows through the instrument during the above tests but goes to zero or is low  
when it is connected to zero air or span gas, the flow problem is not internal to the  
analyzer but likely caused by the gas source such as calibrators/generators, empty  
gas tanks, clogged valves, regulators and gas lines.  
If an Zero/Span valve option is installed in the instrument, press CALZ and CALS.  
If the sample flow increases, suspect a bad Sample/Cal valve.  
If none of these suggestions help, carry out a detailed leak check of the analyzer as  
described in Section 7.5.2.  
7.2.3.2. Ozone Flow is Zero or Low  
If there is zero or a low (<200 cm³/min) ozone flow, the unit displays an OZONE  
FLOW WARNING message on the front panel and a value between 0.0 and 200  
cm³/min for the actual ozone flow as measured by the internal mass flow meter. In this  
case, carry out the following steps:  
Check the actual flow rate through the ozone dryer by using an external flow meter  
to the inlet port of the dryer. This inlet port is inside the analyzer at the end of the  
plastic particle filter (Section 6.3.2 for illustration). If there is nominal flow (see  
Table 10-3 for flow rates), consult Technical Support as there is a problem with the  
firmware or electronics.  
If the actual flow is low or zero, check if the pump operates properly. The RCEL  
pressure should be below 10 in-Hg-A at sea level. If it is above 10”, rebuild the  
pump (Section 6.3.3). Check the spare parts list in Appendix B on how to order  
pump rebuild kits.  
Check if the particle filter is clogged. Briefly remove the particle filter to see if this  
improves the flow. Be very cautious about handling the Perma Pure dryer fittings -  
refer to Section 6.3.2 on proper handling instructions. If the filter is clogged, replace  
it with a new unit. If taking off this filter does not solve the problem, continue to the  
232  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
next step. Do not leave the Perma Pure dryer without filter for more than a few  
seconds, as you may draw in dust, which will reduce the performance of the dryer.  
A leak between the flow meter and the reaction cell (where the flow-determining  
critical orifice is located) may cause a low flow (the system draws in ambient air  
through a leak after the flow meter). Check for leaks as described in Section 7.5.  
Repair the leaking fitting, line or valve and re-check.  
The most likely cause for zero or low ozone flow is a clogged critical flow orifice or  
sintered filter within the orifice assembly. The orifice that sets the ozone flow is  
located on the reaction cell. Check the actual ozone flow by disconnecting the tube  
from the reaction cell and measuring the flow going into the cell. If this flow is  
correct (see Table 10-3 for flow rates), the orifice works properly. If this flow is low,  
replace or clean the orifice. The orifice holder assembly allows a quick and easy  
replacement of the orifice, refer to Section 6.3.6 on how to do this. Appendix B lists  
a spare part kit with a complete orifice assembly that allows a quick replacement  
with minimum instrument down-time. The clogged orifice can then be cleaned while  
the instrument is running with the replacement.  
7.2.4. HIGH FLOW  
Flows that are significantly higher than the allowed operating range (typically ±10-11%  
of the nominal flow) should not occur in the T200H/M unless a pressurized sample, zero  
or span gas is supplied to the inlet ports. Ensure to vent excess pressure and flow just  
before the analyzer inlet ports.  
When supplying sample, zero or span gas at ambient pressure, a high flow would  
indicate that one or more of the critical flow orifices are physically broken (very  
unlikely case), allowing more than nominal flow, or were replaced with an orifice of  
wrong specifications. If the flows are within 15% higher than normal, we recommend to  
re-calibrate the flow electronically using the procedure in Section 4.13.7.5, followed by  
a regular review of these flows over time to see if the new setting is retained properly.  
7.2.5. SAMPLE FLOW IS ZERO OR LOW BUT ANALYZER REPORTS  
CORRECT FLOW  
that the T200H/M analyzer can report a correct flow rate even if there is no or a low  
actual sample flow through the reaction cell. The sample flow on the T200H/M is only  
calculated from the sample pressure and critical flow condition is verified from the  
difference between sample pressure and vacuum pressure. If the critical flow orifice is  
partially or completely clogged, both the sample and vacuum pressures are still within  
their nominal ranges (the pump keeps pumping, the sample port is open to the  
atmosphere), but there is no flow possible through the reaction cell.  
Although measuring the actual flow is the best method, in most cases, this fault can also  
be diagnosed by evaluating the two pressure values. Since there is no longer any flow,  
the sample pressure should be equal to ambient pressure, which is about 1 in-Hg-A  
higher than the sample pressure under normal operation. The reaction cell pressure, on  
the other hand, is significantly lower than under normal operation, because the pump no  
longer has to remove the sample gas and evacuates the reaction cell much better. Those  
two indicators, taken together with a zero or low actual flow, indicate a clogged sample  
orifice.  
The T200H/M features a orifice holder, which makes switching sample and ozone flow  
orifices very easy, refer to Section 6.3.6 on how to change the sample orifices and  
Appendix B for part numbers of these assemblies. Again, monitoring the pressures and  
233  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
flows regularly will reveal such problems, because the pressures would slowly or  
suddenly change from their nominal, mean values. Teledyne API recommends to  
review all test data once per week and to do an exhaustive data analysis for test and  
concentration values once per month, paying particular attention to sudden or gradual  
changes in all parameters that are supposed to remain constant, such as the flow rates.  
7.3. CALIBRATION PROBLEMS  
7.3.1. NEGATIVE CONCENTRATIONS  
Negative concentration values can be caused by any of several reasons:  
A slight, negative signal is normal when the analyzer is operating under zero gas  
and the signal is drifting around the zero calibration point. This is caused by the  
analyzer’s zero noise and may cause reported concentrations to be negative for a  
few seconds at a time down to -0.2 ppm, but should randomly alternate with  
similarly high, positive values. The T200H/M has a built-in Auto-zero function,  
which should take care of most of these deviations from zero, but may yield a small,  
residual, negative value. If larger, negative values persist continuously, check if the  
Auto-zero function was accidentally turned off using the remote variables in  
Appendix A-2. In this case, the sensitivity of the analyzer may be drifting negative.  
A corruption of the Auto-zero filter may also cause negative concentrations. If a  
short, high noise value was detected during the AutoZero cycle, that higher reading  
will alter the Auto-zero filter value. As the value of the Auto-zero filter is subtracted  
from the current PMT response, it will produce a negative concentration reading.  
High AutoZero readings can be caused by:  
a leaking or stuck AutoZero valve (replace the valve),  
by an electronic fault in the preamplifier causing it to have a voltage on the PMT  
output pin during the AutoZero cycle (replace the preamplifier),  
by a reaction cell contamination causing high background (>40 mV) PMT  
readings (clean the reaction cell),  
by a broken PMT temperature control circuit, allowing high zero offset (repair the  
faulty PMT cooler). After fixing the cause of a high Auto-zero filter reading, the  
T200H/M will take 15 minutes for the filter to clear itself, or  
by an exhausted chemical in the ozone scrubber cartridge (Section 6.3.4).  
Miscalibration is the most likely explanation for negative concentration values. If the  
zero air contained some NO or NO2 gas (contaminated zero air or a worn-out zero  
air scrubber) and the analyzer was calibrated to that concentration as “zero”, the  
analyzer may report negative values when measuring air that contains little or no  
NOx. The same problem occurs, if the analyzer was zero-calibrated using zero gas  
that is contaminated with ambient air or span gas (cross-port leaks or leaks in  
supply tubing or user not waiting long enough to flush pneumatic systems).  
If the response offset test functions for NO (NO OFFS) or NOX (NOX OFFS) are  
greater than 150 mV, a reaction cell contamination is indicated. Clean the reaction  
cell according to Section 6.3.5.  
7.3.2. NO RESPONSE  
If the instrument shows no response (display value is near zero) even though sample gas  
is supplied properly and the instrument seems to perform correctly.  
234  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
Check if the ozone generator is turned on. Usually, the analyzer issues a warning  
whenever the ozone generator is turned off. Go to SETUP-MORE-DIAG-ENTR,  
then scroll to the OZONE GEN OVERRIDE and see if it shows ON. If it shows  
OFF, turn it ON and EXIT the DIAG menu. If this is done and the ozone flow is  
correct, the analyzer should be properly supplied with ozone unless the generator  
itself is broken. A more detailed description of the ozone generator subsystem  
checks are in Section 11.5.17.  
Confirm the lack of response by supplying NO or NO2 span gas of about 80% of the  
range value to the analyzer.  
Check the sample flow and ozone flow rates for proper values.  
Check for disconnected cables to the sensor module.  
Carry out an electrical test with the ELECTRICAL TEST procedure in the  
diagnostics menu, see Section 4.13.7.3. If this test produces a concentration  
reading, the analyzer’s electronic signal path is correct.  
Carry out an optical test using the OPTIC TEST procedure in the diagnostics menu,  
see Section 4.13.7.2. If this test results in a concentration signal, then the PMT  
sensor and the electronic signal path are operating properly. If the T200H/M  
passes both ETEST and OTEST, the instrument is capable of detecting light and  
processing the signal to produce a reading. Therefore, the problem must be in the  
pneumatics or the ozone generator.  
If NO2 signal is zero while NO signal is correct, check the NO/NOX valve and the  
NO2 converter for proper operation.  
7.3.3. UNSTABLE ZERO AND SPAN  
Leaks in the T200H/M or in the external gas supply and vacuum systems are the most  
common source of unstable and non-repeatable concentration readings.  
Check for leaks in the pneumatic systems as described in Section 7.5. Consider  
pneumatic components in the gas delivery system outside the T200H/M such as a  
change in zero air source (ambient air leaking into zero air line or a worn-out zero  
air scrubber) or a change in the span gas concentration due to zero air or ambient  
air leaking into the span gas line.  
Once the instrument passes a leak check, do a flow check (this Section) to make  
sure that the instrument is supplied with adequate sample and ozone air.  
Confirm the sample pressure, sample temperature, and sample flow readings are  
correct and steady.  
Verify that the sample filter element is clean and does not need to be replaced.  
7.3.4. INABILITY TO SPAN - NO SPAN BUTTON  
In general, the T200H/M will not display certain keyboard choices whenever the actual  
value of a parameter is outside of the expected range for that parameter. If the  
calibration menu does not show a SPAN key when carrying out a span calibration, the  
actual concentration must be outside of the range of the expected span gas concentration,  
which can have several reasons.  
Verify that the expected concentration is set properly to the actual span gas  
concentration in the CONC sub-menu.  
235  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Confirm that the NOx span gas source is accurate. This can be done by comparing  
the source with another calibrated analyzer, or by having the NOx source verified by  
an independent traceable photometer.  
Check for leaks in the pneumatic systems as described in Section 7.5. Leaks can  
dilute the span gas and, hence, the concentration that the analyzer measures may  
fall short of the expected concentration defined in the CONC sub-menu.  
If the low-level, hardware calibration has drifted (changed PMT response) or was  
accidentally altered by the user, a low-level calibration may be necessary to get the  
analyzer back into its proper range of expected values. One possible indicator of  
this scenario is a slope or offset value that is outside of its allowed range (0.7-1.3 for  
slope, -20 mV to 150 mV for offsets). See Section 13 on how to carry out a low-  
level hardware calibration.  
7.3.5. INABILITY TO ZERO - NO ZERO BUTTON  
In general, the T200H/M will not display certain touchscreen buttons whenever the  
actual value of a parameter is outside of the expected range for that parameter. If the  
calibration menu does not show a ZERO button when carrying out a zero calibration, the  
actual gas concentration must be significantly different from the actual zero point (as per  
last calibration), which can have several reasons.  
Confirm that there is a good source of zero air.  
Check to make sure that there is no ambient air leaking into zero air line. Check for  
leaks in the pneumatic systems as described in Section 7.5.  
7.3.6. NON-LINEAR RESPONSE  
The T200H/M was factory calibrated to a high level of NO and should be linear to  
within 1% of full scale. Common causes for non-linearity are:  
Leaks in the pneumatic system. Leaks can add a constant of ambient air, zero air  
or span gas to the current sample gas stream, which may be changing in concentra-  
tions as the linearity test is performed. Check for leaks as described in Section 7.5.  
The calibration device is in error. Check flow rates and concentrations, particularly  
when using low concentrations. If a mass flow calibrator is used and the flow is less  
than 10% of the full scale flow on either flow controller, you may need to purchase  
lower concentration standards.  
The standard gases may be mislabeled as to type or concentration. Labeled  
concentrations may be outside the certified tolerance.  
The sample delivery system may be contaminated. Check for dirt in the sample  
lines or reaction cell.  
Calibration gas source may be contaminated (NO2 in NO gas is common).  
Dilution air contains sample or span gas.  
Ozone concentration too low because of wet air in the generator. Generator system  
needs to be cleaned and dried with dry supply air. Check the Perma Pure dryer for  
leaks. This mostly affects linearity at the low end.  
Sample inlet may be contaminated with NOX exhaust from this or other analyzers.  
Verify proper venting of the pump exhaust.  
Span gas overflow is not properly vented and creates a back-pressure on the  
sample inlet port. Also, if the span gas is not vented at all and does not supply  
236  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
enough sample gas, the analyzer may be evacuating the sample line. Make sure to  
create and properly vent excess span gas.  
Diffusion of oxygen into Teflon-type tubing over long distances. PTFE or related  
materials can act as permeation devices. In fact, the permeable membrane of NO2  
permeation tubes is made of PTFE. When using very long supply lines (> 1 m)  
between high concentrations span gases and the dilution system, oxygen from  
ambient air can diffuse into the line and react with NO to form NO2. This reaction is  
dependent on NO concentration and accelerates with increasing NO concentration,  
hence, affects linearity only at high NO levels. Using stainless steel for long span  
gas supply lines avoids this problem.  
7.3.7. DISCREPANCY BETWEEN ANALOG OUTPUT AND DISPLAY  
If the concentration reported through the analog outputs does not agree with the value  
reported on the front panel, you may need to re-calibrate the analog outputs. This  
becomes more likely when using a low concentration or low analog output range.  
Analog outputs running at 0.1 V full scale should always be calibrated manually. See  
Section 4.13.6.2 for a detailed description of this procedure.  
7.3.8. DISCREPANCY BETWEEN NO AND NOX SLOPES  
If the slopes for NO and NOX are significantly different after software calibration (more  
than 1%), consider the following two problems  
NO2 impurities in the NO calibration gas. NO gases often exhibit NO2 on the order  
of 1-2% of the NO value. This will cause differences in the calibration slopes. If the  
NO2 impurity in NO is known, it can easily be accounted for by setting the expected  
values for NO and NO2 accordingly to different values, e.g., 0.448 ppm NO and 0.45  
ppm NOX. This problem is worse if NO gas is stored in a cylinder with balance air  
instead of balance gas nitrogen or large amounts of nitrous oxide (N2O). The  
oxygen in the air slowly reacts with NO to yield NO2, increasing over time.  
The expected concentrations for NO and NOX in the calibration menu are set to  
different values. If a gas with 100% pure NO is used, this would cause a bias. See  
Section 7.2 on how to set expected concentration values.  
The converter efficiency parameter has been set to a value not equal to 1.000 even  
though the conversion efficiency is 1.0. The actual conversion efficiency needs to  
match the parameter set in the CAL menu. See Section 5.2.5 for more information  
on this feature.  
7.4. OTHER PERFORMANCE PROBLEMS  
Dynamic problems (i.e. problems which only manifest themselves when the analyzer is  
monitoring sample gas) can be the most difficult and time consuming to isolate and  
resolve. The following section provides an itemized list of the most common dynamic  
problems with recommended troubleshooting checks and corrective actions.  
237  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.4.1. EXCESSIVE NOISE  
Excessive noise levels under normal operation usually indicate leaks in the sample  
supply or the analyzer itself. Make sure that the sample or span gas supply is leak-free  
and carry out a detailed leak check as described earlier in this Section.  
Another possibility of excessive signal noise may be the preamplifier board, the high  
voltage power supply and/or the PMT detector itself. Contact the factory on trouble-  
shooting these components.  
7.4.2. SLOW RESPONSE  
If the analyzer starts responding too slow to any changes in sample, zero or span gas,  
check for the following:  
Dirty or plugged sample filter or sample lines.  
Sample inlet line is too long.  
Leaking NO/NOX valve. Carry out a leak check.  
Dirty or plugged critical flow orifices. Check flows, pressures and, if necessary,  
change orifices (Section 6.3.6).  
Wrong materials in contact with sample - use glass, stainless steel or Teflon  
materials only. Porous materials, in particular, will cause memory effects and slow  
changes in response.  
Dirty reaction cell. Clean the reaction cell.  
Insufficient time allowed for purging of lines upstream of the analyzer. Wait until  
stability is low.  
Insufficient time allowed for NO or NO2 calibration gas source to become stable.  
Wait until stability is low.  
NO2 converter temperature is too low. Check for proper temperature.  
7.4.3. AUTO ZERO WARNINGS  
Auto-zero warnings occur if the signal measured during an auto-zero cycle is lower than  
–20 mV or higher than 200 mV. The Auto-Zero warning displays the value of the auto-  
zero reading when the warning occurs.  
If this value is higher than 150 mV, check that the auto-zero valve is operating  
properly. To do so, use the SIGNAL I/O functions in the DIAG menu to toggle the  
valve on and off. Listen if the valve is switching, see if the respective LED on the  
relay board is indicating functionality. Scroll the TST functions until PMT is  
displayed and observe the PMT value change between the two valve states.  
If the valve is operating properly, you should be able to hear it switch (once a  
minute under normal operation or when manually activated from the SIGNAL I/O  
menu), the PMT value should drop from its nominal reading for span gas level  
measurements to less than 150 mV and the LED on the relay board should light up  
when the valve is activated. If the PMT value drops significantly but not to less than  
150 mV, the valve is probably leaking across its ports. In this case, replace the  
valve. If the PMT value does not change at all, the valve is probably not switching  
at all. Check the power supply to the valve (12 V to the valve should turn on and off  
when measured with a voltmeter).  
that it takes only a small leak across the ports of the valve to show excessive auto-  
zero values when supplying high concentrations of span gas.  
238  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
Another reason for high (although not necessarily out-of-range) values for AutoZero  
could be the ozone air filter cartridge, if its contents has been exhausted and needs  
to be replaced. This cartridge filters chemicals that can cause chemiluminescence  
and, if saturated, these chemicals can break through to the reaction cell, causing an  
erroneously high AutoZero value (background noise).  
A dirty reaction cell can cause high AutoZero values. Clean the reaction cell  
according to Section 6.3.5.  
Finally, a high HVPS voltage value may cause excess background noise and a high  
AZERO value. The HVPS value changes from analyzer to analyzer and could show  
nominal values between 450 and 800 V. Check the low-level hardware calibration  
of the preamplifier board and, if necessary, recalibrate exactly as described in  
Section 13 in order to minimize the HVPS.  
7.5. SUBSYSTEM CHECKOUT  
The preceding sections of this manual discussed a variety of methods for identifying  
possible sources of failures or performance problems within the analyzer. In most cases  
this included a list of possible causes and, in some cases, quick solutions or at least a  
pointer to the appropriate sections describing them. This section describes how to  
determine if a certain component or subsystem is actually the cause of the problem being  
investigated.  
7.5.1. SIMPLE LEAK CHECK USING VACUUM AND PUMP  
Leaks are the most common cause of analyzer malfunction; This section presents a  
simple leak check, whereas Section 7.5.2 details a more thorough procedure. The  
method described here is easy, fast and detects, but does not locate, most leaks. It also  
verifies the sample pump condition.  
Turn the analyzer ON, and allow at least 30 minutes for flows to stabilize.  
Cap the sample inlet port (cap must be wrench-tight).  
After several minutes, when the pressures have stabilized, the SAMP (sample  
pressure) and the RCEL (vacuum pressure) readings.  
If both readings are equal to within 10% and less than 10 in-Hg-A, the instrument is  
free of large leaks. It is still possible that the instrument has minor leaks.  
If both readings are < 10 in-Hg-A, the pump is in good condition. A new pump will  
create a pressure reading of about 4 in-Hg-A (at sea level).  
7.5.2. DETAILED LEAK CHECK USING PRESSURE  
If a leak cannot be located by the above procedure, obtain a leak checker similar to  
Teledyne API part number 01960, which contains a small pump, shut-off valve, and  
pressure gauge to create both over-pressure and vacuum. Alternatively, a tank of  
pressurized gas, with the two stage regulator adjusted to 15 psi, a shutoff valve and  
pressure gauge may be used.  
Note  
Once tube fittings have been wetted with soap solution under a  
pressurized system, do not apply or re-apply vacuum as this will cause  
soap solution to be sucked into the instrument, contaminating inside  
surfaces. Do not exceed 15 psi when pressurizing the system.  
239  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Turn OFF power to the instrument and remove the instrument cover.  
Install a leak checker or a tank of gas (compressed, oil-free air or nitrogen) as  
described above on the sample inlet at the rear panel.  
Disconnect the pump tubing on the outside rear panel and cap the pump port. If  
zero/span valves are installed, disconnect the tubing from the zero and span gas  
ports and plug them (Figure 3-4). Cap the DFU particle filter on the Perma Pure  
dryer (Figure 6-2).  
Pressurize the instrument with the leak checker or tank gas, allowing enough time  
to fully pressurize the instrument through the critical flow orifice. Check each tube  
connection (fittings, hose clamps) with soap bubble solution, looking for fine  
bubbles. Once the fittings have been wetted with soap solution, do not re-apply  
vacuum as it will draw soap solution into the instrument and contaminate it. Do not  
exceed 15 psi pressure.  
If the instrument has the zero and span valve option, the normally closed ports on  
each valve should also be separately checked. Connect the leak checker to the  
normally closed ports and check with soap bubble solution.  
Once the leak has been located and repaired, the leak-down rate of the indicated  
pressure should be less than 1 in-Hg-A (0.4 psi) in 5 minutes after the pressure is  
turned off.  
Clean surfaces from soap solution, re-connect the sample and pump lines and  
replace the instrument cover. Restart the analyzer.  
7.5.3. PERFORMING A SAMPLE FLOW CHECK  
Note  
Use a separate, calibrated flow meter capable of measuring flows between  
0 and 1000 cm³/min to measure the gas flow rate though the analyzer. Do  
not use the built in flow measurement viewable from the front panel of the  
instrument. This value is only calculated, not measured  
Sample flow checks are useful for monitoring the actual flow of the instrument, as the  
front panel display shows only a calculated value. A decreasing, actual sample flow  
may point to slowly clogging pneumatic paths, most likely critical flow orifices or  
sintered filters. To perform a sample flow check:  
Disconnect the sample inlet tubing from the rear panel SAMPLE port shown in  
Attach the outlet port of a flow meter to the sample inlet port on the rear panel.  
Ensure that the inlet to the flow meter is at atmospheric pressure.  
The sample flow measured with the external flow meter should be within 10% of  
the nominal values shown in Table 10-3.  
Low flows indicate blockage somewhere in the pneumatic pathway.  
240  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.4. AC POWER CONFIGURATION  
The T-Series digital electronic systems will operate with any of the specified power  
regimes. As long as instrument is connected to 100-120 VAC or 220-240 VAC at either  
50 or 60 Hz it will turn on and after about 30 seconds show a front panel display.  
Internally, the status LEDs located on the Relay PCA, Motherboard and CPU should  
turn on as soon as the power is supplied.  
On the other hand, some of the analyzer’s non-digital components, such as the pump and  
the various AC powered heaters must be properly configured for the type of power being  
Configuration jumpers.  
JP6  
O2 Sensor  
Connection.  
(optional)  
JP2  
Main AC Heater  
Configuration  
JP7  
Pump  
Configuration  
Figure 7-11:  
Location of AC power Configuration Jumpers  
Functions of the Relay PCA include:  
handling all AC and DC power distribution including power to the pump.  
a set of jumpers that connect AC power to heaters included in several optional  
items, such as the zero/span valve options and the O2 sensor option available on  
the T200H/M analyzers.  
241  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.5.4.1. AC Configuration – Internal Pump (JP7)  
AC power configuration for internal pumps is set using Jumper set JP7 (see Figure 7-4  
for the location of JP7).  
Table 7-3:  
AC Power Configuration for Internal Pumps (JP7)  
JUMPER  
BETWEEN  
PINS  
LINE  
POWER  
LINE  
FREQUENCY  
JUMPER  
COLOR  
FUNCTION  
Connects pump pin 3 to 110 / 115 VAC power line  
Connects pump pin 3 to 110 / 115 VAC power line  
Connects pump pins 2 & 4 to Neutral  
2 to 7  
3 to 8  
4 to 9  
60 HZ  
WHITE  
BLACK  
110VAC  
115 VAC  
Connects pump pin 3 to 110 / 115 VAC power line  
Connects pump pin 3 to 110 / 115 VAC power line  
Connects pump pins 2 & 4 to Neutral  
2 to 7  
3 to 8  
4 to 9  
50 HZ1  
Connects pump pins 3 and 4 together  
Connects pump pin 1 to 220 / 240VAC power line  
Connects pump pins 3 and 4 together  
1 to 6  
3 to 8  
1 to 6  
3 to 8  
60 HZ  
BROWN  
BLUE  
220VAC  
240 VAC  
50 HZ1  
Connects pump pin 1 to 220 / 240VAC power line  
1 A jumper between pins 5 and 10 may be present on the jumper plug assembly, but has no function on the T200H/M  
analyzers.  
110 VAC /115 VAC  
220 VAC /240 VAC  
1
2
3
4
5
1
2
3
4
5
6
7
6
7
8
8
9
9
10  
10  
May be present on 50 Hz version of jumper  
set, but not functional T200H/M  
Figure 7-12:  
Pump AC Power Jumpers (JP7)  
242  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.4.2. AC Configuration – Standard Heaters (JP2)  
Power configuration for the AC the standard heaters is set using Jumper set JP2 (see  
Figure 7-4 for the location of JP2).  
Table 7-4: Power Configuration for Standard AC Heaters (JP2)  
JUMPER  
JUMPER  
COLOR  
LINE VOLTAGE  
HEATER(S)  
BETWEEN  
PINS  
FUNCTION  
Common  
1 to 8  
Reaction Cell / Sample  
Chamber Heaters  
Neutral to Load  
Common  
2 to 7  
3 to 10  
4 to 9  
Mini Hi-Con  
Converter  
110 VAC / 115 VAC  
50Hz & 60 Hz  
Neutral to Load  
Common  
WHITE  
3 to 10  
4 to 9  
Moly Converter  
Neutral to Load  
Common  
5 to 12  
6 to 11  
Bypass Manifold 1  
Neutral to Load  
Reaction Cell / Sample  
Chamber Heaters  
Load  
Load  
1 to 7  
3 to 9  
Hi Concentration  
Converter  
220 VAC / 240 VAC  
50Hz & 60 Hz  
BLUE  
Moly Converter  
Load  
Load  
3 to 9  
Bypass Manifold 1  
5 to 11  
1
Bypass manifold is built into the reaction cell  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Reaction Cell or  
Sample Chamber  
Heaters  
Reaction Cell or  
Sample Chamber  
Heaters  
9
9
Mini Hi-Con or  
Moly Converter  
Heaters  
Mini Hi-Con or  
Moly Converter  
Heaters  
10  
10  
11  
12  
11  
12  
T200H/M  
Bypass Manifold  
Heater  
T200M/H  
Bypass Manifold  
Heater  
220 VAC / 240 VAC  
110 VAC /115 VAC  
Figure 7-13:  
Typical Set Up of AC Heater Jumper Set (JP2)  
243  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.5.4.3. AC Configuration –Heaters for Option Packages (JP6)  
An O2 sensor option includes AC heaters that maintain an optimum operating  
temperature for key components of those options. Jumper set JP6 is used to connect the  
heaters associated with those options to AC power. Since these heaters work with  
either 110/155 VAC or 220/240 VAC, there is only one jumper configuration.  
Table 7-5: Power Configuration for Optional AC Heaters (JP6)  
JUMPER  
MODEL’S  
JUMPER  
COLOR  
HEATER(S)  
BETWEEN  
PINS  
FUNCTION  
USED ON1  
IZS1 Permeation Tube  
Heater  
100s, 200s1 &  
400s  
Common  
1 to 8  
Neutral to Load  
Common  
2 to 7  
3 to 10  
4 to 9  
RED  
O2 Sensor Heater  
100s & 200s  
Neutral to Load  
1 IZS option not available on the T200H/M  
10  
9
12  
11  
8
2
7
1
IZS  
(option not  
available on the  
T200H/M)  
Permeation  
Tube Heater  
O2 Sensor  
Heater  
6
5
4
3
Figure 7-14:  
Typical Set Up of AC Heater Jumper Set (JP6)  
244  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.5. DC POWER SUPPLY TEST POINTS  
Table 7-6: DC Power Test Point and Wiring Color Code  
NAME  
DGND  
+5V  
TEST POINT#  
COLOR  
Black  
DEFINITION  
Digital ground  
1
2
3
4
5
6
7
Red  
AGND  
+15V  
-15V  
Green  
Blue  
Analog ground  
Yellow  
Purple  
Orange  
+12R  
+12V  
12 V return (ground) line  
Table 7-7: DC Power Supply Acceptable Levels  
CHECK RELAY BOARD TEST POINTS  
POWER  
SUPPLY  
FROM  
Test Point  
TO  
Test Point  
VOLTAGE  
MIN V  
MAX V  
NAME  
#
NAME  
#
PS1  
PS1  
PS1  
PS1  
PS1  
PS2  
PS2  
+5  
+15  
DGND  
AGND  
1
3
3
3
1
6
6
+5  
+15  
2
4
+4.80  
+13.5  
-14.0  
-0.05  
-0.05  
+11.8  
-0.05  
+5.25  
+16.0  
-16.0  
+0.05  
+0.05  
+12.5  
+0.05  
-15  
AGND  
-15V  
5
AGND  
Chassis  
+12  
AGND  
DGND  
Chassis  
+12V  
DGND  
1
DGND  
N/A  
7
+12V Ret  
+12V Ret  
DGND  
1
The test points are located at the top, right-hand corner of the PCA (see Figure 7-4)  
7.5.6. I2C BUS  
Operation of the I2C bus can be verified by observing the behavior of D1 on the relay  
PCA & D2 on the Valve Driver PCA . Assuming that the DC power supplies are  
operating properly, the I2C bus is operating properly if: D1 on the relay PCA and D2 of  
the Valve Driver PCA are flashing  
There is a problem with the I2C bus if both D1 on the relay PCA and D2 of the Valve  
Driver PCA are ON/OFF constantly.  
245  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.5.7. TOUCH SCREEN INTERFACE  
Verify the functioning of the touch screen by observing the display when pressing a  
touch-screen control button. Assuming that there are no wiring problems and that the  
DC power supplies are operating properly, but pressing a control button on the touch  
screen does not change the display, any of the following may be the problem:  
The touch-screen controller may be malfunctioning.  
The internal USB bus may be malfunctioning.  
You can verify this failure by logging on to the instrument using APICOM or a terminal  
program. If the analyzer responds to remote commands and the display changes  
accordingly, the touch-screen interface may be faulty.  
7.5.8. LCD DISPLAY MODULE  
Verify the functioning of the front panel display by observing it when power is applied  
to the instrument. Assuming that there are no wiring problems and that the DC power  
supplies are operating properly, the display screen should light and show the splash  
screen and other indications of its state as the CPU goes through its initialization  
process.  
7.5.9. GENERAL RELAY BOARD DIAGNOSTICS  
The relay board circuit can most easily be checked by observing the condition of its  
status LEDs as described in Section 7.1.4.3, and the associated output when toggled on  
and off through the SIGNAL I/O function in the DIAG menu, see Section 4.13.2.  
If the front panel display responds to key presses and D1 on the relay board is not  
flashing, then either the wiring between the keyboard and the relay board is bad, or the  
relay board itself is bad.  
If D1 on the Relay board is flashing and the status indicator for the output in question  
(heater, valve, etc.) does not toggle properly using the Signal I/O function, then the  
associated device (valve or heater) or its control device (valve driver, heater relay) is  
malfunctioning. Several of the control devices are in sockets and can easily be replaced.  
The table below lists the control device associated with a particular function:  
Table 7-8: Relay Board Control Devices  
Function  
All valves  
All heaters  
Control Device  
U5  
Socketed  
Yes  
K1-K5  
Yes  
246  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.10. MOTHERBOARD  
7.5.10.1. A/D functions  
A basic check of the analog to digital (A/D) converter operation on the motherboard is  
to use the Signal I/O function under the DIAG menu. Check the following two A/D  
reference voltages and input signals that can be easily measured with a voltmeter.  
Using the Signal I/O function (Section 4.13.2 Appendix D), view the value of  
REF_4096_MV and REF_GND. If both are within 3 mV of their nominal values  
(4096 and 0) and are stable to within ±0.5 mV, the basic A/D converter is function-  
ing properly. If these values fluctuate largely or are off by more than 3 mV, one or  
more of the analog circuits may be overloaded or the motherboard may be faulty.  
Choose one parameter in the Signal I/O function such as SAMPLE_PRESSURE  
(see previous section on how to measure it). Compare its actual voltage with the  
voltage displayed through the SIGNAL I/O function. If the wiring is intact but there  
is a difference of more than ±10 mV between the measured and displayed voltage,  
the motherboard may be faulty.  
7.5.10.2. Analog Output Voltages  
To verify that the analog outputs are working properly, connect a voltmeter to the output  
in question and perform an analog output step test as described in Section 4.13.3.  
For each of the steps, taking into account any offset that may have been programmed  
into the channel (Section 4.13.5.4), the output should be within 1% of the nominal value  
listed in the table below except for the 0% step, which should be within 2-3 mV. If one  
or more of the steps is outside of this range, a failure of one or both D/A converters and  
their associated circuitry on the motherboard is likely.  
Table 7-9: Analog Output Test Function - Nominal Values  
FULL SCALE OUTPUT VOLTAGE  
100mV  
1V  
5V  
10V  
STEP  
%
0
NOMINAL OUTPUT VOLTAGE  
1
2
3
4
5
6
0 mV  
20 mV  
40 mV  
60 mV  
80 mV  
100 mV  
0
0
1
2
3
4
5
0
2
20  
40  
60  
80  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
4
6
8
10  
247  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.5.10.3. Status Outputs  
The procedure below can be used to test the Status outputs.  
V
+DC Gnd  
Figure 7-15:  
Typical Set Up of Status Output Test  
1. Connect a cable between the “D“ pin and the “” pin on the status output  
connector.  
2. Connect a 1000 resistor between the “+” pin and the pin for the status output that  
is being tested.  
3. Connect a voltmeter between the “D“ pin and the pin of the output being tested  
4. Under the DIAG / SIGNAL I/O menu (Section 4.13.2), scroll through the inputs and  
outputs until you get to the output in question. Alternately turn the output on and off.  
The Voltmeter will read approximately 5 VDC when the output is OFF.  
The Voltmeter will read approximately 0 VDC when the output is ON.  
Table 7-10: Status Outputs Pin Assignments  
PIN #  
STATUS  
SYSTEM OK  
CONC VALID  
HIGH RANGE  
ZERO CAL  
SPAN CAL  
DIAG MODE  
LOW  
1
2
3
4
5
6
7
8
SPARE  
248  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.10.4. Control Inputs  
The control input bits can be tested by the following procedure:  
Connect a jumper from the +5 V pin on the STATUS connector to the +5 V on the  
CONTROL IN connector.  
Connect a second jumper from the ‘-‘ pin on the STATUS connector to the A pin on  
the CONTROL IN connector. The instrument should switch from SAMPLE mode to  
ZERO CAL R mode.  
Connect a second jumper from the ‘-‘ pin on the STATUS connector to the B pin on  
the CONTROL IN connector. The instrument should switch from SAMPLE mode to  
SPAN CAL R mode.  
In each case, the T200H/M should return to SAMPLE mode when the jumper is  
removed.  
7.5.11. CPU  
There are two major types of CPU board failures, a complete failure and a failure  
associated with the Disk-On-Module (DOM). If either of these failures occur, contact  
the factory.  
For complete failures, assuming that the power supplies are operating properly and the  
wiring is intact, the CPU is faulty if on power-on:  
There is no activity from the primary RS-232 port (labeled RS232) on the rear panel  
even if “? <RETURN>” is pressed.  
In some rare circumstances, this failure may be caused by a bad IC on the  
motherboard, specifically U57, the large, 44 pin device on the lower right hand side  
of the board. If this is true, removing U57 from its socket will allow the instrument to  
start up but the measurements will be incorrect.  
249  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.5.12. RS-232 COMMUNICATION  
7.5.12.1. General RS-232 Troubleshooting  
Teledyne API analyzers use the RS-232 protocol as the standard, serial communications  
protocol. RS-232 is a versatile standard, which has been used for many years but, at  
times, is difficult to configure. Teledyne API conforms to the standard pin assignments  
in the implementation of RS-232. Problems with RS-232 connections usually center  
around 4 general areas:  
Incorrect cabling and connectors. This is the most common problem. See Section  
4.11.5 for connector and pin-out information.  
The communications (baud) rate and protocol parameters are incorrectly  
configured. See Section 4.11.3.2 on how to set the baud rate.  
The COM port communications mode is set incorrectly (Section 6.11.8).  
If a modem is used, additional configuration and wiring rules must be observed.  
See Section 6.15.2.6.  
Incorrect setting of the DTE - DCE switch. Typically, the red LED is on as soon as  
you power up the analyzer. If not, contact the factory, as this indicates a problem  
with the motherboard. As the analyzer is connected to the computer with a cable,  
the green LED should also illuminate. If not, set the DCE/DTE switch to the other  
position. See also Section 6.11.5.  
that some laptops do not enable their RS-232 port when in power-saving mode. In  
this case, connect the laptop and start either APICOM or a Hyperterminal window  
and start communicating with the analyzer. This will enable the serial port on the  
laptop and the green LED should illuminate. You may have to switch back and forth  
while communicating to get the right setting.  
7.5.12.2. Modem or Terminal Operation  
These are the general steps for troubleshooting problems with a modem connected to a  
Teledyne API analyzer.  
Check cables for proper connection to the modem, terminal or computer.  
Check the correct position of the DTE/DCE as described in Section 6.11.5.  
Check the correct setup command (Section 6.15.2.6).  
Verify that the Ready to Send (RTS) signal is at logic high. The T200H/M sets pin 7  
(RTS) to greater than 3 volts to enable modem transmission.  
Make sure the baud rate, word length, and stop bit settings between modem and  
analyzer match, see Section 6.15.2.6 and 6.11.8.  
Use the RS-232 test function to send “w” characters to the modem, terminal or  
computer; See Section 6.11.10.  
Get your terminal, modem or computer to transmit data to the analyzer (holding  
down the space bar is one way). The green LED on the rear panel should flicker as  
the instrument is receiving data.  
Make sure that the communications software is functioning properly.  
Further help with serial communications is available in a separate manual “RS-232  
Manual”, Teledyne API part number 013500000, available online at  
http://www.Teledyne-api.com/manuals/.  
250  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.13. PMT SENSOR  
The photo multiplier tube detects the light emitted by the reaction of NO with ozone. It  
has a gain of about 1: 500000 to 1:1000000. It is not possible to test the detector outside  
of the instrument in the field. The best way to determine if the PMT is working properly  
is by using the optical test (OTEST), which is described in Section 6.13.6.2. The basic  
method to diagnose a PMT fault is to eliminate the other components using ETEST,  
OTEST and specific tests for other sub-assemblies.  
7.5.14. PMT PREAMPLIFIER BOARD  
To check the correct operation of the preamplifier board, we suggest to carry out the  
optical and electrical tests described in Sections 6.13.6.2 and 4.13.7.3. If the ETEST  
fails, the preamplifier board may be faulty. Refer to Section 13 on hardware calibration  
through the preamplifier board.  
7.5.15. HIGH VOLTAGE POWER SUPPLY  
The HVPS is located in the interior of the sensor module and is plugged into the PMT  
tube (Section 8.5.2). It requires 2 voltage inputs. The first is +15 V, which powers the  
supply. The second is the programming voltage which is generated on the preamplifier  
board. Adjustment of the HVPS is covered in the factory calibration procedure in  
Section 13. This power supply has 10 independent power supply steps, one to each pin  
of the PMT. The following test procedure below allows you to test each step.  
Turn off the instrument.  
Remove the cover and disconnect the 2 connectors at the front of the NOX sensor  
module.  
Remove the end cap from the sensor (4 screws).  
Remove the HVPS/PMT assembly from the cold block inside the sensor (2 plastic  
screws).  
Re-connect the 7 pin connector to the sensor end cap, and power-up the  
instrument. Scroll the front panel display to the HVPS test parameter. Divide the  
displayed HVPS voltage by 10 and test the pairs of connector points as shown in  
Table 11-11.  
Check the overall voltage (should be equal to the HVPS value displayed on the front  
panel, for example 700 V) and the voltages between each pair of pins of the supply  
(should be 1/10th of the overall voltage, in this example 70 V):  
251  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Table 7-11: Example of HVPS Power Supply Outputs  
If HVPS reading = 700 VDC  
PIN PAIR  
1 2  
2 3  
3 4  
4 5  
5 6  
6 7  
7 8  
NOMINAL READING  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
70 VDC  
6
7
5
8
4
3
9
2
10  
11  
1
KEY  
Turn off the instrument power, and reconnect the PMT, then reassemble the sensor.  
If any faults are found in the test, you must obtain a new HVPS as there are no user  
serviceable parts inside the supply.  
7.5.16. PNEUMATIC SENSOR ASSEMBLY  
The pressure/flow sensor circuit board, located behind the sensor assembly, can be  
checked with a voltmeter using the following procedure, which assumes that the wiring  
is intact and that the motherboard and the power supplies are operating properly.  
Measure the voltage across TP1 and TP2, it should be 10.0 0.25 V. If not, the board is  
faulty. Measure the voltage across the leads of capacitor C2. It should be 5.0 ± 0.25 V,  
if not, the board may be faulty.  
7.5.16.1. Reaction Cell Pressure  
Measure the voltage across test points TP1 and TP5. With the sample pump  
disconnected or turned off, the voltage should be 4500 250 mV. With the pump  
running, it should be 800-1700 mV depending on the performance of the vacuum pump.  
The lower the reaction cell pressure, the lower the resulting voltage is. If this voltage is  
significantly different, the pressure transducer S1 or the board may be faulty. If this  
voltage is between 2 and 5 V, the pump may not be performing well, check that the  
reaction cell pressure is less than 10 in-Hg-A (at sea level). Ensure that the tubing is  
connected to the upper port, which is closer to the sensor’s contacts; the lower port does  
not measure pressure.  
252  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.16.2. Sample Pressure  
Measure the voltage across test points TP1 and TP4. With the sample pump  
disconnected or turned off, this voltage should be 4500 250 mV. With the pump  
running, it should be about 0.2 V less as the sample pressure drops by about 1 in-Hg-A  
below ambient pressure. If this voltage is significantly different, the pressure transducer  
S2 or the board may be faulty. A leak in the sample system to vacuum may also cause  
this voltage to be between about 0.6 and 4.5. Make sure that the front panel reading of  
the sample pressure is at about 1 in-Hg-A less than ambient pressure. Ensure that the  
tubing is connected to the upper port, which is closer to the sensor’s contacts; the lower  
port does not measure pressure.  
Figure 7-16:  
Pressure / Flow Sensor Assembly  
7.5.16.3. Ozone Flow  
Measure the voltage across TP1 and TP3. With proper ozone flow (250 cm3/min), this  
should be approximately 3.0 ± 0.3 V (this voltage will vary with altitude). With flow  
stopped (pump turned off), the voltage should be approximately 0 V. If the voltage is  
incorrect, the flow sensor or the board may be faulty. A cross-leak to vacuum inside the  
Perma Pure dryer may also cause this flow to increase significantly, and the voltage will  
increase accordingly. Also, make sure that the gas flows from P1 to P2 as labeled on the  
flow sensor (“high” pressure P1 to “low” pressure P2 or “Port” 1 to “Port” 2).  
7.5.17. NO2 CONVERTER  
The NO2 converter assembly can fail in two ways, an electrical failure of the band heater  
and/or the thermocouple control circuit and a performance failure of the converter itself.  
NO2 converter heater failures can be divided into two possible problems:  
Temperature is reported properly but heater does not heat to full temperature. In  
this case, the heater is either disconnected or broken or the power relay is broken.  
253  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
Disconnect the heater cable coming from the relay board and measure the  
resistance between any two of the three heater leads with a multi-meter. The  
resistance between A and B should be about 1000 and that between A and C  
should be the same as between B and C, about 500 each. If any of these  
resistances is near zero or without continuity, the heater is broken.  
Temperature reports zero or overload (near 500° C). This indicates a disconnected  
or failing thermocouple or a failure of the thermocouple circuit.  
First, check that the thermocouple is connected properly and the wire does not  
show signs of a broken or kinked pathway. If it appears to be properly connected,  
disconnect the yellow thermocouple plug (marked K) from the relay board and  
measure the voltage (not resistance) between the two leads with a multi-meter  
capable of measuring in the low mV range. The voltage should be about 12 mV  
(ignore the sign) at 315° C and about 0 mV at room temperature.  
Measure the continuity with an Ohm-meter. It should read close to zero . If the  
thermocouple does not have continuity, it is broken. If it reads zero voltage at  
elevated temperatures, it is broken. To test the thermocouple at room temperature,  
heat up the converter can (e.g., with a heat gun) and see if the voltage across the  
thermocouple leads changes. If the thermocouple is working properly, the  
electronic circuit is broken. In both cases, consult the factory.  
If the converter appears to have performance problems (conversion efficiency is outside  
of allowed range of 96-102%), check the following:  
Conversion efficiency setting in the CAL menu. If this value is different from 1.000,  
this correction needs to be considered. Section 5.2.5 describes this parameter in  
detail.  
Accuracy of NO2 source (gas tank standard). NO2 gas standards are typically  
certified to only ±2% and often change in concentrations over time. You should get  
the standard re-certified every year. If you use GPT, check the accuracy of the  
ozone source.  
Age of the converter. The NO2 converter has a limited operating life and may need  
to be replaced every ~3 years or when necessary (e.g., earlier if used with continu-  
ously high NO2 concentrations). We estimate a lifetime of about 10000 ppm-hours  
(a cumulative product of the NO2 concentration times the exposure time to that  
concentration). However, this lifetime heavily depends on many factors such as  
absolute concentration (temporary or permanent poisoning of the converter is  
possible), sample flow rate and pressure inside the converter, converter tempera-  
ture, duty cycle etc. This lifetime is only an estimated reference and not a  
guaranteed lifetime.  
In some cases with excessive sample moisture, the oxidized molybdenum metal  
chips inside the converter cartridge may bake together over time and restrict air flow  
through the converter, in which case it needs to be replaced. To avoid this problem,  
we recommend the use of a sample gas conditioner (Section 5.10). Section 6.3.4  
describes how to replace the NO2 converter cartridge.  
With no NO2 in the sample gas and a properly calibrated analyzer, the NO reading  
is negative, while the NO2 reading remains around zero. The converter destroys  
NO and needs to be replaced.  
With no NO2 in the sample gas and a properly calibrated analyzer, the NOX reading  
is significantly higher than the actual (gas standard) NO concentration. The  
converter produces NO2 and needs to be replaced.  
254  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.5.18. O3 GENERATOR  
The ozone generator can fail in two ways, electronically (printed circuit board) and  
functionally (internal generator components). Assuming that air is supplied properly to  
the generator, the generator should automatically turn on 30 minutes after the instrument  
is powered up or if the instrument is still warm. See Section 10.3.6 for ozone generator  
functionality. Accurate performance of the generator can only be determined with an  
ozone analyzer connected to the outlet of the generator. However, if the generator  
appears to be working properly but the sensitivity or calibration of the instrument is  
reduced, suspect a leak in the ozone generator supply air.  
A leak in the dryer or between the dryer and the generator can cause moist, ambient air  
to leak into the air stream, which significantly reduces the ozone output. The generator  
will produce only about half of the nominal O3 concentration when run with moist,  
ambient air instead of dried air. In addition, moist supply air will produce large amounts  
of nitric acid in the generator, which can cause analyzer components downstream of the  
generator to deteriorate and/or causes significant deposit of nitrate deposits on the  
reaction cell window, reducing sensitivity and causing performance drift. Carry out a  
leak check as described earlier in this Section.  
7.5.19. BOX TEMPERATURE  
The box temperature sensor (thermistor) is mounted on the motherboard below the  
bottom edge of the CPU board when looking at it from the front. It cannot be  
disconnected to check its resistance. Box temperature will vary with, but will usually  
read about 5° C higher than, ambient (room) temperature because of the internal heating  
zones from the NO2 converter, reaction cell and other devices.  
To check the box temperature functionality, we recommend to check the  
BOX_TEMP signal voltage using the SIGNAL I/O function under the DIAG Menu  
(Section 6.13.1). At about 30° C, the signal should be around 1500 mV.  
We recommend to use a certified or calibrated external thermometer / temperature  
sensor to verify the accuracy of the box temperature by placing it inside the chassis,  
next to the thermistor labeled XT1 (above connector J108) on the motherboard.  
7.5.20. PMT TEMPERATURE  
PMT temperature should be low and constant. It is more important that this temperature  
is maintained constant than it is to maintain it low. The PMT cooler uses a Peltier,  
thermo-electric cooler element supplied with 12 V DC power from the switching power  
supply PS2. The temperature is controlled by a proportional temperature controller  
located on the preamplifier board. Voltages applied to the cooler element vary from 0.1  
to 12 VDC. The temperature set point (hard-wired into the preamplifier board) will vary  
by ±1Cdue to component tolerances. The actual temperature will be maintained to  
within 0.1° Caround that set point. On power-up of the analyzer, the front panel  
enables the user to watch that temperature drop from about ambient temperature down to  
its set point of 6-8° C. If the temperature fails to adjust after 30 minutes, there is a  
problem in the cooler circuit. If the control circuit on the preamplifier board is faulty, a  
temperature of –1° Cis reported.  
255  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.6. REPAIR PROCEDURES  
This section contains some procedures that may need to be performed when a major  
component of the analyzer requires repair or replacement. that maintenance procedures  
(e.g., replacement of regularly changed expendables) are discussed in Section 6  
(Maintenance) are not listed here. Also that Teledyne API Technical Support may have  
a more detailed service for some of the below procedures. Contact Technical Support.  
7.6.1. DISK-ON-MODULE REPLACEMENT  
Replacing the Disk-on-Module (DOM) will cause loss of all DAS data; it also may  
cause loss of some instrument configuration parameters unless the replacement DOM  
carries the exact same firmware version. Whenever changing the version of installed  
software, the memory must be reset. Failure to ensure that memory is reset can cause the  
analyzer to malfunction, and invalidate measurements.  
After the memory is reset, the A/D converter must be re-calibrated, and all information  
collected in Step 1 below must be re-entered before the instrument will function  
correctly. Also, zero and span calibration should be performed.  
1. Document all analyzer parameters that may have been changed, such as range,  
auto-cal, analog output, serial port and other settings before replacing the DOM  
2. Turn off power to the instrument, fold down the rear panel by loosening the  
mounting screws.  
3. When looking at the electronic circuits from the back of the analyzer, locate the  
Disk-on-Module in the right most socket of the CPU board.  
4. The DOM should carry a label with firmware revision, date and initials of the  
programmer.  
5. Remove the nylon fastener that mounts the DOM over the CPU board, and lift the  
DOM off the CPU. Do not bend the connector pins.  
6. Install the new Disk-on-Module, making sure the notch at the end of the chip  
matches the notch in the socket.  
7. It may be necessary to straighten the pins somewhat to fit them into the socket.  
Press the DOM all the way in and reinsert the offset clip.  
8. Close the rear panel and turn on power to the machine.  
9. If the replacement DOM carries a firmware revision, re-enter all of the setup  
information.  
256  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.6.2. O3 GENERATOR REPLACEMENT  
The ozone generator is a black, brick-shaped device with printed circuit board attached  
to its rear and two tubes extending out the right side in the front of the analyzer. To  
replace the ozone generator:  
1. Turn off the analyzer power, remove the power cord and the analyzer cover.  
2. Disconnect the 1/8” black tube from the ozone scrubber cartridge and the ¼” clear  
tube from the plastic extension tube at the brass fitting nearest to the ozone  
generator.  
3. Unplug the electrical connection on the rear side of the brick.  
4. Unscrew the two mounting screws that attach the ozone generator to the chassis  
and take out the entire assembly.  
5. If you received a complete replacement generator with circuit board and mounting  
bracket attached, simply reverse the above steps to replace the current generator.  
6. Make sure to carry out a leak check and a recalibration after the analyzer warmed  
up for about 30 minutes.  
7.6.3. SAMPLE AND OZONE DRYER REPLACEMENT  
The T200H/M standard configuration is equipped with a dryer for the ozone supply air.  
An optional dryer is available for the sample stream and a combined dryer for both gas  
streams can also be purchased. To change one or all of these options:  
1. Turn off power to the analyzer and pump, remove the power cord and the analyzer  
cover.  
2. Locate the dryers in the center of the instrument, between sensor and NO2  
converter.  
They are mounted to a bracket, which can be taken out when unscrewing the two  
mounting screws (if necessary).  
3. Disconnect all tubing that extends out of the dryer assembly,  
These are usually the purge tube connecting to the vacuum manifold, the tube from  
the exit to the ozone flow meter (ozone dryer) or to the NO/NOx valve (sample  
dryer) or two tubes to the ozone flow meter and the NO/NOX valve (combo-dryer).  
Take extra care not to twist any of the white plastic fittings on the dryer, which  
connect the inner drying tube to the outer purge tube.  
4. the orientation of the dryer on the bracket.  
5. Cut the tie wraps that hold the dryer to the mounting bracket and take out the old  
dryer.  
If necessary, unscrew the two mounting screws on the bracket and take out the  
entire assembly.  
257  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
6. Attach the replacement dryer to the mounting bracket in the same orientation as the  
old dryer.  
7. Fix the dryer to the bracket using new tie wraps.  
8. Cut off excess length of the wraps.  
9. Put the assembly back into the chassis and tighten the mounting screws.  
10. Re-attach the tubes to vacuum manifold, flow meter and/or NO/NOx valve using at  
least two wrenches.  
:
Take extra care not to twist the dryer’s white plastic fittings, as this will  
result in large leaks that are difficult to trouble-shoot and fix.  
11. Carry out a detailed leak check (Section 7.5.2),  
12. Close the analyzer.  
13. Power up pump and analyzer and re-calibrate the instrument after it stabilizes.  
7.6.4. PMT SENSOR HARDWARE CALIBRATION  
The sensor module hardware calibration is used in the factory to adjust the slope and  
offset of the PMT output and to optimize the signal output and HVPS. If the  
instrument’s slope and offset values are outside of the acceptable range and all other  
more obvious causes for this problem have been eliminated, the hardware calibration  
can be used to adjust the sensor as has been done in the factory. This procedure is also  
recommended after replacing the PMT or the preamplifier board.  
1. Perform a full zero calibration using zero air (Section 5.3, 7.4, or 7.6).  
2. On the preamplifier board (located on the sensor housing, Figure 3-5) find the  
following components shown in Figure 7-17:  
HVPS coarse adjustment switch (Range 0-9, then A-F).  
HVPS fine adjustment switch (Range 0-9, then A-F).  
Gain adjustment potentiometer (Full scale is 10 turns).  
3. Turn the gain adjustment potentiometer 12 turns clockwise to its maximum setting.  
4. Feed NO to the analyzer:  
For the T200H use 450 ppm NO.  
For the T200M use 18 ppm NO.  
5. Wait until the STABIL value is below 0.5 ppm  
6. Scroll to the NORM PMT value on the analyzer’s front panel.  
7. With the NO gas concentrations mentioned instep 5 above, the NORM PMT value  
should be 3600 mV.  
8. Set the HVPS coarse adjustment to its minimum setting (0). Set the HVPS fine  
adjustment switch to its maximum setting (F).  
258  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
9. Set the HVPS coarse adjustment switch to the lowest setting that will give you just  
above 3600 mV NORM PMT signal. The coarse adjustment typically increments  
the NORM PMT signal in 100-300 mV steps.  
Figure 7-17:  
Pre-Amplifier Board Layout  
10. Adjust the HVPS fine adjustment such that the NORM PMT value is 3600-3700 mV.  
The fine adjustment typically increments the NORM PMT value by about 30 mV.  
It may be necessary to go back and forth between coarse and fine adjustments if the  
proper value is at the threshold of the min/max coarse setting.  
Note  
Do not overload the PMT by accidentally setting both adjustment  
switches to their maximum setting. Start at the lowest setting and  
increment slowly. Wait 10 seconds between adjustments..  
11. If the NORM PMT value set above is now between 3560-3640 mV, skip this step.  
Otherwise, adjust the NORM PMT value with the gain potentiometer down to  
3600±10 mV.  
This is the final very-fine adjustment.  
12. that during adjustments, the NORM PMT value may be fluctuating, as the analyzer  
continues to switch between NO and NOX streams as well as between measure and  
AutoZero modes.  
You may have to mentally average the values of NO and NOX response for this  
adjustment.  
13. Perform a software span calibration (Section 5.3, 7.4, or 7.6) to normalize the  
sensor response to its new PMT sensitivity.  
14. Review the slope and offset values, the slopes should be 1.000±0.300 and the  
offset values should be 0.0±20 mV (-20 to +150 mV is allowed).  
259  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.6.5. REPLACING THE PMT, HVPS OR TEC  
The photo multiplier tube (PMT) should last for the lifetime of the analyzer. However,  
in some cases, the high voltage power supply (HVPS) or the thermo-electric cooler  
(TEC) may fail. In case of PMT, HVPS or TEC failure, the sensor assembly needs to be  
opened in order to change one of these components. Refer to Figure 7-18 for the  
structure of the T200H/M sensor assembly and follow the steps below for replacement  
of one of its components. We recommend to ensure that the PMT, HVPS or TEC  
modules are, indeed, faulty to prevent unnecessary opening of the sensor.  
CAUTION  
Although it is possible for a skilled technician to change the PMT or HVPS  
through the front panel with the sensor assembly mounted to the analyzer,  
we recommend to remove the entire assembly and carry this procedure out  
on a clean, anti-static table with the user wearing an anti-static wrist strap to  
prevent static discharge damage to the assembly or its circuits.  
1. Power down the analyzer, disconnect the power cord.  
2. Remove the cover and disconnect all pneumatic and electrical connections from the  
sensor assembly.  
3. If the TEC is to be replaced, remove the reaction cell assembly at this point by  
unscrewing two holding screws. This is necessary only if the PMT cold block is to  
be removed.  
This step is not necessary if the HVPS or the PMT only are exchanged.  
Figure 7-18:  
T200H/M Sensor Assembly  
260  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
Figure 7-19.  
3-Port Reaction Cell Oriented to the Sensor Housing  
4. Remove the two connectors on the PMT housing end plate facing towards the front  
panel.  
5. Remove the end plate itself (4 screws with plastic washers).  
6. Remove the dryer packages inside the PMT housing.  
7. Along with the plate, slide out the OPTIC TEST LED and the thermistor that  
measures the PMT temperature.  
8. Unscrew the PMT assembly, which is held to the cold block by two plastic screws.  
9. Discard the plastic screws and replace with new screws at the end of this procedure  
(the threads get stripped easily and it is recommended to use new screws).  
a) Carefully remove the assembly consisting of the HVPS, the gasket and the PMT.  
Both may be coated with a white, thermal conducting paste.  
b) Do not contaminate the inside of the housing with this grease, as it may  
contaminate the PMT glass tube on re-assembly.  
10. Change the PMT or the HVPS or both, clean the PMT glass tube with a clean, anti-  
static wipe and do not touch it after cleaning.  
11. If the cold block or TEC is to be changed:  
a) Disconnect the TEC driver board from the preamplifier board, remove the cooler  
fan duct (4 screws on its side) including the driver board.  
b) Disconnect the driver board from the TEC and set the sub-assembly aside.  
12. Remove the end plate with the cooling fins (4 screws) and slide out the PMT cold  
block assembly, which contains the TEC.  
13. Unscrew the TEC from the cooling fins and the cold block and replace it with a new  
unit.  
14. Re-assemble this TEC subassembly in reverse order.  
Make sure to use thermal grease between TEC and cooling fins as well as between  
TEC and cold block and that the side opening in the cold block will face the reaction  
cell when assembled.  
261  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
15. Evenly tighten the long mounting screws for good thermal conductivity.  
Note  
The thermo-electric cooler needs to be mounted flat to the heat sink. If  
there is any significant gap, the TEC might burn out. Make sure to  
apply the thermal pads before mounting it and tighten the screws  
evenly and cross-wise..  
16. Re-insert the TEC subassembly in reverse order.  
Make sure that the O-ring is placed properly and the assembly is tightened evenly.  
17. Re-insert the PMT/HVPS subassembly in reverse order and don’t forget the gasket  
between HVPS and PMT.  
a) Use new plastic screws to mount the PMT assembly on the PMT cold block.  
b) Improperly placed O-rings will cause leaks, which – in turn – cause moisture to  
condense on the inside of the cooler and likely cause a short in the HVPS.  
18. Reconnect the cables and the reaction cell (evenly tighten these screws).  
19. Replace the sensor assembly into the chassis and fasten with four screws and  
washers.  
20. Reconnect all electrical and pneumatic connections.  
21. Leak check the system.  
22. Power up the analyzer.  
23. Verify the basic operation of the analyzer using the ETEST and OTEST features or  
zero and span gases, then carry out a hardware calibration of the analyzer  
(Section 13) followed by a software calibration.  
262  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
7.7. REMOVING / REPLACING THE RELAY PCA FROM THE  
INSTRUMENT  
This is the most commonly used version of the Relay PCA. It includes a bank of solid  
state AC relays. This version is installed in analyzers where components such as AC  
powered heaters must be turned ON & OFF. A retainer plate is installed over the relay  
to keep them securely seated in their sockets.  
Retainer  
Mounting  
Screws  
AC Relay  
Retainer Plate  
Figure 7-20:  
Relay PCA with AC Relay Retainer In Place  
The Relay retainer plate installed on the relay PCA covers the lower right mounting  
screw of the relay PCA. Therefore, when removing the relay PCA, the retainer plate  
must be removed first.  
Mounting  
Screws  
AC Relay Retain Occludes  
Mounting Screw on  
P/N 045230200  
Figure 7-21:  
Relay PCA Mounting Screw Locations  
263  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
7.8. FREQUENTLY ASKED QUESTIONS  
The following list contains some of the most commonly asked questions relating to the  
Model T200H/M NOx Analyzer.  
QUESTION  
ANSWER  
Most problems related to Internet communications via the Ethernet card will  
be due to problems external to the instrument (e.g. bad network wiring or  
connections, failed routers, malfunctioning servers, etc.) However, there  
are several symptoms that indicate the problem may be with the Ethernet  
card itself. If neither of the Ethernet cable’s two status LED’s (located on the  
back of the cable connector) is lit while the instrument is connected to a  
network:  
Why does the instrument not  
appear on the LAN or Internet?  
Verify that the instrument is being connected to an active network jack.  
Check the internal cable connection between the Ethernet card and the  
CPU board.  
Why does the ENTR button  
Sometimes the ENTR button will disappear if you select a setting that is  
sometimes disappear on the front invalid or out of the allowable range for that parameter, such as trying to set  
panel display?  
the 24-hour clock to 25:00:00 or a reporting range outside the specified  
limits. Once you adjust the setting to an allowable value, the ENTR button  
will re-appear.  
Why is the ZERO or SPAN button The T200H/M disables these buttons when the span or zero value entered  
not displayed during calibration?  
by the user is too different from the gas concentration actual measured  
value at the time. This is to prevent the accidental recalibration of the  
analyzer to an out-of-range response curve.  
EXAMPLE: The span set point is 80 ppm and the measurement response  
is only 5 ppm. Section 7 describes this in detail.  
Why does the analyzer not  
respond to span gas?  
There are several reasons why this can happen. Section 10.3.2 has some  
possible answers to this question.  
Can I automate the calibration of  
my analyzer?  
Any analyzer with zero/span valve or IZS option can be automatically  
calibrated using the instrument’s AutoCal feature.  
What do I do if the concentration  
on the instrument's front panel  
display does not match the value  
This most commonly occurs for one of the following reasons: (1) a  
difference in circuit ground between the analyzer and the data logger or a  
wiring problem; (2) a scale problem with the input to the data logger. The  
recorded or displayed on my data analog outputs of the analyzer can be manually calibrated to compensate  
logger even if both instruments  
are properly calibrated?  
for either or both of these effects, see Section 6.13.4; analog outputs are  
not calibrated, which can happen after a firmware upgrade (Section 6.13.5).  
How do I measure the sample  
flow?  
Sample flow is measured by attaching a calibrated flow meter to the sample  
inlet port when the instrument is operating.  
For the T200H in its basic configuration, the sample flow should be  
290 cm³/min 10%.  
For the T200M in its basic configuration, the sample flow should be  
250 cm³/min 10%.  
See Table 9-3 for more detailed information about gas flow rates.  
Section 7 includes detailed instructions on performing a check of the  
sample gas flow.  
264  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Troubleshooting & Repair  
QUESTION  
ANSWER  
Can I use the DAS system in  
place of a strip chart recorder or  
data logger?  
Yes. Section 4.7 describes the setup and operation of the DAS system in  
detail.  
How often do I need to change  
the particulate filter?  
Once per week or as needed. Table 6-1 contains a maintenance schedule  
listing the most important, regular maintenance tasks. Highly polluted  
sample air may require more frequent changes.  
How long does the sample pump  
last?  
The sample pump should last one to two years and the pump head should  
be replaced when necessary. Use the RCEL pressure indicator on the front  
panel to see if the pump needs replacement.  
If this value goes above 10 in-Hg-A, on average, the pump head needs to  
be rebuilt.  
Why does my RS-232 serial  
connection not work?  
There are several possible reasons:  
The wrong cable, please use the provided or a generic “straight-  
through” cable (do not use a “null-modem” type cable),  
The DCE/DTE switch on the back of the analyzer is not set properly;  
make sure that both green and red lights are on,  
The baud rate of the analyzer’s COM port does not match that of the  
serial port of your computer/data logger. See Section 11.5.11 more  
trouble-shooting information.  
7.9. TECHNICAL ASSISTANCE  
If this manual and its trouble-shooting / repair sections do not solve your problems,  
technical assistance may be obtained from:  
Teledyne-API, Technical Support  
9480 Carroll Park Drive, San Diego, CA 92121  
Phone: +1 858 657 9800 or 1-800 324 5190  
Fax: +1 858 657 9816  
Before you contact Technical Support, fill out the problem report form in Appendix C,  
which is also available online for electronic submission at http://www.teledyne-  
api.com/forms/.  
265  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Troubleshooting & Repair  
Teledyne API - Model T200H/T200M Operation Manual  
This page intentionally left blank.  
266  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
8. PRINCIPLES OF OPERATION  
The T200H/M Nitrogen Oxides Analyzer is a microprocessor controlled instrument that  
determines the concentration of nitric oxide (NO), total nitrogen oxides (NOX, the sum  
of NO and NO2) and nitrogen dioxide (NO2) in a sample gas drawn through the  
instrument. It requires that sample and calibration gases are supplied at ambient  
atmospheric pressure in order to establish a constant gas flow through the reaction cell  
where the sample gas is exposed to ozone (O3), initiating a chemical reaction that gives  
off light (chemiluminescence).  
The instrument measures the amount of  
chemiluminescence to determine the amount of NO in the sample gas. A catalytic-  
reactive converter converts any NO2 in the sample gas to NO, which is then – including  
the NO in the sample gas – is then reported as NOX. NO2 is calculated as the difference  
between NOX and NO.  
Calibration of the instrument is performed in software and usually does not require  
physical adjustments to the instrument. During calibration, the microprocessor measures  
the sensor output signal when gases with known amounts of NO or NO2 are supplied  
and stores these results in memory. The microprocessor uses these calibration values  
along with the signal from the sample gas and data of the current temperature and  
pressure of the gas to calculate a final NOX concentration.  
The concentration values and the original information from which it was calculated are  
stored in the unit’s internal data acquisition system (DAS Section 4.7.2) and are reported  
to the user through a vacuum fluorescence display or several output ports.  
8.1. MEASUREMENT PRINCIPLE  
8.1.1. CHEMILUMINESCENCE  
The principle of the T200H/M’s measurement method is the detection of chemilumi-  
nescence, which occurs when nitrogen oxide (NO) reacts with ozone (O3). This reaction  
is a two-step process. In the first step, one molecule of NO and one molecule of O3  
collide and chemically react to produce one molecule of oxygen (O2) and one molecule  
of nitrogen dioxide (NO2). Some of the NO2 retains a certain amount of excess energy  
from the collision and, hence, remains in an excited state, which means that one of the  
electrons of the NO2 molecule resides in a higher energy state than is normal (ded by an  
asterisk in Equation 8-1).  
NO +O3 NO2* +O2  
Equation 8-1  
Thermodynamics requires that systems seek the lowest stable energy state, hence, the  
NO2 molecule quickly returns to its ground state in a subsequent step, releasing the  
excess energy in form of a quantum of light (h) with wavelengths between 600 and  
3000 nm, with a peak at about 1200 nm (Equation 9-2, Figure 8-1).  
267  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
NO2* NO2 +hν  
(Equation 9-2)  
All things being constant, the relationship between the amount of NO present in the  
reaction cell and the amount of light emitted from the reaction is very linear. More NO  
produces more light, which can be measured with a light-sensitive sensor in the near-  
infrared spectrum (Figure 8-1). In order to maximize the yield of reaction (1), the  
T200H/M supplies the reaction cell with a large, constant excess of ozone (about 3000-  
5000 ppm) from the internal ozone generator.  
Model 200E Instrument Response  
Intensity  
140 a.u.  
120 a.u.  
NO + O3 Emission Spectrum  
100 a.u.  
80 a.u.  
60 a.u.  
40 a.u.  
PMT  
Response  
Optical Hi-Pass Filter Performance  
20 a.u.  
0 a.u.  
0.5µm  
0.7µm  
0.9µm  
1.1µm  
1.3µm  
1.5µm  
1.7µm  
1.9µm  
Wavelength  
M200EH/EM  
Sensitivity Window  
Figure 8-1:  
T200H/M Sensitivity Spectrum  
However, only about 20% of the NO2 that is formed through reaction 10-1 is in the  
excited state. In addition, the excited NO2 can collide with another collision partner M  
in the reaction cell (mostly other molecules but also cell walls) and transfer its excess  
energy to its collision partner without emitting any light at all (Equation 9-3). In fact, by  
far the largest portion of the NO2* returns to the ground state this way, leaving only a  
few percent yield of usable chemiluminescence.  
NO2* +M NO2 +M  
(Equation 9-3)  
In order to enhance the light yield of the reaction, the reaction cell is maintained at  
reduced pressure. The probability of a collision between the NO2* molecule and a  
collision partner M increases proportionally with the reaction cell pressure. This non-  
radiating collision with the NO2* molecules is usually referred to as quenching, an  
unwanted process further described in Section 8.2.4.2.  
268  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.1.2. NOX AND NO2 DETERMINATION  
The only gas that is truly measured in the T200H/M is NO. Any NO2 contained in the  
gas is not detected in the above process since NO2 does not react with O3 to undergo  
chemiluminescence.  
In order to measure the concentration of NO or NOX (which is defined here as the sum  
of NO and NO2 in the sample gas), the T200H/M periodically switches the sample gas  
stream through a converter cartridge filled with molybdenum (Mo, “moly”) chips heated  
to a temperature of 315° C. The heated molybdenum reacts with NO2 in the sample gas  
and produces a variety of molybdenum oxides and NO according to Equation 9-4.  
xNO2 yMoxNO MoyOz (at 315C)  
(Equation 9-4)  
Once the NO2 in the sample gas has been converted to NO, it is routed to the reaction  
cell where it undergoes the chemiluminescence reaction described in Equations 9-1 and  
9-2.  
Figure 8-2:  
NO2 Conversion Principle  
By converting the NO2 in the sample gas into NO, the analyzer can measure the total  
NOX (NO+NO2) content of the sample gas. By switching the NO2 converter in and out  
of the sample gas stream every 6 - 10 seconds, the T200H/M analyzer is able to quasi-  
continuously measure both the NO and the total NOX content.  
The NO2 concentration, finally, is not measured but calculated by simply subtracting the  
known NO content of the sample gas from the known NOX content.  
269  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.2. CHEMILUMINESCENCE DETECTION  
8.2.1. THE PHOTO MULTIPLIER TUBE  
The T200H/M uses a photo-multiplier tube (PMT) to detect the amount of light created  
by the NO and O3 reaction in the reaction cell.  
A PMT is typically a vacuum tube containing a variety of specially designed electrodes.  
Photons enter the PMT and strike a negatively charged photo cathode causing it to emit  
electrons. These electrons are accelerated by an applied high voltage and multiply  
through a sequence of such acceleration steps (dynodes) until a useable current signal is  
generated. This current increases or decreases with the amount of detected light  
(Section 10.4.3 for more details), is converted to a voltage and amplified by the  
preamplifier board and then reported to the motherboard’s analog inputs.  
Figure 8-3:  
Reaction Cell with PMT Tube  
8.2.2. OPTICAL FILTER  
Another critical component in the method by which your T200H/M detects  
chemiluminescence is the optical filter that lies between the reaction cell and the PMT  
(Figure: 10-3). This filter is a high pass filter that is only transparent to wavelengths of  
light above 645 nm. In conjunction with the response characteristics of the PMT, this  
filter creates a very narrow window of wavelengths of light to which the T200H/M will  
respond (refer to Figure 8-1).  
The narrow band of sensitivity allows the T200H/M to ignore extraneous light and  
radiation that might interfere with the T200H/M’s measurement. For instance, some  
oxides of sulfur can also undergo chemiluminescence when in contact with O3 but emit  
light at shorter wavelengths (~ 260 nm to 480 nm).  
270  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.2.3. AUTO ZERO  
Inherent in the operation of any PMT is a certain amount of noise. This is due to a  
variety of factors such as black body infrared radiation given off by the metal  
components of the reaction cell, unit to unit variations in the PMT units and even the  
constant universal background radiation that surrounds us at all times. In order to  
reduce this amount of noise and offset, the PMT is kept at a constant 7° C (45° F) by a  
thermo-electric cooler (TEC).  
While this intrinsic noise and offset is significantly reduced by cooling the PMT, it is  
not eradicated. To determine how much noise remains, the T200H/M diverts the sample  
gas flow directly to the exhaust manifold without passing the reaction cell once every  
minute for about 5 seconds (Figure 8-4). During this time, only O3 is present in the  
reaction cell, effectively turning off the chemiluminescence reaction. Once the chamber  
is completely dark, the T200H/M records the output of the PMT and keeps a running  
average of these AZERO values. This average offset value is subtracted from the raw  
PMT readings while the instrument is measuring NO and NOX to arrive at a auto-zero  
corrected reading.  
Figure 8-4:  
Reaction Cell During the AutoZero Cycle  
271  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.2.4. MEASUREMENT INTERFERENCES  
It should be d that the chemiluminescence method is subject to interferences from a  
number of sources. The T200H/M has been successfully tested for its ability to reject  
interference from most of these sources. Table 8-1 lists the most important gases, which  
may interfere with the detection of NO in the T200H/M.  
8.2.4.1. Direct Interference  
Some gases can directly alter the amount of light detected by the PMT due to  
chemiluminescence in the reaction cell. This can either be a gas that undergoes  
chemiluminescence by reacting with O3 in the reaction cell or a gas that reacts with  
other compounds and produces excess NO upstream of the reaction cell.  
8.2.4.2. Third Body Quenching  
As shown in Equation 9-3, other molecules in the reaction cell can collide with the  
*
excited NO2 , preventing the chemiluminescence of Equation 9-2, a process known as  
quenching. CO2 and H2O are the most common quenching interferences, but N2 and O2  
also contribute to this interference type.  
Quenching is an unwanted phenomenon and the extent to which it occurs depends on the  
properties of the collision partner. larger, more polarized molecules such as H2O and  
CO2 quench NO chemiluminescence more effectively than smaller, less polar and  
electronically “harder” molecules such as N2 and O2.  
The influence of water vapor on the T200H/M measurement can be eliminated with an  
optional, internal sample gas dryer. The concentrations of N2 and O2 are virtually  
constant in ambient air measurements, hence provide a constant amount of quenching  
and the interference of varying CO2 amounts is negligible at low concentrations.  
The T200H and T200M analyzers are typically used in high CO2 concentration  
environments. The pneumatic setup of these two analyzer models minimizes the  
interference from CO2 such that the analyzers conform to the standards set forth by the  
US-EPA in Method 20 - NOx from Stationary Gas Turbines, available at  
http://www.epa.gov/ttn/emc/promgate.html  
272  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
Table 8-1:  
List of Interferents  
GAS  
CO2  
INTERFERENCE TYPE  
Dilution: Viscosity of CO2 molecules causes them to  
collect in aperture of Critical Flow Orifice altering flow special calibration methods must be performed to  
REJECTION METHOD  
If high concentrations of CO2 are suspected,  
rate of NO.  
account for the affects of the CO2.  
3rd Body Quenching: CO2 molecules collide with  
NO2* molecules absorbing excess energy kinetically  
and preventing emission of photons.  
Contact Teledyne API Technical Support depart-  
ment for details.  
Some SOX variants can also initiate a  
chemiluminescence reaction upon exposure to O3  
producing excess light.  
Wavelengths of light produced by  
chemiluminescence of SOX are screened out by  
the Optical Filter.  
Chemically reacts with NH3, O2 and H2O in O3  
generator to create (NH3)2SO4 (ammonium sulfate)  
and NH3NO2 (ammonium nitrate) which form opaque  
white deposits on optical filter window. Also forms  
highly corrosive HNO3 (Nitric Acid)  
Most of the ammonium sulfate and ammonium  
nitrate produced is removed from the sample gas  
by an air purifier located between the O3  
Generator and the reaction cell.  
SOX  
3rd Body quenching: SOX molecules collide with NO2* If high concentrations of SOX are suspected,  
molecules absorbing excess energy kinetically and  
preventing emission of photons.  
special calibration methods must be performed to  
account for the affects of the SO2.  
Contact Teledyne API Technical Support depart-  
ment for details.  
3rd Body quenching: H2O molecules collide with NO2* Analyzer’s operating in high humidity areas must  
molecules absorbing excess energy kinetically and  
preventing emission of photons.  
have some method of drying applied to the  
sample gas supply (Section 5.10 for more details).  
Chemically reacts with NH3 and SOX in O3 generator  
to create (NH3)2SO4 (ammonium sulfate) and  
NH3NO2 (ammonium nitrate) which form opaque  
white deposits on optical filter Window. Also forms  
highly corrosive HNO3 (nitric acid)  
Removed from the O3 gas stream by the Perma  
Pure® Dryer (Section 8.3.7 for more details).  
H20  
NH3  
Direct Interference: NH3 is converted to H2O and NO  
by the NO2 converter. Excess NO reacts with O3 in  
reaction cell creating excess chemiluminescence.  
If a high concentration of NH3 is suspected, steps  
must be taken to remove the NH3 from the sample  
gas prior to its entry into the NO2 converter.  
Chemically reacts with H2O, O2 and SOX in O3  
generator to create (NH3)2SO4 (ammonium sulfate)  
and NH3NO2 (ammonium nitrate) which form opaque  
white deposits on optical filter window. Also forms  
highly corrosive HNO3 (nitric acid).  
The Perma Pure® dryer built into the T200H/M is  
sufficient for removing typical ambient  
concentration levels of NH3.  
In cases with excessively high CO2 concentrations (larger than 0.5%), the effect can be  
calibrated out by using calibration gases with a CO2 content equal to the measured air.  
Only very high and highly variable CO2 concentrations will then be cause of measurable  
interference. For those applications, we recommend to use other analyzer models.  
Please consult sales or our website.  
8.2.4.3. Light Leaks  
The T200H/M sensitivity curve includes a small portion of the visible light spectrum  
(Figure 10-1), hence, it is important to make sure than the reaction cell is completely  
sealed with respect to light. To ensure this, all pneumatic tubing leading into the  
reaction cell is either opaque (vacuum exit tubing) in order to prevent light from entering  
the cell or light penetration is prevented by stainless steel filters and orifices (gas  
entries).  
273  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.3. PNEUMATIC OPERATION  
Note  
It is important that the sample airflow system is leak-tight and not  
pressurized over ambient pressure. Regular leak checks should be  
performed on the analyzer as described in the maintenance schedule,  
Table 6-1. Procedures for correctly performing leak checks are provided  
in Section 7.5  
8.3.1. PUMP AND EXHAUST MANIFOLD  
Note  
Relative Pressure versus absolute pressure. In this manual vacuum  
readings are given in inches of mercury absolute pressure (in-Hg-A), i.e.  
indicate an absolute pressure referenced against zero (a perfect vacuum).  
The gas flow for the T200H/M is created by an external pump (Figure 8-5) that is  
pneumatically connected through a 6.4 mm / 0.25” tube to the analyzer’s EXHAUST  
port located on the rear panel. This pump creates a vacuum of approximately 5 in-Hg-A  
at one standard liter/minute, which is provided to various pneumatic components by a  
vacuum manifold located just in front of the rear panel. Gas flow is created by keeping  
the analyzer’s sample gas inlet near ambient pressure, usually by means of a small vent  
installed in the sample line at the inlet, in effect pulling the gas through the instrument’s  
pneumatic systems.  
There are several advantages to this external pump / pull-through configuration.  
By using an external pump, it is possible to remove a significant source of acoustic  
noise and vibration from the immediate vicinity of the sensor. The PMT can act as a  
“microphone”, amplifying noise and vibration within the chassis. This is one of the  
main reasons, why the T200H/M has an external pump.  
Pumping heats and compresses the sample air, complicating the measurement  
process if the pump is upstream.  
Most importantly, however, certain physical parts of the pump itself are made of  
materials that might chemically react with the sample gas. Placing the pump  
downstream of the reaction cell avoids these problems.  
274  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
Figure 8-5:  
External Pump Pack  
Finally, the T200H/M requires a steady, high under-pressure, which cannot be achieved  
reliably over extended periods of time with small vacuum pumps. The external pump  
used for the T200H/M has a very long lifetime and duty cycle and provides a very good  
vacuum for its entire lifetime. However, the pump is too large to fit into the chassis of  
the analyzer.  
8.3.2. SAMPLE GAS FLOW  
The sample gas is the most critical flow path in the analyzer, as the medium has to be  
routed through a variety of valves and tubes for the measurement of zero offset and  
concentrations of both NO and NOX (and possibly the drying of the gas if the optional  
sample dryer is installed). At any point before and in the reaction cell, the integrity of  
the sample gas cannot be compromised.  
Sample gas flow in the T200H/M analyzer is not a directly measured value, but is rather  
calculated from the sample pressure using the flow principle across a critical orifice. In  
general, the differential pressure ratio between sample pressure and reaction cell  
pressure needs to exceed 2:1 to allow critical flow. The actual flow rate is then only  
dependent on the size of the orifice and the upstream pressure. Refer to Section 8.3.3  
for a detailed description of the instrument’s method of gas flow rate control.  
275  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.3.2.1. NO/NOx and AutoZero cycles  
For the routing of the sample gas flow, the analyzer uses a variety of valves. The  
NO/NOX valve directs the sample gas either directly to the reaction cell or through the  
unit’s NO2 converter, alternating every ~4 s. The AutoZero valve directs the sample gas  
stream to completely bypass the reaction cell for dark noise measurement once every  
minute, which is then subtracted as a measurement offset from the raw concentration  
signal. The valve cycle phases are summarized in the following table.  
Table 8-2: T200H/M Valve Cycle Phases  
NO/ NOX  
VALVE  
STATUS  
AUTOZERO  
VALVE  
STATUS  
TIME  
INDEX  
PHASE  
ACTIVITY  
FIGURE  
Wait period (NO dwell time).  
Ensures reaction cell has been  
flushed of previous gas.  
0 - 2 s  
2 - 4 s  
4 – 6 s  
6 – 8 s  
Open to  
AutoZero  
valve  
NO  
Measure  
Open to  
reaction cell  
Analyzer measures chemilumi-  
nescence in reaction cell.  
Wait period (NOX dwell time).  
Ensures reaction cell has been  
flushed of previous gas.  
Open to  
NO2  
converter  
NOX  
Measure  
Open to  
reaction cell  
Analyzer measures NO + O3 chemi-  
luminescence in reaction cell.  
Cycle repeats every ~8 seconds  
Wait period (AZERO dwell time).  
Ensures reaction cell has been  
flushed of sample gas and chemi-  
luminescence reaction is stopped.  
0 – 4 s  
4 - 6 s  
Open to  
AutoZero  
valve  
Open to  
vacuum  
manifold  
AutoZero  
Analyzer measures background  
noise without sample gas  
Cycle repeats every minute  
8.3.3. FLOW RATE CONTROL - CRITICAL FLOW ORIFICES  
The Model T200H/M analyzers use special flow control assemblies (Figure 8-8) located  
at various locations within the instrument to maintain constant flow rates for both the O3  
supply air and the sample gas. These assemblies consists of:  
A critical flow orifice.  
Two o-rings: Located just before and after the critical flow orifice, the o-rings seal  
the gap between the walls of assembly housing and the critical flow orifice.  
A spring: Applies mechanical force needed to form the seal between the o-rings, the  
critical flow orifice and the assembly housing.  
The figures that follow highlight the location of these flow control assemblies:  
276  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
Figure 8-6:  
Location of Gas Flow Control Assemblies for T200H  
277  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
NO/NOX  
VALVE  
FLOW PRESSURE  
SENSOR PCA  
SAMPLE  
GAS  
INLET  
NO2  
Converter  
VACUUM  
PRESSURE  
SENSOR  
SAMPLE  
PRESSURE  
SENSOR  
EXHAUST  
GAS  
OUTLET  
Gas Flow  
Control  
AUTOZERO  
VALVE  
Assemblies  
O3  
GENERATOR  
Orifice Dia.  
0.007"  
Orifice Dia.  
0.007"  
REACTION  
CELL  
O3  
Scrubber  
Orifice Dia.  
0.004"  
PMT  
PUMP  
RMAPURE  
YER  
INSTRUMENT CHASSIS  
Figure 8-7:  
Location of Gas Flow Control Assemblies for T200M  
Note  
Location of flow control assemblies in the T200H/M with zero/span option  
50 installed are the same as shown in Figure 8-6 and Figure 8-7.  
278  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.3.3.1. Critical Flow Orifice  
The most important component of the flow control assemblies is the critical flow orifice.  
Critical flow orifices are a remarkably simple way to regulate stable gas flow rates.  
They operate without moving parts by taking advantage of the laws of fluid dynamics.  
By restricting the flow of gas though the orifice, a pressure differential is created. This  
pressure differential combined with the action of the analyzer’s pump draws the gas  
through the orifice.  
As the pressure on the downstream side of the orifice (the pump side) continues to drop,  
the speed that the gas flows though the orifice continues to rise. Once the ratio of  
upstream pressure to downstream pressure is greater than 2:1, the velocity of the gas  
through the orifice reaches the speed of sound. As long as that ratio stays at least 2:1 the  
gas flow rate is unaffected by any fluctuations, surges, or changes in downstream  
pressure because such variations only travel at the speed of sound themselves and are  
therefore cancelled out by the sonic shockwave at the downstream exit of the critical  
flow orifice.  
Figure 8-8:  
Flow Control Assembly & Critical Flow Orifice  
The actual flow rate of gas through the orifice (volume of gas per unit of time), depends  
on the size and shape of the aperture in the orifice. The larger the hole, the more gas  
molecules, moving at the speed of sound, pass through the orifice.  
With nominal pressures of 28 and 4 in-Hg-A for the sample and reaction cell pressures,  
respectively the necessary ratio of sample to reaction cell pressure of 2:1 is largely  
exceeded and accommodates a wide range of possible variability in atmospheric  
pressure and pump degradation extending the useful life of the pump. Once the pump  
does degrades to the point where the vacuum pressure exceeds 14 in-Hg-A so that the  
ratio between sample and vacuum pressures is less than 2:1 a critical flow rate can no  
longer be maintained. At this point, the instrument will display “XXXX" indicating an  
invalid sample flow rate.  
279  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
The following table lists the gas flow rates of the critical flow orifices in the standard  
T200H/M  
Table 8-3: T200H/M Critical Flow Orifice Diameters and Gas Flow Rates  
NOMINAL FLOWRATE  
(cm³/min)  
ORIFICE DIAMETER  
LOCATION  
PURPOSE  
T200H  
0.003”  
T200M  
0.007”  
T200H  
T200M  
250  
Bypass manifold 1 out  
to NO/NOx valve and  
NO2 converter  
Controls rate of flow of sample gas into the NO2  
converter and reaction cell.  
40  
Controls rate of sample gas flow that bypasses  
the analyzer when bypassing the reaction cell  
during the auto-zero cycle.  
Vacuum manifold:  
0.007”  
0.004"  
N/A  
250  
290  
80  
N/A  
250  
80  
Bypass manifold 1 Port  
TOTAL INLET GAS FLOW – Standard Configuration  
Controls rate of flow of zero purge gas through  
the O2 sensor (when installed and enabled) when  
inactive.  
Vacuum manifold: O2  
sensor port  
0.004"  
TOTAL INLET GAS FLOW – With O2 Sensor Option  
370  
330  
O3 supply inlet of  
reaction cell.  
Controls rate of flow of ozone gas into the  
reaction cell.  
0.007”  
0.004"  
0.007”  
0.004"  
250  
80  
250  
80  
Dry air return of Perma Controls flow rate of dry air return / purge air of  
Pure® dryer  
the dryer.  
1
Bypass manifold is built into the 3-port reaction cell.  
In addition to controlling the gas flows, the critical flow orifices at the inlets of the  
reaction cell also maintain an under-pressure inside the reaction cell, effectively  
reducing the number of molecules in the chamber and therefore increasing the  
chemiluminescence yield as the likelihood of third body quenching is reduced (Section  
8.2.4.1). The T200H/M sensitivity reaches a peak at about 2 in-Hg-A, below which the  
sensitivity drops due to a low number of molecules and decreased yield in the  
chemiluminescence reaction.  
EFFECT OF TEMPERATURE ON CRITICAL FLOW  
Changes in temperature will cause the critical flow orifice materials to expand or  
contract. Even though these changes are extremely small, they can alter the diameter of  
the critical flow orifice enough to cause noticeable changes in the flow rate though the  
orifice. To alleviate this problem the two most important of the flow assemblies (those  
controlling the sample gas an O3 gas flow)in the T200H/M are maintained at a constant  
temperature.  
8.3.4. SAMPLE PARTICULATE FILTER  
To remove particles in the sample gas, the analyzer is equipped with a PTFE membrane  
filter of 47 mm diameter (also referred to as the sample filter) with a 1 µm pore size.  
The filter is accessible through the front panel, which folds down (after removal of the  
CE Mark safety screw), and should be changed according to the maintenance schedule  
in Table 9-1.  
280  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.3.5. OZONE GAS AIR FLOW  
The excess ozone needed for reaction with NO in the reaction cell is generated inside the  
analyzer because of the instability and toxicity of ozone. Besides the ozone generator  
itself, this requires a dry air supply and filtering of the gas before it is introduced into the  
reaction cell. Due to its toxicity and aggressive chemical behavior, O3 must also be  
removed from the gas stream before it can be vented through the exhaust outlet.  
In contrast to the sample flow, the ozone flow is measured with a mass flow sensor,  
which is mounted on the pneumatic sensor board, just behind the PMT sensor assembly.  
This mass flow sensor has a full scale range of 0-1000 cm³/min and can be calibrated  
through software to its span point (Section 4.13.7.5). As the flow value displayed on the  
front panel is an actual measurement (and not a calculated value), the flow variability  
may be higher than that of the sample flow, which is based on a calculation from (more  
stable) differential pressures. On the other hand, the drift, i.e. long-term change, in the  
ozone flow rate may be higher and usually indicates a flow problem. As with all other  
test parameters, we recommend to monitor the ozone flow over time for predictive  
diagnostics and maintenance evaluation.  
CAUTION  
Ozone (O3) is a toxic gas. Obtain a Material and Safety Data Sheet  
(MSDS) for this gas. Read and rigorously follow the safety guide-  
lines described there. Always make sure that the plumbing of the  
O3 generation and supply system is maintained and leak-free.  
281  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.3.6. O3 GENERATOR  
The T200H/M uses a corona discharge (CD) tube for creating its O3. Corona discharge  
generation is capable of producing high concentrations of ozone efficiently and with low  
excess heat. Although there are many cell designs, the fundamental principle remains  
the same (Figure 8-9).  
Figure 8-9:  
Ozone Generator Principle  
The T200H/M utilizes a dual-dielectric design. This method utilizes a glass tube with  
hollow walls. The outermost and innermost surfaces are coated with electrically  
conductive material. The air flows through the glass tube, between the two conductive  
coatings, in effect creating a capacitor with the air and glass acting as the dielectric. The  
layers of glass also separate the conductive surfaces from the air stream to prevent  
reaction with the O3. As the capacitor charges and discharges, electrons are created and  
accelerated across the air gap and collide with the O2 molecules in the air stream  
splitting them into elemental oxygen. Some of these oxygen atoms recombine with O2  
to O3.  
The quantity of ozone produced is dependent on factors such as the voltage and  
frequency of the alternating current applied to the CD cells. When enough high-energy  
electrons are produced to ionize the O2 molecules, a light emitting, gaseous plasma is  
formed, which is commonly referred to as a corona, hence the name corona discharge  
generator.  
282  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.3.7. PERMA PURE® DRYER  
The air supplied to the O3 generation system needs to be as dry as possible. Normal  
room air contains a certain amount of water vapor, which greatly diminishes the yield of  
ozone produced by the ozone generator. Also, water can react with other chemicals  
inside the O3 Generator to produce chemicals that damage the optical filter located in the  
reaction cell (Table 10-1) such as ammonium sulfate or highly corrosive nitric acid.  
To accomplish this task the T200H/M uses a Perma Pure® single tube permeation dryer.  
The dryer consists of a single tube of Nafion® , a co-polymer similar to Teflon® that  
absorbs water very well but not other chemicals. The Nafion® tube is mounted within an  
outer, flexible plastic tube. As gas flows through the inner Nafion® tube, water vapor is  
absorbed into the membrane walls. The absorbed water is transported through the  
membrane wall and evaporates into the dry, purge gas flowing through the outer tube,  
countercurrent to the gas in the inner tube (Figure 8-10).  
Figure 8-10:  
Semi-Permeable Membrane Drying Process  
This process is called per-evaporation and is driven by the humidity gradient between  
the inner and outer tubes as well as the flow rates and pressure difference between inner  
and outer tubing. Unlike micro-porous membrane permeation, which transfers water  
through a relatively slow diffusion process, per-evaporation is a simple kinetic reaction.  
Therefore, the drying process occurs quickly, typically within milliseconds. The first  
step in this process is a chemical reaction between the molecules of the Nafion® material  
and water, other chemical components of the gases to be dried are usually unaffected.  
The chemical reaction is based on hydrogen bonds between the water molecule and the  
Nafion material. Other small polar gases that are capable of hydrogen bonds can be  
absorbed this way, too, such as ammonia (NH3) and some low molecular amines. The  
gases of interest, NO and NO2, do not get absorbed and pass the dryer unaltered.  
To provide a dry purge gas for the outer side of the Nafion tube, the T200H/M returns  
some of the dried air from the inner tube to the outer tube (Figure 8-11). When the  
analyzer is first started, the humidity gradient between the inner and outer tubes is not  
283  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
very large and the dryer’s efficiency is low at first but improves as this cycle reduces the  
moisture in the sample gas and settles at a minimum humidity.  
Figure 8-11:  
T200H/M Perma Pure® Dryer  
Just like on startup, if the instrument is turned on after having been off for more than 30  
minutes, it takes a certain amount of time for the humidity gradient to become large  
enough for the Perma Pure® Dryer to adequately dry the air. In this case, called a cold  
start, the O3 Generator is not turned on for 30 minutes. When rebooting the instrument  
within less than 30 minutes of power-down, the generator is turned on immediately.  
The Perma Pure® Dryer used in the T200H/M is capable of adequately drying ambient  
air to a dew point of -5˚C (~4000 ppm residual H2O) at a flow rate of 1 standard liter  
per minute (slpm) or down to -15˚C (~1600 ppm residual H2O) at 0.5 slpm. The  
Perma Pure® Dryer is also capable of removing ammonia from the sample gas up to  
concentrations of approximately 1 ppm.  
284  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.3.8. OZONE SUPPLY AIR FILTER  
The T200H/M uses ambient air as the supply gas for the O3 generator and may produce  
a variety of byproducts. Small amounts of water, ammonia and various sulfur oxides  
can combine to create ammonium sulfate, ammonium nitrate, nitric acid and other  
compounds. Whereas sulfates and nitrates can create powdery residues inside the  
reaction cell causing sensitivity drift, nitric acid is a very aggressive compound, which  
can deteriorate the analyzer’s components. In order to remove these chemical  
byproducts from the O3 gas stream, the output of the O3 generator flows through a  
special filter between the generator and the reaction cell.  
Any NOX that may be produced in the generator (from reaction of O2 or O3 and N2 in the  
air) and may cause an artifact in the measurement, is calibrated out through the Auto-  
zero functionality, which checks the background signal of the O3 stream only once per  
minute.  
8.3.9. OZONE SCRUBBER  
Even though ozone is unstable and typically reacts to form O2, the break-down is not  
quite fast enough to ensure that it is completely removed from the exhaust gas stream of  
the T200H/M by the time the gas exits the analyzer. Due to the high toxicity and  
reactivity of O3, a special catalytic ozone scrubber is used to remove all of the O3 exiting  
the reaction cell. Besides its efficient destruction of O3, this catalyst does not produce  
any toxic or hazardous gases as it only converts ozone to oxygen.  
The O3 scrubber is located inside the NO2 converter housing next to the NO2 converter  
in order to utilize residual heat given of by the converter heater. Even though the  
catalyst is 100% efficient at scrubbing ozone at room temperature, heating it  
significantly reduces the necessary residence time (the amount of time the gas must be in  
contact with the catalyst) for 100% efficiency and full efficiency can be maintained at  
higher gas flow rates. As this is a true catalytic converter, there are no maintenance  
requirements as would be required for charcoal-based scrubbers.  
A certain amount of fine, black dust may exit the catalyst, particularly if the analyzer is  
subjected to sudden pressure drops (for example, when disconnecting the running pump  
without letting the analyzer properly and slowly equilibrate to ambient pressure). To  
avoid the dust from entering the reaction cell or the pump, the scrubber is equipped with  
sintered stainless steel filters of 20 µm pore size on either end and on some models, an  
additional dust filter may be attached to the exhaust port.  
285  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.3.10. PNEUMATIC SENSORS  
Note  
The T200H/M displays all pressures in inches of mercury absolute (in-Hg-  
A), i.e. absolute pressure referenced against zero (a perfect vacuum).  
The T200H/M uses three pneumatic sensors to verify gas streams. These sensors are  
located on a printed circuit assembly, called the pneumatic pressure/flow sensor board,  
located just behind the sensor assembly.  
8.3.10.1. Vacuum Manifold  
The vacuum manifold is the central exit port for all analyzer pneumatics. All gas  
streams of the analyzer exit through this assembly and connect to the instrument’s pump.  
Figure 8-12 shows the standard configuration. Configurations will vary depending on  
the optional equipment that is installed. An IZS option, for example, will add another  
FT8 connector and orifice assembly to the manifold, an optional sample dryer may add a  
Tee-fitting so that two ¼” tubes can be connected to the same port.  
At this time, the vacuum manifold does not yet support the orifice holder shown in  
Figure 6-5. To exchange the critical orifice installed in the vacuum manifold, the user  
needs to either blow the orifice out with reversed pressure or remove the entire manifold  
for this task. However, orifices installed in the vacuum manifold should not have to be  
cleaned under normal circumstances.  
Figure 8-12:  
Vacuum Manifold  
8.3.10.2. Sample Pressure Sensor  
An absolute pressure transducer connected to the input of the NO/NOX valve is used to  
measure the pressure of the sample gas before it enters the analyzer’s reaction cell. This  
is the “upstream” pressure mentioned above, which is used to compute sample flow rate.  
In conjunction with the vacuum pressure sensor, it is also used to validate the critical  
flow condition (2:1 pressure ratio) through the sample gas critical flow orifice (Section  
286  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.3.3). If the temperature/pressure compensation (TPC) feature is turned on (Section  
8.8.3), the output of this sensor is also used to supply pressure data for that calculation.  
The actual pressure value is viewable through the analyzer’s front panel display as the  
test function SAMP. The flow rate of the sample gas is displayed as SAMP FLW.  
8.3.10.3. Vacuum Pressure Sensor  
An absolute pressure transducer connected to the exhaust manifold is used to measure  
the pressure downstream from and inside the instrument’s reaction cell. The output of  
the sensor is used by the CPU to calculate the pressure differential between the gas  
upstream of the reaction cell and the gas downstream from it and is also used as the  
main diagnostic for proper pump operation. If the ratio between the upstream pressure  
and the downstream pressure falls below 2:1, a warning message (SAMPLE FLOW  
WARN) is displayed on the analyzer’s front panel (Section 6.2.2) and the sample flow  
rate will display XXXX instead of an actual value. If this pressure exceeds 10 in-Hg-A,  
an RCEL PRESSURE WARNING Is issued, even though the analyzer will continue to  
calculate a sample flow up to ~14 in Hg.  
Also, if the temperature/pressure compensation (TPC) feature is turned on (Section  
8.8.3), the output of this sensor is used to supply pressure data for that calculation. This  
measurement is viewable through the analyzer’s front panel as the test function RCEL.  
8.3.10.4. O3 Supply Air Flow Sensor  
A mass flow meter connected between the Perma Pure® dryer and the O3 generator  
measures the flow rate of O3 supply air through the analyzer. This information is used  
to validate the O3 gas flow rate. If the flow rate exceeds ±15% of the nominal flow rate  
(250 cm³/min), a warning message OZONE FLOW WARNING is displayed on the  
analyzer’s front panel (Section 6.2.2) and the O3 generator is turned off. As second  
warning, OZONE GEN OFF, is displayed. This flow measurement is viewable  
through instrument’s front panel display as the test function OZONE FL.  
8.3.11. DILUTION MANIFOLD  
Certain applications require to measure NOX in sample gases that do not contain any  
oxygen. However, the molybdenum NO2 converter requires a minimum amount of  
oxygen to operate properly and to ensure constant conversion efficiency. For these  
special applications, the analyzer may be equipped with a dilution manifold (Figure  
8-13) to provide the instrument with an internal sample stream that contains about 2.5%  
O2. This manifold is mounted between converter housing and vacuum manifold on a  
small mounting bracket. If the dilution manifold is to be mounted in the T200H/M  
analyzer.  
The manifold is equipped with two orifice holders that control the flow of the O2-free  
sample gas and the bleeds in a small amount of zero air before the combined sample  
stream goes to the NO/NOX valve for measurement. The zero air is produced by an  
external zero air scrubber cartridge, mounted on the rear panel.  
The dilution manifold is not temperature controlled, although the residual heat of the  
NO2 converter housing provides some temperature stability. Tight temperature stability  
is not critical to the dilution application.  
287  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
Figure 8-13:  
Dilution Manifold  
Please inquire with Teledyne-API sales if the analyzer can be modified to fit your  
application.  
8.4. OXYGEN SENSOR (OPT 65A) PRINCIPLES OF OPERATION  
8.4.1. PARAMAGNETIC MEASUREMENT OF O2  
The oxygen sensor used in the T200H/M analyzer utilizes the fact that oxygen is  
attracted into strong magnetic field (in contrast with most other gases) to obtain fast,  
accurate oxygen measurements.  
The sensor’s core is made up of two nitrogen filled glass spheres, which are mounted on  
a rotating suspension within a magnetic field (Figure 8-14). A mirror is mounted  
centrally on the suspension and light is shone onto the mirror, which reflects the light  
onto a pair of photocells that then generate a signal. The signal generated by the  
photocells is passed to a feedback loop, which outputs a current to a wire winding (in  
effect, a small DC electric motor) mounted on the suspended mirror.  
Oxygen from the sample stream is attracted into the magnetic field displacing the  
nitrogen filled spheres and causing the suspended mirror to rotate. This changes the  
amount of light reflected onto the photocells and therefore the output levels of the  
photocells. The feedback loop increases the amount of current fed into the wire winding  
in order to move the mirror back into its original position. The more O2 present, the  
more the mirror moves and the more current is fed into the wire winding by the feedback  
control loop.  
A sensor measures the amount of current generated by the feedback control loop which  
is directly proportional to the concentration of oxygen within the sample gas mixture  
288  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
Figure 8-14:  
Oxygen Sensor - Principle of Operation  
8.4.2. OPERATION WITHIN THE T200H/M ANALYZER  
The oxygen sensor option is transparently integrated into the core analyzer operation.  
All functions can be viewed or accessed through the front panel, just like the functions  
for NOX.  
The O2 concentration is displayed in the upper right-hand corner, alternating with  
NOX, NO and NO2 concentrations.  
Test functions for O2 slope and offset are viewable from the front panel along with  
the analyzer’s other test functions.  
O2 sensor calibration is performed via the front panel CAL function and is  
performed in a nearly identical manner as the standard NOX/NO calibration. See  
Section 5 for more details.  
Stability of the O2 sensor can be viewed (see 3.3.2.1)  
The O2 concentration range is 0-100% (user selectable) with 0.1% precision and  
accuracy and is available to be output via one of the instrument’s four user selectable  
analog outputs (see Section 6.13.4).  
The temperature of the O2 sensor is maintained at a constant 50° C by means of a PID  
loop and can be viewed on the front panel as test function O2 TEMP.  
The O2 sensor assembly itself does not have any serviceable parts and is enclosed in an  
insulated canister.  
8.4.3. PNEUMATIC OPERATION OF THE O2 SENSOR  
Pneumatically, the O2 sensor is connected after the particulate filter and draws a flow of  
about 80 cm³/min in addition to the normal sample flow rate (See Table 10.-3 for  
nominal sample inlet gas flow rates) and is separately controlled with its own critical  
flow orifice located inside the vacuum manifold.  
289  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.5. ELECTRONIC OPERATION  
Figure 8-15 shows a block diagram of the major electronic components of the T200H/M.  
Analog  
IN  
RS232  
Male  
COM2  
Female COM port  
USB  
Ethernet  
Analog Outputs  
A1  
A2  
A3  
A4  
Optional  
4-20 mA  
Touchscreen  
or USB  
Control Inputs:  
1 – 6  
USB  
Display  
Status Outputs:  
1 – 8  
(I2C Bus)  
LVDS  
transmitter board  
Analog  
Outputs  
(D/A)  
External  
Digital I/O)  
COM2 (RS232 or RS–485)  
PC 104  
CPU Card  
COM1 (RS–232 ONLY)  
A/D  
Converter(  
V/F)  
Power-Up  
Circuit  
Disk On  
Module  
Box  
Temp  
MOTHER  
BOARD  
Flash Chip  
PC 104  
Bus  
PUMP  
(ExternallyPowered)  
Analog  
Sensor Inputs  
Thermistor  
Interface  
Internal  
Digital I/O  
I2C Bus  
Pneumatic  
Sensor  
Board  
REACTION CELL  
TEMPERATURE  
I2C Status  
LED  
Sample  
Pressure  
Sensor  
RELAY  
BOARD  
CPU Status  
LED  
Vacuum  
Pressure  
Sensor  
MOLYBDENUM CONVERTER  
TEMPERATURE SIGNAL  
NO/NOx  
Valve  
O3 Flow Sensor  
O2 OPTION  
TEMPERATURE  
Reaction Cell  
Heater  
Autozero  
Valve  
PMT  
Temperature  
Sensor  
Sample Cal  
Valve Option  
Option  
Molybdenum  
Converter Heater  
PMT  
PREAMP PCA  
PMT  
TEC Drive  
PCA  
PMT TEC  
O2 Sensor  
Option  
MOLYBDENUM CONVERTER  
TEMPERATURE  
Figure 8-15:  
T200H/M Electronic Block Diagram  
The core of the analyzer is a microcomputer (CPU) that controls various internal  
processes, interprets data, calculates data, and reports results using specialized firmware  
developed by Teledyne API. It communicates with the user, receives data from and  
issues commands to a variety of peripheral devices through the motherboard, the main  
printed circuit assembly on the rear panel.  
290  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.5.1. CPU  
The unit’s CPU card, installed on the motherboard located inside the rear panel, is a low  
power (5 VDC, 720mA max), high performance, Vortex 86SX-based microcomputer  
running Windows CE. Its operation and assembly conform to the PC 104 specification.  
Figure 8-16:  
T200H/M CPU Board Annotated  
The CPU includes two types of non-volatile data storage: a Disk on Module (DOM)  
with an embedded 2MB flash chip.  
8.5.1.1. Disk On Module (DOM)  
The DOM is a 44-pin IDE flash drive with storage capacity to 128 MB. It is used to  
store the computer’s operating system files, the Teledyne API firmware and peripheral  
files, and the operational data generated by the analyzer’s internal data acquisition  
system (DAS).  
8.5.1.2. Flash Chip  
This non-volatile, embedded flash chip includes 2 MB of storage for calibration data as  
well as a backup of the analyzer configuration. Storing these key data on a less heavily  
accessed chip significantly decreases the chance of data corruption.  
In the unlikely event that the flash chip should fail, the analyzer will continue to operate  
with just the DOM. However, all configuration information will be lost, requiring the  
unit to be recalibrated.  
291  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.5.2. SENSOR MODULE, REACTION CELL  
Electronically, the T200H/M sensor assembly (see Figure 9-6) consists of several  
subassemblies with different tasks: to detect the intensity of the light from the  
chemiluminescence reaction between NO and O3 in the reaction cell, to produce a  
current signal proportional to the intensity of the chemiluminescence, to control the  
temperature of the PMT to ensure the accuracy and stability of the measurements and to  
drive the high voltage power supply that is needed for the PMT. The individual  
functions are described individually below, Section 7.6.5 shows the sensor assembly and  
its components.  
8.5.2.1. Reaction Cell Heating Circuit  
The stability of the chemiluminescence reaction between NO and O3 can be affected by  
changes in the temperature and pressure of the O3 and sample gases in the reaction cell.  
In order to reduce temperature effects, the reaction cell is maintained at a constant  
50C, just above the high end of the instrument’s operation temperature range.  
Two AC heaters, one embedded into the bottom of the reaction cell, the other embedded  
directly above the chamber’s exhaust fitting, provide the heat source. These heaters  
operate off of the instrument’s main AC power and are controlled by the CPU through a  
power relay on the relay board (Section 8.5.7). A thermistor, also embedded in the  
bottom of the reaction cell, reports the cell’s temperature to the CPU through the  
thermistor interface circuitry of the motherboard (Section 8.5.9.3).  
292  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.5.3. PHOTO MULTIPLIER TUBE (PMT)  
The T200H/M uses a photo multiplier tube (PMT) to detect the amount of  
chemiluminescence created in the sample chamber.  
PMT Housing End Plate  
This is the entry to the PMT Exchange  
PMT Output  
Connector  
PMT Preamp PCA  
PMT Power Supply  
& Aux. Signal  
Connector  
High voltage Power Supply  
(HVPS)  
PMT  
O-Test LED  
PMT Cold Block  
Connector to PMT  
Pre Amp PCA  
12V Power  
Connector  
Insulation Gasket  
Light from Reaction  
Chamber shines  
through hole in side  
of Cold Block  
PMT Temperature  
Sensor  
Thermo-Electric Cooler  
(TEC)  
PMT Heat Exchange Fins  
TEC Driver PCA  
Cooling Fan  
Housing  
Figure 8-17:  
PMT Housing Assembly  
293  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
A typical PMT is a vacuum tube containing a variety of specially designed electrodes.  
Photons from the reaction are filtered by an optical high-pass filter, enter the PMT and  
strike a negatively charged photo cathode causing it to emit electrons. A high voltage  
potential across these focusing electrodes directs the electrons toward an array of high  
voltage dynodes. The dynodes in this electron multiplier array are designed so that each  
stage multiplies the number of emitted electrons by emitting multiple, new electrons.  
The greatly increased number of electrons emitted from one end of electron multiplier  
are collected by a positively charged anode at the other end, which creates a useable  
current signal. This current signal is amplified by the preamplifier board and then  
reported to the motherboard.  
Figure 8-18:  
Basic PMT Design  
A significant performance characteristic of the PMT is the voltage potential across the  
electron multiplier. The higher the voltage, the greater is the number of electrons  
emitted from each dynode of the electron multiplier, making the PMT more sensitive  
and responsive to small variations in light intensity but also more noisy (dark noise).  
The gain voltage of the PMT used in the T200H/M is usually set between 450 V and 800  
V. This parameter is viewable through the front panel as test function HVPS (see  
Section 6.2.1). For information on when and how to set this voltage, see Section  
11.6.3.8.  
The PMT is housed inside the PMT module assembly (see Figure 10-18). This  
assembly also includes the high voltage power supply required to drive the PMT, an  
LED used by the instrument’s optical test function, a thermistor that measures the  
temperature of the PMT and various components of the PMT cooling system including  
the thermo-electric cooler (TEC).  
294  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.5.4. PMT COOLING SYSTEM  
The performance of the analyzer’s PMT is significantly affected by temperature.  
Variations in PMT temperature are directly reflected in the signal output of the PMT.  
Also the signal to noise ratio of the PMT output is radically influenced by temperature  
as well. The warmer The PMT is, the noisier its signal becomes until the noise renders  
the concentration signal useless. To alleviate this problem a special cooling system  
exists that maintains the PMT temperature at a stable, low level  
Preamp PCA sends  
buffered and  
amplified thermistor  
signal to TEC PCA  
TEC PCA sets  
appropriate  
drive voltage  
for cooler  
TEC  
Control  
PCA  
PMT Preamp  
PCA  
ThermoElectric Cooler  
Thermistor  
outputs temp of  
cold block to  
preamp PCA  
PMT  
Cold Block  
Heat form PMT is absorbed  
by the cold block and  
transferred to the heat sink  
via the TEC then bled off  
into the cool air stream.  
Cooling Fan  
Figure 8-19:  
PMT Cooling System  
8.5.4.1. TEC Control Board  
The TEC control printed circuit assembly is located in the sensor housing assembly,  
under the slanted shroud, next to the cooling fins and directly above the cooling fan.  
Using the amplified PMT temperature signal from the PMT preamplifier board (see  
Section 10.4.5), it sets the drive voltage for the thermoelectric cooler. The warmer the  
PMT gets, the more current is passed through the TEC causing it to pump more heat to  
the heat sink.  
A red LED located on the top edge of this circuit board indicates that the control circuit  
is receiving power. Four test points are also located at the top of this assembly. For the  
definitions and acceptable signal levels of these test points see Section 11.  
8.5.5. PMT PREAMPLIFIER  
The PMT preamplifier board amplifies the PMT signal into a useable analog voltage  
(PMT) that can be processed by the motherboard into a digital signal to be used by the  
CPU to calculate the NO, NO2 and NOx concentrations of the gas in the sample  
chamber.  
The output signal of the PMT is controlled by two different adjustments. First, the  
voltage across the electron multiplier array of the PMT is adjusted with a set of two  
hexadecimal switches. Adjusting this voltage directly affects the HVPS voltage and,  
hence, the signal from the PMT. Secondly, the gain of the amplified signal can further  
295  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
be adjusted through a potentiometer. These adjustments should only be performed when  
encountering problems with the software calibration that cannot be rectified otherwise.  
See Section 11.6.3.8 for this hardware calibration.  
O Test Control  
PMT Preamp PCA  
From CPU  
O-Test  
Generator  
PMT  
PMT Fine  
Coarse  
Gain Set  
(Rotary  
Gain Set  
(Rotary  
Switch)  
O Test  
LED  
PMT HVPS  
To  
D-A  
Converter  
Drive Voltage  
Motherboard  
Amp to  
Voltage  
PMT Output  
Converter/  
Amplifier  
MUX  
E Test Control  
From CPU  
Low  
Pass Noise  
Filter  
E-Test  
Generator  
PMT  
PMT Temp Analog Signal  
to Motherboard  
Signal  
Offset  
PMT Temp  
Sensor  
PMT  
Temperature  
Feedback  
Circuit  
TEC Control  
PCA  
PMT Output Signal  
(PMT) to Motherboard  
Figure 8-20:  
PMT Preamp Block Diagram  
The PMT temperature control loop maintains the PMT temperature around 7° C and can  
be viewed as test function PMT TEMP on the front panel (see Section 6.2.1).  
The electrical test (ETEST) circuit generates a constant, electronic signal intended to  
simulate the output of the PMT (after conversion from current to voltage). By bypassing  
the detector’s actual signal, it is possible to test most of the signal handling and  
conditioning circuitry on the PMT preamplifier board. See section 6.9.6 for instructions  
on performing this test.  
The optical test (OTEST) feature causes an LED inside the PMT cold block to create a  
light signal that can be measured with the PMT. If zero air is supplied to the analyzer,  
the entire measurement capability of the sensor module can be tested including the PMT  
and the current to voltage conversion circuit on the PMT preamplifier board. See  
section 6.9.5 for instructions on performing this test.  
296  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.5.6. PNEUMATIC SENSOR BOARD  
The flow and pressure sensors of the T200H/M are located on a printed circuit assembly  
just behind the PMT sensor. Refer to Section 7.5.16 for information on how to test this  
assembly. The signals of this board are supplied to the motherboard for further signal  
processing. All sensors are linearized in the firmware and can be span calibrated from  
the front panel.  
8.5.7. RELAY BOARD  
The relay board is the central switching and power distribution unit of the analyzer. It  
contains power relays, valve drivers and status LEDs for all heated zones and valves, as  
well as thermocouple amplifiers, power distribution connectors and the two switching  
power supplies of the analyzer. The relay board communicates with the motherboard  
over the I2C bus and can be used for detailed trouble-shooting of power problems and  
valve or heater functionality. See Figure 7-4 for an annotated view of the relay board.  
8.5.7.1. Relay PCA Location and Layout  
Generally the relay PCA is located in the right-rear quadrant of the analyzer and is  
mounted vertically on the back side of the same bracket as the instrument’s DC power  
supplies, however the exact location of the relay PCA may differ from model to model  
8.5.7.2. Heater Control  
The heater control loop is illustrated in Figure 8-21. Two thermocouples (T/C) inputs  
can be configured for either type-J or type-K thermocouples. Additionally:  
Both T/C’s can be configured as either grounded or ungrounded thermocouples.  
Standard configuration of the both type of thermocouples is 10 mV/°C. In order to  
accommodate the T200H’s Mini High-Con converter option, a type-K; 5mV/°C  
output configuration has been added.  
297  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
Thermistor(s) – Low Temperature Sensing:  
(e.g. Sample Chamber and Reaction  
Cell temperatures)  
MOTHER BOARD  
A/D  
Converter  
(V/F)  
RELAY PCA  
Preamplifiers  
and Signal  
Conditioning  
CPU  
THERMOCOUPLE  
CONFIGURATION  
JUMPER  
Cold Junction  
Compensation  
(JP5)  
DC  
Themocouple(s)  
(High Temperature Sensing;  
e.g. Moly and HiCon  
Control  
Logic  
Solid State  
AC Relays  
Converter temperatures)  
DC HEATERS  
AC HEATERS  
Figure 8-21:  
Heater Control Loop Block Diagram.  
8.5.7.3. Thermocouple Inputs and Configuration Jumper (JP5)  
Although the relay PCA supports two thermocouple inputs, the current T200H/M series  
analyzers only utilize one. By default, this single thermocouple input is plugged into the  
TC1 input (J15). TC2 (J16) is currently not used. See Figure 7-4 for location of J15 and  
J16  
CAUTION  
Avoid damage to the unit: use only the recommended thermocouple type and its specific  
settings. If in doubt, call T-API Technical Support for information about the correct part.  
298  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
Table8-4: Thermocouple Configuration Jumper (JP5) Pin-Outs  
TC INPUT  
JUMPER PAIR  
DESCRIPTION  
FUNCTION  
Selects preamp gain factor for J or K TC  
- IN = J TC gain factor  
Gain Selector  
1 – 11  
- OUT = K TC gain factor  
Selects preamp gain factor for J or K TC  
- IN = 5 mV / °C  
Output Scale Selector  
2 – 12  
- OUT = 10 mV / °C  
When present, sets Cold Junction  
Compensation for J type Thermocouple  
TC1  
3 – 13  
4 – 14  
Type J Compensation  
Type K Compensation  
When present, sets Cold Junction  
Compensation for K type Thermocouple  
Selects between Isolated and grounded TC  
- IN = Isolate TC  
5 – 15  
Termination Selector  
- OUT = Grounded TC  
Gain Selector  
Same as Pins 1 – 11 above.  
Same as Pins 2 – 12 above.  
Same as Pins 3 – 13 above.  
Same as Pins 4 – 14 above.  
Same as Pins 5 – 15 above.  
6 – 16  
7 – 17  
8 – 18  
9 – 19  
10 – 20  
Output Scale Selector  
Type J Compensation  
Type K Compensation  
Termination Selector  
TC2  
TC1  
TC2  
Figure 8-22:  
Thermocouple Configuration Jumper (JP5) Pin-Outs  
299  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
Table 8-5: Typical Thermocouple Settings  
OUTPUT  
SCALE TYPE  
JUMPER  
BETWEEN  
PINS  
TC  
TYPE  
TERMINATION  
TYPE  
JUMPER  
USED ON  
COLOR  
INPUT TC1 (J15)  
2 – 12  
4 – 14  
GROUNDED  
5mV / °C  
5mV / °C  
10mV / °C  
10mV / °C  
10mV / °C  
T200H/M with Mini HiCon Converter  
T200H/M with Mini HiCon Converter  
T200H/M models with Moly Converter  
T200H/M models with Moly Converter  
T200H/M models with Moly Converter  
BROWN  
GREY  
K
K
K
J
2 – 12  
4 – 14  
5 – 15  
ISOLATED  
ISOLATED  
ISOLATED  
GROUNDED  
4 – 14  
5 – 15  
PURPLE  
RED  
1 – 11  
3 – 13  
5 – 15  
1 – 11  
3 – 13  
GREEN  
J
8.5.7.4. Valve Control  
The relay board also hosts two valve driver chips, each of which can drive up four  
valves. The main valve assembly in the T200H/M is the NO/NOX - Auto-zero solenoid  
valve assembly mounted right in front of the NO2 converter housing. These two valves  
are actuated with 12 V supplied from the relay board and driven by the CPU through the  
I2C bus.  
A second set of valves may be installed if the zero/span valve is enabled in the analyzer.  
Specialty manifold valves may be present in the analyzer.  
300  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.5.8. STATUS LEDS & WATCH DOG CIRCUITRY  
Thirteen LEDs are located on the analyzer’s relay board to indicate the status of the  
analyzer’s heating zones and valves as well as a general operating watchdog indicator.  
Table 11-2 shows the states of these LEDs and their respective functionality.  
D7 (Green) – Zero / Span Valve Status  
D8 (Green) – Sample / Cal Valve Status  
D9 (Green ) – Auto / Zero Valve Status  
D10 (Green) – NOx / NO Valve Status  
D4 (Yellow) – Manifold Heater  
D3 (Yellow) – NO2 Converter Heater  
D2 (Yellow) – Reaction Cell Heater  
D5(Yellow)  
D6 (Yellow) – O2 Sensor Heater  
D1 (RED)  
Watchdog  
Indicator  
Figure 8-23:  
Status LED Locations – Relay PCA  
8.5.8.1. Watchdog Indicator (D1)  
The most important of the status LED’s on the relay board is the red I2C Bus watch-dog LED. It is controlled  
directly analyzer’s CPU over the I2C bus. Special circuitry on the relay PCA watches the status of D1. Should  
this LED ever stay ON or OFF for 30 seconds, indicating that the CPU or I2C bus has stopped functioning, this  
Watchdog Circuit automatically shuts all valves and turn off all heaters.  
301  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.5.9. MOTHERBOARD  
This is the largest electronic assembly in the analyzer and is mounted to the rear panel as  
the base for the CPU board and all I/O connectors. This printed circuit assembly  
provides a multitude of functions including A/D conversion, digital input/output, PC-  
104 to I2C translation, temperature sensor signal processing and is a pass through for the  
RS-232 and RS-485 signals.  
8.5.9.1. A to D Conversion  
Analog signals, such as the voltages received from the analyzer’s various sensors, are  
converted into digital signals that the CPU can understand and manipulate by the analog  
to digital converter (A/D).Under the control of the CPU, this functional block selects a  
particular signal input and then coverts the selected voltage into a digital word.  
The A/D consists of a voltage-to-frequency (V-F) converter, a programmable logic  
device (PLD), three multiplexers, several amplifiers and some other associated devices.  
The V-F converter produces a frequency proportional to its input voltage. The PLD  
counts the output of the V-F during a specified time period, and sends the result of that  
count, in the form of a binary number, to the CPU.  
The A/D can be configured for several different input modes and ranges but in the is  
used in uni-polar mode with a +5V full scale. The converter includes a 1% over and  
under-range. This allows signals from -0.05V to +5.05V to be fully converted.  
For calibration purposes, two reference voltages are supplied to the A/D converter:  
Reference ground and +4.096 VDC. During calibration, the device measures these two  
voltages, outputs their digital equivalent to the CPU. The CPU uses these values to  
compute the converter’s offset and slope and uses these factors for subsequent  
conversions. See Section 6.13.5.4 for instructions on performing this calibration.  
8.5.9.2. Sensor Inputs  
The key analog sensor signals are coupled to the A/D converter through the master  
multiplexer from two connectors on the motherboard. Terminating resistors (100 k)  
on each of the inputs prevent cross-talk between the sensor signals.  
PMT DETECTOR OUTPUT: This signal, output by the PMT preamp PCA, is used in  
the computation of the NO, NO2 and NOx concentrations displayed at the top right hand  
corner of the front panel display and output through the instruments analog outputs and  
com ports.  
PMT HIGH VOLTAGE POWER SUPPLY LEVEL: This input is based on the drive  
voltage output by the PMT pram board to the PMT’s high voltage power supply  
(HVPS). It is digitized and sent to the CPU where it is used to calculate the voltage  
setting of the HVPS and stored in the instruments memory as the test function HVPS.  
HVPS is viewable as a test function (see Section 6.2.1) through the analyzer’s front  
panel.  
PMT TEMPERATURE: This signal is the output of the thermistor attached to the PMT  
cold block amplified by the PMT temperature feedback circuit on the PMT preamp  
302  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
board. It is digitized and sent to the CPU where it is used to calculate the current  
temperature of the PMT.  
This measurement is stored in the analyzer. Memory as the test function PMT TEMP  
and is viewable as a test function (see Section 6.2.1) through the analyzer’s front panel.  
NO2 CONVERTER TEMPERATURE: This parameter is measured with a Type-K  
thermocouple attached to the NO2 converter heater and its analog signal is amplified by  
the circuitry on the relay board. It is sent to the CPU and then digitized and is used to  
calculate the current temperature of the NO2 converter. It is also stored in the DAS and  
reported as test function MOLY TEMP.  
SAMPLE GAS PRESSURE: This is measured upstream of the reaction cell, stored in  
the DAS and reported as SAMPLE. The vacuum gas pressure is measured downstream  
of the reaction cell and is stored in the DAS and reported as RCEL. For more  
information on these sensor’s functions see Section 8.3.10.  
O3 GAS FLOW This sensor measures the gas flow upstream of the ozone generator,  
stored in the DAS and reported as test function OZONE FL. For more information on  
this sensor’s function see Section 8.3.10.  
8.5.9.3. Thermistor Interface  
This circuit provides excitation, termination and signal selection for several negative-  
coefficient, thermistor temperature sensors located inside the analyzer. They are:  
REACTION CELL TEMPERATURE SENSOR: A thermistor embedded in the reaction  
cell manifold. This temperature is used by the CPU to control the reaction cell heating  
circuit and as a parameter in the temperature/pressure compensation algorithm. This  
measurement is stored in the analyzer’s DAS and reported as test function  
RCEL TEMP.  
BOX TEMPERATURE SENSOR: A thermistor is attached to the motherboard. It  
measures the analyzer’s inside temperature. This information is stored by the CPU and  
can be viewed by the user for troubleshooting purposes through the front panel display.  
It is also used as part of the NO, NOX and NO2 calculations when the instrument’s  
Temperature/Pressure Compensation feature is enabled. This measurement is stored in  
the analyzer. Memory as the test function BOX TEMP and is viewable as a test  
function (Section 4.2.1) through the analyzer’s front panel.  
The thermistor inside the PMT cold block as well as the thermistor located on the  
preamplifier board are both converted to analog signals on the preamplifier board before  
being sent to the motherboard’s A/D converter.  
O2 SENSOR TEMPERATURE: For instruments with the oxygen sensor option  
installed, the thermistor measuring the temperature of the heating block mounted to the  
sensor is reported as test function O2 TEMP on the front panel. This temperature is  
maintained at 50° C.  
303  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.5.10. ANALOG OUTPUTS  
The analyzer comes equipped with four Analog Outputs: A1, A2, A3 and a fourth that is  
a spare.  
A1 and A2 Outputs: The first two, A1 and A2 are normally set up to operate in parallel  
so that the same data can be sent to two different recording devices. While the names  
imply that one should be used for sending data to a chart recorder and the other for  
interfacing with a data logger, either can be used for both applications.  
Output Loop-back: All of the functioning analog outputs are connected back to the A/D  
converter through a Loop-back circuit. This permits the voltage outputs to be calibrated  
by the CPU without need for any additional tools or fixtures (see Section 6.13.5.4)  
8.5.11. EXTERNAL DIGITAL I/O  
The external digital I/O performs two functions.  
The STATUS outputs carry logic-level (5V) signals through an optically isolated 8-pin  
connector on the rear panel of the analyzer. These outputs convey on/off information  
about certain analyzer conditions such as CONC VALID. They can be used to interface  
with certain types of programmable devices (Section 6.15.1.1).  
The CONTROL inputs can be initiated by applying 5V DC power from an external  
source such as a PLC or data logger (Section 6.15.1.2). Zero and span calibrations can  
be initiated by contact closures on the rear panel.  
8.5.12. I2C DATA BUS  
I2C is a two-wire, clocked, bi-directional, digital serial I/O bus that is used widely in  
commercial and consumer electronic systems. A transceiver on the motherboard  
converts data and control signals from the PC-104 bus to I2C. The data are then fed to  
the relay board and optional analog input circuitry.  
8.5.13. POWER-UP CIRCUIT  
This circuit monitors the +5V power supply during analyzer start-up and sets the analog  
outputs, external digital I/O ports, and I2C circuitry to specific values until the CPU  
boots and the instrument software can establish control.  
304  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
       
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.6. POWER DISTRIBUTION & CIRCUIT BREAKER  
The analyzer operates in two main AC power ranges: 100-120 VAC and 220-240 VAC  
(both ± 10%) between 47 and 63 Hz. A 5 ampere circuit breaker is built into the  
ON/OFF switch. In case of a wiring fault or incorrect supply power, the circuit breaker  
will automatically turn off the analyzer.  
CAUTION  
Should the power circuit breaker trip correct the condition causing  
this situation before turning the analyzer back on.  
SENSOR SUITES  
Sensor Control  
& I/O Logic  
ANALOG  
AC POWER  
DC POWER  
SENSORS  
(e.g. UV sensors,  
Temp Sensors,  
Flow Sensors,  
PMT HVPS,  
LOGIC DEVICES  
Pre-Amplifiers  
& Amplifiers  
(e.g. CPU, I2C bus,  
Touchscreen, Display,  
MotherBoard, etc.)  
etc.)  
PS 1  
+5 VDC  
±15 VDC  
Configuration  
Jumpers  
PUMP  
ON / OFF  
SWITCH  
Configuration  
Jumpers  
AC HEATERS  
Configuration  
Jumpers  
AC HEATERS for  
O2 SENSOR  
PS 2  
(+12 VDC)  
UV Lamp  
P/S  
Solenoid  
Drivers  
RELAY PCA  
AC  
POWER IN  
MODEL SPECIFIC  
VALVES  
(e.g. NOX – NO Valves,  
Auto-zero valves, etc.)  
OPTIONAL  
VALVES  
(e.g. Sample/Cal,  
Zero/Spans, etc.)  
TEC and  
Cooling Fan(s)  
Figure 8-24:  
Power Distribution Block Diagram  
Under normal operation, the T200H/M draws about 1.5 A at 115 V and 2.0 A during  
start-up.  
305  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.7. FRONT PANEL/DISPLAY INTERFACE ELECTRONICS  
Users can input data and receive information directly through the front panel touch-  
screen display. The LCD display is controlled directly by the CPU board. The touch  
screen is interfaced to the CPU by means of a touch screen controller that connects to  
the CPU via the internal USB bus and emulates a computer mouse.  
Figure 8-25:  
Front Panel and Display Interface Block Diagram  
8.7.1. FRONT PANEL INTERFACE PCA  
The front panel interface PCA controls the various functions of the display and touch  
screen. For driving the display it provides connection between the CPU video controller  
and the LCD display module. This PCA also contains:  
power supply circuitry for the LCD display module  
a USB hub that is used for communications with the touch screen controller and the  
two front panel USB peripheral device ports  
the circuitry for powering the display backlight  
306  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.8. SOFTWARE OPERATION  
The instrument’s core module is a high performance, X86-based microcomputer running  
Windows CE. Inside Windows CE, special software developed by Teledyne API  
interprets user commands from the various interfaces, performs procedures and tasks,  
stores data in the CPU’s various memory devices and calculates the concentration of the  
gas being sampled.  
Windows CE  
API FIRMWARE  
Instrument Operations  
Memory Handling  
Calibration Procedures  
Configuration Procedures  
Autonomic Systems  
Diagnostic Routines  
PC/104 BUS  
DAS Records  
Calibration Data  
System Status Data  
INSTRUMENT  
HARDWARE  
Interface Handling  
Sensor input data  
Display Messages  
Touchscreen  
Analog output data  
RS232 & RS485  
External Digital I/O  
Measurement  
Algorithms  
PC/104 BUS  
Figure 8-26:  
Basic Software Operation  
307  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.8.1. ADAPTIVE FILTER  
The T200H/M NOX analyzer software processes sample gas concentration data through  
a built-in adaptive filter. Unlike other analyzers that average the output signal over a  
fixed time period, the T200H/M averages over a defined number of samples, with  
samples being about 8 seconds apart (reflecting the switching time of 4 s each for NO  
and NOX). This technique is known as boxcar filtering. During operation, the software  
may automatically switch between two different filters lengths based on the conditions  
at hand.  
During constant or nearly constant concentrations, the software, by default, computes an  
average of the last 42 samples, or approximately 5.6 minutes. This provides smooth and  
stable readings and averages out a considerable amount of random noise for an overall  
less noisy concentration reading.  
If the filter detects rapid changes in concentration the filter reduces the averaging to only  
6 samples or about 48 seconds to allow the analyzer to respond more quickly. Two  
conditions must be simultaneously met to switch to the short filter. First, the  
instantaneous concentration must differ from the average in the long filter by at least 50  
ppb. Second, the instantaneous concentration must differ from the average in the long  
filter by at least 10% of the average in the long filter.  
If necessary, these boxcar filter lengths can be changed between 1 (no averaging) and  
1000 samples but with corresponding tradeoffs in rise time and signal-to-noise ratio.  
Signal noise increases accordingly when in adaptive filter mode, but remains within the  
official T200H/M specifications as long as the filter size remains at or above 3 samples.  
In order to avoid frequent switching between the two filter sizes, the analyzer has a  
delay of 120 s before switching out of adaptive filter mode, even if the two threshold  
conditions are no longer met.  
that the filter settings in NOX only or NO only  
8.8.2. CALIBRATION - SLOPE AND OFFSET  
Aside from the hardware calibration of the preamplifier board (Section 13) upon factory  
checkout, calibration of the analyzer is usually performed in software. During  
instrument calibration (Section 7) the user enters expected values for span gas  
concentration through the front panel keypad and supplies the instrument with sample  
gas of know NO and NOX concentrations. The readings are then compared to the  
expected values and the software computes values for the new instrument slope and  
offset for both NO and NOX response. These values are stored in memory for use in  
calculating the NO, NOX and NO2 concentration of the sample gas. By default, the DAS  
stores 200 software calibration settings for documentation, review and data analysis.  
Instrument slope and offset values recorded during the last calibration can be viewed on  
the front panel. NO SLOPE, NOX SLOPE, NO OFFS and NOX OFFS are four of the  
test parameters accessible through the <TST TST> buttons.  
308  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Teledyne API - Model T200H/T200M Operation Manual  
Principles of Operation  
8.8.3. TEMPERATURE/PRESSURE COMPENSATION (TPC)  
The software features a compensation of some temperature and pressure changes critical  
in the measurement of NO and NOX concentration. When the TPC feature is enabled  
(default setting), the analyzer divides the value of the PMT output signal (PMTDET) by  
a value called TP_FACTOR. TP_FACTOR is calculated according to the following  
equation.  
RCELLTEMP(K)  
7(inHg)  
SAMP(inHg  
BOXTEMP(K)  
TP_FACTORA  
B  
C  
D  
323(K)  
RCEL(inHg)  
29.92(inHg)  
298(K)  
(Equation 9-5)  
Where A, B, C, D are gain functions. The four parameters used to compute  
TP_FACTOR are:  
RCELL TEMP: The temperature of the reaction cell, measured in K.  
RCEL: The pressure of the gas in the vacuum manifold, measured in in-Hg-A.  
SAMP: The pressure of the sample gas before it reaches the reaction cell,  
measured in in-Hg-A. This measurement is ~1 in-Hg-A lower than atmospheric  
pressure.  
BOX TEMP: The temperature inside the analyzer’s case measured in K. This is  
typically about 5 K higher than room temperature.  
The current value of all four of these measurements are viewable as TEST  
FUNCTIONS through the instrument’s front panel display.  
that, as RCEL TEMP, BOX TEMP and SAMP pressure increase, the value of  
TP_FACTOR increases and, hence, the PMTDET value decreases. Conversely,  
increases in the reaction cell pressure (RCEL) decrease TP_FACTOR and, hence  
increase the PMTDET value. These adjustments are meant to counter-act changes in  
the concentrations caused by these parameters.  
Each of the terms in the above equation is attenuated by a gain function with a numerical  
value based on a preset gain parameter (shown below in CAPITALIZED ITALICS)  
normalized to the current value of the parameter being attenuated. The gain functions A,  
B, C and D are defined as:  
rcell _ temp(K)  
A = 1+[(  
1)×RCTEMP _TPC _ GAIN]  
1)×RCPRESS _TPC _ GAIN]  
1)×SPRESS _TPC _ GAIN]  
323(K)  
(Equation 9-6)  
(Equation 9-7)  
5("Hg)  
B = 1+[(  
rcell _ pressure("Hg)  
rcell _ temp(K)  
C = 1+[(  
323(K)  
(Equation 9-8)  
box _ temp(K)  
D = 1+[(  
1)×BXTEMP _TPC _ GAIN]  
298(K)  
(Equation 9-9)  
The preset gain parameters are set at the factory and may vary from analyzer to analyzer.  
Section 6.12 describes the method for enabling/disabling the TPC feature.  
309  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
Principles of Operation  
Teledyne API - Model T200H/T200M Operation Manual  
8.8.4. NO2 CONVERTER EFFICIENCY COMPENSATION  
Over time, the molybdenum in the NO2 converter oxidizes and looses its original  
capacity of converting NO2 into NO, eventually resulting in a decreased converter  
efficiency (CE). Even though we recommend to replace the converter if CE drops  
below 96%, the analyzer’s firmware allows adjusting minor deviations of the CE from  
1.000 and enables reporting the true concentrations of NO2 and NOX. Converter  
efficiency is stored in the instrument’s memory as a decimal fraction that is multiplied  
with the NO2 and NOX measurements to calculate the final concentrations for each.  
Periodically, this efficiency factor must be measured and - if it has changed from  
previous measurements - entered into the analyzer’s memory (Section 5.2.5).  
8.8.5. INTERNAL DATA ACQUISITION SYSTEM (DAS)  
The DAS is designed to implement predictive diagnostics that stores trending data for  
users to anticipate when an instrument will require service. Large amounts of data can  
be stored in non-volatile memory and retrieved in plain text format for further  
processing with common data analysis programs. The DAS has a consistent user  
interface among all Teledyne API A-Series, E-Series, and T-Series instruments. New  
data parameters and triggering events can be added to the instrument as needed. Section  
6.7 describes the DAS and its default configuration in detail, Section 6.2 shows the  
parameters that can be used for predictive diagnostics.  
Depending on the sampling frequency and the number of data parameters, the DAS can  
store several months of data, which are retained even when the instrument is powered  
off. However, if new firmware or a new DAS configuration are uploaded to the  
analyzer, we recommend retrieving data before doing so to avoid data loss. The DAS  
permits users to access the data through the instrument’s front panel or the remote  
interface. The latter can automatically report stored data for further processing.  
APICOM, a user-friendly remote control program is the most convenient way to view,  
retrieve and store DAS data (Section 6.15.2.8)  
310  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
   
A Primer on Electro-Static Discharge  
9. A PRIMER ON ELECTRO-STATIC DISCHARGE  
Teledyne API considers the prevention of damage caused by the discharge of static  
electricity to be extremely important part of making sure that your analyzer continues to  
provide reliable service for a long time. This section describes how static electricity  
occurs, why it is so dangerous to electronic components and assemblies as well as how to  
prevent that damage from occurring.  
9.1. HOW STATIC CHARGES ARE CREATED  
Modern electronic devices such as the types used in the various electronic assemblies of  
your analyzer, are very small, require very little power and operate very quickly.  
Unfortunately, the same characteristics that allow them to do these things also make them  
very susceptible to damage from the discharge of static electricity. Controlling  
electrostatic discharge begins with understanding how electro-static charges occur in the  
first place.  
Static electricity is the result of something called triboelectric charging which happens  
whenever the atoms of the surface layers of two materials rub against each other. As the  
atoms of the two surfaces move together and separate, some electrons from one surface  
are retained by the other.  
Materials  
Makes  
Contact  
Materials  
Separate  
+
+
+
+
PROTONS = 3  
ELECTRONS = 2  
PROTONS = 3  
ELECTRONS = 4  
PROTONS = 3  
ELECTRONS = 3  
PROTONS = 3  
ELECTRONS = 3  
NET CHARGE = -1  
NET CHARGE = +1  
NET CHARGE = 0  
NET CHARGE = 0  
Figure 9-1:  
Triboelectric Charging  
If one of the surfaces is a poor conductor or even a good conductor that is not grounded,  
the resulting positive or negative charge cannot bleed off and becomes trapped in place,  
or static. The most common example of triboelectric charging happens when someone  
wearing leather or rubber soled shoes walks across a nylon carpet or linoleum tiled floor.  
With each step, electrons change places and the resulting electro-static charge builds up,  
quickly reaching significant levels. Pushing an epoxy printed circuit board across a  
workbench, using a plastic handled screwdriver or even the constant jostling of  
StyrofoamTM pellets during shipment can also build hefty static charges  
311  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
Table 9-1: Static Generation Voltages for Typical Activities  
MEANS OF GENERATION  
Walking across nylon carpet  
Walking across vinyl tile  
Worker at bench  
65-90% RH  
1,500V  
250V  
10-25% RH  
35,000V  
12,000V  
6,000V  
100V  
Poly bag picked up from bench  
1,200V  
20,000V  
Moving around in a chair padded  
with urethane foam  
1,500V  
18,000V  
9.2. HOW ELECTRO-STATIC CHARGES CAUSE DAMAGE  
Damage to components occurs when these static charges come into contact with an  
electronic device. Current flows as the charge moves along the conductive circuitry of  
the device and the typically very high voltage levels of the charge overheat the delicate  
traces of the integrated circuits, melting them or even vaporizing parts of them. When  
examined by microscope the damage caused by electro-static discharge looks a lot like  
tiny bomb craters littered across the landscape of the component’s circuitry.  
A quick comparison of the values in Table 9-1 with the those shown in the Table 9-2,  
listing device susceptibility levels, shows why Semiconductor Reliability News estimates  
that approximately 60% of device failures are the result of damage due to electro-static  
discharge.  
Table 9-2: Sensitivity of Electronic Devices to Damage by ESD  
DAMAGE SUSCEPTIBILITY VOLTAGE  
RANGE  
DEVICE  
DAMAGE BEGINS  
OCCURRING AT  
CATASTROPHIC  
DAMAGE AT  
MOSFET  
VMOS  
10  
100  
30  
1800  
100  
NMOS  
60  
GaAsFET  
EPROM  
60  
2000  
100  
100  
140  
150  
190  
200  
300  
300  
300  
500  
500  
500  
JFET  
7000  
500  
SAW  
Op-AMP  
CMOS  
2500  
3000  
2500  
3000  
7000  
500  
Schottky Diodes  
Film Resistors  
This Film Resistors  
ECL  
SCR  
1000  
2500  
Schottky TTL  
Potentially damaging electro-static discharges can occur:  
Any time a charged surface (including the human body) discharges to a device.  
Even simple contact of a finger to the leads of a sensitive device or assembly can  
allow enough discharge to cause damage. A similar discharge can occur from a  
charged conductive object, such as a metallic tool or fixture.  
312  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
A Primer on Electro-Static Discharge  
When static charges accumulated on a sensitive device discharges from the device  
to another surface such as packaging materials, work surfaces, machine surfaces or  
other device. In some cases, charged device discharges can be the most  
destructive.  
A typical example of this is the simple act of installing an electronic assembly into the  
connector or wiring harness of the equipment in which it is to function. If the  
assembly is carrying a static charge, as it is connected to ground a discharge will  
occur.  
Whenever a sensitive device is moved into the field of an existing electro-static field,  
a charge may be induced on the device in effect discharging the field onto the device.  
If the device is then momentarily grounded while within the electrostatic field or  
removed from the region of the electrostatic field and grounded somewhere else, a  
second discharge will occur as the charge is transferred from the device to ground.  
9.3. COMMON MYTHS ABOUT ESD DAMAGE  
I didn’t feel a shock so there was no electro-static discharge: The human  
nervous system isn’t able to feel a static discharge of less than 3500 volts. Most  
devices are damaged by discharge levels much lower than that.  
I didn’t touch it so there was no electro-static discharge: Electro-static charges  
are fields whose lines of force can extend several inches or sometimes even feet  
away from the surface bearing the charge.  
It still works so there was no damage: Sometimes the damaged caused by electro-  
static discharge can completely sever a circuit trace causing the device to fail  
immediately. More likely, the trace will be only partially occluded by the damage  
causing degraded performance of the device or worse, weakening the trace. This  
weakened circuit may seem to function fine for a short time, but even the very low  
voltage and current levels of the device’s normal operating levels will eat away at the  
defect over time causing the device to fail well before its designed lifetime is reached.  
These latent failures are often the most costly since the failure of the equipment in  
which the damaged device is installed causes down time, lost data, lost productivity,  
as well as possible failure and damage to other pieces of equipment or property.  
Static Charges can’t build up on a conductive surface: There are two errors in this  
statement.  
Conductive devices can build static charges if they are not grounded. The charge will  
be equalized across the entire device, but without access to earth ground, they are  
still trapped and can still build to high enough levels to cause damage when they are  
discharged.  
A charge can be induced onto the conductive surface and/or discharge triggered in  
the presence of a charged field such as a large static charge clinging to the surface  
of a nylon jacket of someone walking up to a workbench.  
As long as my analyzer is properly installed, it is safe from damage caused by  
static discharges: It is true that when properly installed the chassis ground of your  
analyzer is tied to earth ground and its electronic components are prevented from  
building static electric charges themselves. This does not prevent discharges from  
static fields built up on other things, like you and your clothing, from discharging  
through the instrument and damaging it.  
313  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
9.4. BASIC PRINCIPLES OF STATIC CONTROL  
It is impossible to stop the creation of instantaneous static electric charges. It is not,  
however difficult to prevent those charges from building to dangerous levels or prevent  
damage due to electro-static discharge from occurring.  
9.4.1. GENERAL RULES  
Only handle or work on all electronic assemblies at a properly set up ESD station. Setting  
up an ESD safe workstation need not be complicated. A protective mat properly tied to  
ground and a wrist strap are all that is needed to create a basic anti-ESD workstation (see  
figure 9-2).  
W ris t S tra p  
P ro te c tiv e M a t  
G ro u n d P o in t  
Figure 9-2:  
Basic anti-ESD Work Station  
For technicians that work in the field, special lightweight and portable anti-ESD kits are  
available from most suppliers of ESD protection gear. These include everything needed  
to create a temporary anti-ESD work area anywhere.  
Always wear an Anti-ESD wrist strap when working on the electronic  
assemblies of your analyzer. An anti-ESD wrist strap keeps the person wearing it  
at or near the same potential as other grounded objects in the work area and allows  
static charges to dissipate before they can build to dangerous levels. Anti-ESD wrist  
straps terminated with alligator clips are available for use in work areas where there  
is no available grounded plug.  
Also, anti-ESD wrist straps include a current limiting resistor (usually around one  
meg-ohm) that protects you should you accidentally short yourself to the instrument’s  
power supply.  
Simply touching a grounded piece of metal is insufficient. While this may  
temporarily bleed off static charges present at the time, once you stop touching the  
grounded metal new static charges will immediately begin to re-build. In some  
conditions, a charge large enough to damage a component can rebuild in just a few  
seconds.  
Always store sensitive components and assemblies in anti-ESD storage bags  
or bins: Even when you are not working on them, store all devices and assemblies  
in a closed anti-Static bag or bin. This will prevent induced charges from building up  
on the device or assembly and nearby static fields from discharging through it.  
Use metallic anti-ESD bags for storing and shipping ESD sensitive components  
and assemblies rather than pink-poly bags. The famous, “pink-poly” bags are  
made of a plastic that is impregnated with a liquid (similar to liquid laundry detergent)  
which very slowly sweats onto the surface of the plastic creating a slightly conductive  
layer over the surface of the bag.  
314  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
     
Teledyne API - Model T200H/T200M Operation Manual  
A Primer on Electro-Static Discharge  
While this layer may equalizes any charges that occur across the whole bag, it does  
not prevent the build up of static charges. If laying on a conductive, grounded surface,  
these bags will allow charges to bleed away but the very charges that build up on the  
surface of the bag itself can be transferred through the bag by induction onto the  
circuits of your ESD sensitive device. Also, the liquid impregnating the plastic is  
eventually used up after which the bag is as useless for preventing damage from ESD  
as any ordinary plastic bag.  
Anti-Static bags made of plastic impregnated with metal (usually silvery in color)  
provide all of the charge equalizing abilities of the pink-poly bags but also, when  
properly sealed, create a Faraday cage that completely isolates the contents from  
discharges and the inductive transfer of static charges.  
Storage bins made of plastic impregnated with carbon (usually black in color) are also  
excellent at dissipating static charges and isolating their contents from field effects and  
discharges.  
Never use ordinary plastic adhesive tape near an ESD sensitive device or to  
close an anti-ESD bag. The act of pulling a piece of standard plastic adhesive tape,  
such as Scotch® tape, from its roll will generate a static charge of several thousand  
or even tens of thousands of volts on the tape itself and an associated field effect that  
can discharge through or be induced upon items up to a foot away.  
9.4.2. BASIC ANTI-ESD PROCEDURES FOR ANALYZER REPAIR AND  
MAINTENANCE  
9.4.2.1. Working at the Instrument Rack  
When working on the analyzer while it is in the instrument rack and plugged into a  
properly grounded power supply.  
1. Attach your anti-ESD wrist strap to ground before doing anything else.  
Use a wrist strap terminated with an alligator clip and attach it to a bare metal portion  
of the instrument chassis. This will safely connect you to the same ground level to  
which the instrument and all of its components are connected.  
2. Pause for a second or two to allow any static charges to bleed away.  
3. Open the casing of the analyzer and begin work. Up to this point, the closed metal  
casing of your analyzer has isolated the components and assemblies inside from any  
conducted or induced static charges.  
4. If you must remove a component from the instrument, do not lay it down on a non-  
ESD preventative surface where static charges may lie in wait.  
5. Only disconnect your wrist strap after you have finished work and closed the case of  
the analyzer.  
9.4.2.2. Working at an Anti-ESD Work Bench.  
When working on an instrument of an electronic assembly while it is resting on an anti-  
ESD work bench:  
1. Plug your anti-ESD wrist strap into the grounded receptacle of the work station before  
touching any items on the work station and while standing at least a foot or so away.  
This will allow any charges you are carrying to bleed away through the ground  
315  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
connection of the workstation and prevent discharges due to field effects and  
induction from occurring.  
2. Pause for a second or two to allow any static charges to bleed away.  
3. Only open any anti-ESD storage bins or bags containing sensitive devices or  
assemblies after you have plugged your wrist strap into the workstation.  
Lay the bag or bin on the workbench surface.  
Before opening the container, wait several seconds for any static charges on the  
outside surface of the container to be bled away by the workstation’s grounded  
protective mat.  
4. Do not pick up tools that may be carrying static charges while also touching or  
holding an ESD Sensitive Device.  
Only lay tools or ESD-sensitive devices and assemblies on the conductive surface of  
your workstation. Never lay them down on any non-ESD preventative surface.  
5. Place any static sensitive devices or assemblies in anti-static storage bags or bins  
and close the bag or bin before unplugging your wrist strap.  
6. Disconnecting your wrist strap is always the last action taken before leaving the  
workbench.  
9.4.2.3. Transferring Components from Rack to Bench and Back  
When transferring a sensitive device from an installed Teledyne API analyzer to an Anti-  
ESD workbench or back:  
1. Follow the instructions listed above for working at the instrument rack and  
workstation.  
2. Never carry the component or assembly without placing it in an anti-ESD bag or bin.  
3. Before using the bag or container allow any surface charges on it to dissipate:  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at an anti-ESD workbench, lay the container down on the conductive work  
surface.  
In either case wait several seconds.  
4. Place the item in the container.  
5. Seal the container. If using a bag, fold the end over and fastening it with anti-ESD  
tape.  
Folding the open end over isolates the component(s) inside from the effects of static  
fields.  
Leaving the bag open or simply stapling it shut without folding it closed prevents the  
bag from forming a complete protective envelope around the device.  
6. Once you have arrived at your destination, allow any surface charges that may have  
built up on the bag or bin during travel to dissipate:  
316  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
Teledyne API - Model T200H/T200M Operation Manual  
A Primer on Electro-Static Discharge  
Connect your wrist strap to ground.  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at a anti-ESD work bench, lay the container down on the conductive work  
surface  
In either case wait several seconds  
7. Open the container.  
9.4.2.4. Opening Shipments from Teledyne API  
Packing materials such as bubble pack and Styrofoam pellets are extremely efficient  
generators of static electric charges. To prevent damage from ESD, Teledyne API ships  
all electronic components and assemblies in properly sealed anti-ESD containers.  
Static charges will build up on the outer surface of the anti-ESD container during  
shipping as the packing materials vibrate and rub against each other. To prevent these  
static charges from damaging the components or assemblies being shipped make sure that  
you always unpack shipments from Teledyne API by:  
1. Opening the outer shipping box away from the anti-ESD work area.  
2. Carry the still sealed ant-ESD bag, tube or bin to the anti-ESD work area.  
3. Follow steps 6 and 7 of Section 9.4.2.3 above when opening the anti-ESD container  
at the work station.  
4. Reserve the anti-ESD container or bag to use when packing electronic components  
or assemblies to be returned to Teledyne API.  
9.4.2.5. Packing Components for Return to Teledyne API  
Always pack electronic components and assemblies to be sent to Teledyne API in anti-  
ESD bins, tubes or bags.  
WARNING  
DO NOT use pink-poly bags.  
NEVER allow any standard plastic packaging materials to touch the  
electronic component/assembly directly  
This includes, but is not limited to, plastic bubble-pack, Styrofoam  
peanuts, open cell foam, closed cell foam, and adhesive tape  
DO NOT use standard adhesive tape as a sealer. Use ONLY anti-ESD  
tape  
1. Never carry the component or assembly without placing it in an anti-ESD bag or bin.  
2. Before using the bag or container allow any surface charges on it to dissipate:  
317  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
If you are at the instrument rack, hold the bag in one hand while your wrist strap is  
connected to a ground point.  
If you are at an anti-ESD workbench, lay the container down on the conductive work  
surface.  
In either case wait several seconds.  
3. Place the item in the container.  
4. Seal the container. If using a bag, fold the end over and fastening it with anti-ESD  
tape.  
Folding the open end over isolates the component(s) inside from the effects of static  
fields.  
Leaving the bag open or simply stapling it shut without folding it closed prevents the  
bag from forming a complete protective envelope around the device.  
Note  
If you do not already have an adequate supply of anti-ESD bags or  
containers available, Teledyne API Technical Support department will  
supply them. Follow the instructions listed above for working at the  
instrument rack and workstation.  
318  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A Primer on Electro-Static Discharge  
GLOSSARY  
Note: Some terms in this glossary may not occur elsewhere in this manual.  
Term  
Description/Definition  
10BaseT  
an Ethernet standard that uses twisted (“T”) pairs of copper  
wires to transmit at 10 megabits per second (Mbps)  
100BaseT  
APICOM  
same as 10BaseT except ten times faster (100 Mbps)  
name of a remote control program offered by Teledyne-API to  
its customers  
ASSY  
CAS  
CD  
Assembly  
Code-Activated Switch  
Corona Discharge, a frequently luminous discharge, at the  
surface of a conductor or between two conductors of the same  
transmission line, accompanied by ionization of the surrounding  
atmosphere and often by a power loss  
CE  
Converter Efficiency, the percentage of light energy that is  
actually converted into electricity  
CEM  
Continuous Emission Monitoring  
Chemical formulas that may be included in this document:  
CO2  
carbon dioxide  
propane  
C3H8  
CH4  
H2O  
HC  
methane  
water vapor  
general  
hydrocarbon  
abbreviation  
for  
HNO3  
H2S  
nitric acid  
hydrogen sulfide  
nitric oxide  
NO  
NO2  
NOX  
nitrogen dioxide  
nitrogen oxides, here defined as the  
sum of NO and NO2  
NOy  
nitrogen oxides, often called odd  
nitrogen: the sum of NOX plus other  
compounds  
such  
as  
HNO3  
(definitions vary widely and may  
include nitrate (NO3), PAN, N2O  
and other compounds as well)  
NH3  
O2  
ammonia  
molecular oxygen  
319  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
Term  
Description/Definition  
O3  
ozone  
SO2  
sulfur dioxide  
cm3  
metric abbreviation for cubic centimeter (replaces the obsolete  
abbreviation “cc”)  
CPU  
DAC  
DAS  
DCE  
DFU  
DHCP  
Central Processing Unit  
Digital-to-Analog Converter  
Data Acquisition System  
Data Communication Equipment  
Dry Filter Unit  
Dynamic Host Configuration Protocol. A protocol used by LAN  
or Internet servers to automatically set up the interface protocols  
between themselves and any other addressable device  
connected to the network  
DIAG  
DOM  
Diagnostics, the diagnostic settings of the analyzer.  
Disk On Module, a 44-pin IDE flash drive with up to 128MB  
storage capacity for instrument’s firmware, configuration settings  
and data  
DOS  
Disk Operating System  
DRAM  
DR-DOS  
DTE  
Dynamic Random Access Memory  
Digital Research DOS  
Data Terminal Equipment  
EEPROM  
Electrically Erasable Programmable Read-Only Memory also  
referred to as a FLASH chip or drive  
ESD  
Electro-Static Discharge  
Electrical Test  
ETEST  
Ethernet  
a standardized (IEEE 802.3) computer networking technology  
for local area networks (LANs), facilitating communication and  
sharing resources  
FEP  
Fluorinated Ethylene Propylene polymer, one of the polymers  
that Du Pont markets as Teflon®  
Flash  
FPI  
non-volatile, solid-state memory  
Fabry-Perot Interface: a special light filter typically made of a  
transparent plate with two reflecting surfaces or two parallel,  
highly reflective mirrors  
GFC  
Gas Filter Correlation  
I2C bus  
a clocked, bi-directional, serial bus for communication between  
individual analyzer components  
IC  
Integrated Circuit, a modern, semi-conductor circuit that can  
contain many basic components such as resistors, transistors,  
capacitors etc in a miniaturized package used in electronic  
assemblies  
IP  
Internet Protocol  
IZS  
Internal Zero Span  
320  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Teledyne API - Model T200H/T200M Operation Manual  
A Primer on Electro-Static Discharge  
Description/Definition  
Term  
LAN  
Local Area Network  
LCD  
Liquid Crystal Display  
Light Emitting Diode  
Liters Per Minute  
LED  
LPM  
MFC  
Mass Flow Controller  
Measure/Reference  
M/R  
MOLAR MASS  
the mass, expressed in grams, of 1 mole of a specific substance.  
Conversely, one mole is the amount of the substance needed  
for the molar mass to be the same number in grams as the  
atomic mass of that substance.  
EXAMPLE: The atomic weight of Carbon is 12 therefore the  
molar mass of Carbon is 12 grams. Conversely, one mole of  
carbon equals the amount of carbon atoms that weighs 12  
grams.  
Atomic weights can be found on any Periodic Table of Elements.  
NDIR  
Non-Dispersive Infrared  
NIST-SRM  
National Institute of Standards and Technology - Standard  
Reference Material  
PC  
Personal Computer  
PCA  
Printed Circuit Assembly, the PCB with electronic components,  
ready to use  
PC/AT  
PCB  
Personal Computer / Advanced Technology  
Printed Circuit Board, the bare board without electronic  
component  
PFA  
PLC  
Per-Fluoro-Alkoxy, an inert polymer; one of the polymers that  
Du Pont markets as Teflon®  
Programmable Logic Controller, a device that is used to control  
instruments based on a logic level signal coming from the  
analyzer  
PLD  
PLL  
PMT  
Programmable Logic Device  
Phase Lock Loop  
Photo Multiplier Tube, a vacuum tube of electrodes that multiply  
electrons collected and charged to create a detectable current  
signal  
P/N (or PN)  
PSD  
Part Number  
Prevention of Significant Deterioration  
PTFE  
Poly-Tetra-Fluoro-Ethylene, a very inert polymer material used  
to handle gases that may react on other surfaces; one of the  
polymers that Du Pont markets as Teflon®  
PVC  
Rdg  
Poly Vinyl Chloride, a polymer used for downstream tubing  
Reading  
321  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
A Primer on Electro-Static Discharge  
Teledyne API - Model T200H/T200M Operation Manual  
Term  
Description/Definition  
RS-232  
specification and standard describing a serial communication  
method between DTE (Data Terminal Equipment) and DCE  
(Data Circuit-terminating Equipment) devices, using a maximum  
cable-length of 50 feet  
RS-485  
specification and standard describing a binary serial  
communication method among multiple devices at a data rate  
faster than RS-232 with a much longer distance between the  
host and the furthest device  
SAROAD  
SLAMS  
SLPM  
Storage and Retrieval of Aerometric Data  
State and Local Air Monitoring Network Plan  
Standard Liters Per Minute of a gas at standard temperature and  
pressure  
STP  
Standard Temperature and Pressure  
TCP/IP  
Transfer Control Protocol / Internet Protocol, the standard  
communications protocol for Ethernet devices  
TEC  
TPC  
USB  
Thermal Electric Cooler  
Temperature/Pressure Compensation  
Universal Serial Bus: a standard connection method to establish  
communication between peripheral devices and a host  
controller, such as a mouse and/or keyboard and a personal  
computer or laptop  
VARS  
V-F  
Variables, the variable settings of the instrument  
Voltage-to-Frequency  
Z/S  
Zero / Span  
322  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512) APPENDIX A - Software Documentation, V.1.0.3 (T-Series)  
Kd6 (E-Series)  
APPENDIX A - Software Documentation, V.1.0.3 (T-Series) Kd6 (E-Series)  
APPENDIX A-1: MODELS T200H/M, 200EH/EM SOFTWARE MENU TREES....................................................... 2  
APPENDIX A-2: SETUP VARIABLES FOR SERIAL I/O .......................................................................................... 8  
APPENDIX A-3: WARNINGS AND TEST MEASUREMENTS................................................................................ 21  
APPENDIX A-4: M SIGNAL I/O DEFINITIONS....................................................................................................... 26  
APPENDIX A-5: DAS FUNCTIONS ........................................................................................................................ 31  
APPENDIX A-6: TERMINAL COMMAND DESIGNATORS .................................................................................... 35  
APPENDIX A-7: MODBUS REGISTER MAP......................................................................................................... 37  
A-1  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-1: Models T200H/M, 200EH/EM Software Menu Trees  
SAMPLE  
CALZ4  
CLR1  
TEST1  
CAL  
O23  
CALS4  
MSG1  
SETUP  
<TST  
TST>  
NOX  
Press to cycle  
through the  
active warning  
messages.  
LOW  
HIGH  
LOW  
HIGH LOW  
HIGH  
A1: User Selectable Range2  
A2: User Selectable Range2  
A3: User Selectable Range2  
A4: User Selectable Range2  
NOX STB  
Press to clear  
an active  
warning  
messages.  
ZERO  
SPAN CONC  
ZERO  
SPAN  
CONC  
SAMP FLW  
0ZONE FLW  
PMT  
NORM PMT  
AZERO  
NOX  
NO  
CONV  
HVPS  
RCELL TEMP  
BOX TEMP  
PRIMARY SETUP  
MENU  
NO2  
CAL  
CFG  
SET  
ACAL4  
PMT TEMP  
MF TEMP  
O2 CELL TEMP3  
MOLY TEMP  
RCEL  
DAS  
RANGE PASS  
CLK  
MORE  
SAMP  
SECONDARY  
SETUP MENU  
NOX SLOPE  
NOX OFFSET  
NO SLOPE  
NO OFFSET  
O2 SLOPE3  
O2 OFFSET3  
TIME  
1 Only appears when warning messages are active.  
2 User selectable analog outputs A1 – A4 (see Section X.X.X)  
3 Only appears if analyzer is equipped with O2 sensor option.  
4 Only appears if analyzer is equipped with Zero/Span or IZS valve  
options.  
COMM VARS  
DIAG ALARM  
Figure A-1: Basic Sample Display Menu  
A-2  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
SAMPLE  
SETUP  
ACAL1  
DAS  
RNGE  
PASS  
MORE  
CFG  
CLK  
Go to iDAS  
Menu Tree  
<TST TST>  
PREV NEXT  
MODE  
ON  
OFF  
SEQ 1)  
SEQ 2)  
SEQ 3)  
MODEL TYPE AND  
NUMBER  
TIME DATE  
PART NUMBER  
SERIAL NUMBER  
SOFTWARE REVISION  
LIBRARY REVISION  
iCHIP SOFTWARE  
REVISION  
PREV NEXT  
UNIT  
DIL3  
Go to  
SECONDARY SETUP  
Menu Tree  
HESSEN PROTOCOL  
REVISION2  
DISABLED  
CPU TYPE & OS  
REVISION  
DATE FACTORY  
PPM  
MGM  
ZERO  
ZERO-LO  
CONFIGURATION SAVED  
ZERO-LO-HI  
ZERO-HI  
LO  
SET  
<SET SET>  
1 ACAL menu and its submenus only appear if  
analyzer is equipped with Zero/Span or IZS  
valve options.  
LO-HI  
HI  
ON  
OFF  
TIMER ENABLE  
O2 ZERO4  
O2 ZERO-SP4  
O2 SPAN4  
STARTING DATE  
STARTING TIME  
DELTA DAYS  
DURATION  
CALIBRATE  
2 Only appears if Dilution option is active  
3 Only appears if Hessen protocol is active.  
4 O2 Modes only appear if analyzer is  
equipped with O2 sensor option.  
5
DELTA TIME  
RANGE TO CAL  
LOW5 HIGH5  
5 DOES NOT appear if one of the three O2  
modes is selected  
Figure A-2: Primary Setup Menu (Except DAS)  
A-3  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
SAMPLE  
SETUP  
CFG ACAL1  
RNGE PASS  
MORE  
CLK  
DAS  
VIEW  
EDIT  
ENTER PASSWORD: 818  
PREV NEXT  
CONC  
EDIT2  
PRNT  
PREV NEXT INS  
DEL  
CALDAT  
CALCHE  
HIRES  
DIAG  
CONC  
YES NO  
CALDAT  
CALCHE  
HIRES  
DIAG  
VIEW  
<SET SET> NEXT NX10  
PV10 PREV NEXT NX10  
PRM>  
<PRM  
Selects the data point to be viewed  
Create/edit the name of the channel  
NAME  
EVENT  
PARAMETERS  
Cycles through  
parameters  
assigned to this  
DAS channel  
REPORT PERIOD  
NUMBER OF RECORDS  
RS-232 REPORT  
CHANNEL ENABLE  
CAL MODE  
PREV NEXT  
Sets the time lapse between  
each report  
YES2 NO  
Cycles through  
list of available  
trigger events3  
ON  
OFF  
EDIT2  
PRNT  
PREV NEXT INS  
DEL  
NO  
YES2  
Cycles through list of  
currently active  
parameters for this  
channel  
YES NO  
Sets the maximum number of  
records recorded by this  
channel  
<SET SET> EDIT PRNT  
PARAMETER  
PREV NEXT  
SAMPLE MODE  
PRECISION  
1 ACAL menu only appear if analyzer is equipped with  
Zero/Span or IZS valve options.  
2 Editing an existing DAS channel will erase any  
data stored on the channel options.  
3 Changing the event for an existing iDAS  
channel DOES NOT erase the data stored on  
the channel.  
INST AVG MIN MAX  
Cycles through list of available &  
currently active parameters for  
this channel  
Figure A-3: Primary Setup Menu iDAS Submenu  
A-4  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
SAMPLE  
SETUP  
MORE  
ACAL  
CFG  
DAS RNGE PASS CLK  
COMM  
DIAG  
VARS  
ENTER PASSWORD: 818  
ID  
INET1  
HESN2  
COM21  
COM1  
ENTER PASSWORD: 818  
<SET  
SET>  
EDIT  
PREV NEXT  
JUMP  
PRNT  
Go to  
EDIT  
COMM / Hessen  
Menu Tree  
<SET  
SET>  
EDIT  
0) DAS_HOLD_OFF  
1) TPC_ENABLE  
2) RCELL_SET  
MODE  
BAUD RATE TEST PORT  
TEST  
3) DYN_ZERO  
4) DYN_SPAN  
5) CONC_PRECISION  
6) CLOCK_ADJ  
7) SERVICE_CLEAR  
8) TIME_SINCE_SVC  
9) SVC_INTERVAL  
DHCP  
300  
ON  
OFF  
1200  
2400  
4800  
9600  
19200  
38400  
57600  
115200  
EDIT  
EDIT  
QUIET  
COMPUTER  
SECURITY  
HESSEN PROTOCOL  
E, 7, 1  
RS-485  
MULTIDROP PROTOCOL  
ENABLE MODEM  
ERROR CHECKING  
XON/XOFF HANDSHAKE  
INSTRUMENT IP3  
GATEWAY IP3  
ENTER PASSWORD: 818  
Go to DIAG Menu Tree  
SUBNET MASK3  
1
E-Series: only appears if optional Ethernet PCA is  
installed. NOTE: When Ethernet PCA is present  
COM2 submenu disappears.  
TCP PORT4  
HOSTNAME5  
2
3
Only appears if HESSEN PROTOCOL mode is ON  
(See COM1 & COM2 – MODE submenu above).  
HARDWARE HANDSHAKE  
HARDWARE FIFO  
INSTRUMENT IP, GATEWAY IP & SUBNET MASK are only  
editable when DHCP is OFF.  
4 Although TCP PORT is editable regardless of the DHCP  
state, do not change the setting for this property.  
COMMAND PROMPT  
5
ON  
OFF  
HOST NAME is only editable when DHCP is ON.  
Figure A-4: Secondary Setup Menu COMM and VARS Submenus  
A-5  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
SAMPLE  
SETUP  
MORE  
ACAL  
CFG  
DAS RNGE PASS CLK  
DIAG  
VARS  
COMM  
HESN2  
ID  
INET1  
COM1  
COM2  
ENTER PASSWORD: 818  
ENTER PASSWORD: 818  
ENTER PASSWORD: 818  
<SET  
SET>  
EDIT  
Go to COMM / VARS  
Go to COMM / VARS  
Go to DIAG Menu Tree  
Menu Tree  
Menu Tree  
VARIATION  
RESPONSE MODE  
GAS LIST  
STATUS FLAGS  
TYPE1  
TYPE2  
BCC  
TEXT  
CMD  
PREV  
NEXT  
INS  
DEL  
PRNT  
EDIT  
NOX, 211, REPORTED  
NO, 212, REPORTED  
NO2, 213 REPORTED  
O2, 214, REPORTED  
YES NO  
GAS TYPE  
GAS ID  
REPORTED  
<SET  
SET>  
NOX  
ON  
OFF  
NO  
NO2  
O2  
1
2
E-Series: only appears if Ethernet Option is installed.  
Set/create unique gas ID number  
Only appears if HESSEN PROTOCOL mode is ON.  
Figure A-5: Secondary Setup Menu Hessen Protocol Submenu  
A-6  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-1: Software Menu Trees  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
SAMPLE  
SETUP  
ACAL  
CFG  
DAS RNGE PASS CLK  
COMM  
MORE  
DIAG  
VARS  
ENTER PASSWORD: 818  
PREV NEXT  
DISPLAY  
SEQUENCE  
CONFIGURATION  
FLOW  
CALIBRATION  
OPTIC  
TEST  
OZONE GEN  
OVERRIDE  
ELECTRICAL  
TEST  
ANALOG  
CONFIGURATION  
ANALOG  
OUTPUT  
SIGNAL  
I/O  
Press ENTR  
to start test  
Press ENTR  
to start test  
Press ENTR  
to start test  
ON  
SAMP  
OZONE  
OFF  
0) EXT ZERO CAL  
1) EXT SPAN CAL  
2) EXT LOW SPAN  
3) REMOTE RANGE HI  
4) MAINT MODE  
<SET SET> EDIT  
PREV  
NEXT  
PREV  
NEXT  
INS  
DEL  
PRNT  
EDIT  
5) LANG2 SELECT  
6) SAMPLE LED  
7) CAL LED  
8) FAULT LED  
9) AUDIBLE BEEPER  
10) ELEC TEST  
11) OPTIC TEST  
12) PREAMP RANGE HIGH  
13) O3GEN STATUS  
14) ST SYSTEM OK  
15) ST CONC VALID  
16) ST HIGH RANGE  
17) ST ZERO CAL  
YES NO  
Cycles through list of  
already programmed  
display sequences  
AOUTS CALIBRATED  
DATA OUT 11  
DATA OUT 21  
DATA OUT 31  
DATA OUT 41  
NOX  
NXL  
NXH  
NO  
NOL  
NOH  
NO2  
N2L  
N2H  
O2  
PREV  
NEXT  
ON  
DISPLAY DATA  
18) ST SPAN CAL  
AIN CALIBRATED  
19) ST DIAG MODE  
20) ST LOW SPAN CAL  
21) ST O2 CAL  
OFF  
CAL  
22) ST SYSTEM OK2  
23) ST CONC ALARM 1  
24) ST CONC ALARM 2  
25) RELAY WATCHDOG  
26) RCELL HEATER  
27) CONV HEATER  
28) MANIFOLD HEATER  
29) O2 CELL HEATER  
30) ZERO VALVE  
RANGE OVER  
RANGE AUTO2 CALIBRATED OUTPUT DATA SCALE UPDATE  
RANGE OFFSET2 CAL  
ENTR  
DISPLAY DURATION  
31) CAL VALVE  
32) AUTO ZERO VALVE  
33) NOX VALVE  
34) LOW SPAN VALVE  
35) HIGH SPAN VALVE  
ON  
ON  
ON  
Sets the scale  
width of the  
reporting range.  
OFF  
OFF  
OFF  
Sets the  
degree of  
offset  
36 INTERNAL ANALOG  
to VOLTAGE SIGNALS  
61 (see Appendix A)  
CAL2  
Cycles  
Sets time lapse  
between data  
updates on  
Manual Cal3  
through the  
list of iDAS  
data types.  
Auto Cal  
selected output  
0.1V  
1V  
5V  
CURR  
10V  
1
2
3
Correspond to analog Output A1 – A4 on back of analyzer  
Only appears if one of the voltage ranges is selected.  
U100 UP10 UP DOWN DN10 D100  
Manual adjustment menu only appears if either the Auto Cal feature is OFF or the  
range is set for CURRent.  
Figure A-6: DIAG Menu  
A-7  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Table A-1: Setup Variables  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
Low Access Level Setup Variables (818 password)  
DAS_HOLD_OFF  
Minutes  
15  
0.5–20  
NO,  
Duration of DAS hold off period.  
MEASURE_MODE  
NO-NOX,  
NOX 8  
Gas measure mode. Enclose  
value in double quotes (") when  
setting from the RS-232  
interface.  
NOX, NOX-  
NO,  
NON-OX  
NO,  
STABIL_GAS  
NOX  
Selects gas for stability  
measurement. Enclose value in  
double quotes (") when setting  
from the RS-232 interface.  
NO2,  
NOX,  
O2 14  
,
CO2 15  
TPC_ENABLE  
ON  
OFF, ON  
ON enables temperature/  
pressure compensation; OFF  
disables it.  
DYN_ZERO  
DYN_SPAN  
IZS_SET 3  
ºC  
OFF  
OFF  
ON, OFF  
ON, OFF  
30–70  
ON enables remote dynamic  
zero calibration; OFF disables it.  
ON enables remote dynamic  
span calibration; OFF disables it.  
51  
IZS temperature set point and  
warning limits.  
Warnings:  
50–52  
AUTO 3,  
3 4, 5  
CONC_PRECISION  
AUTO,  
0,  
Number of digits to display to the  
right of the decimal point for  
concentrations on the display.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
1,  
2,  
3,  
4
STAT_REP_GAS 8  
NOX  
NO,  
NO2,  
NOX,  
CO2 15  
O2 14  
Selects gas to report in TAI  
protocol status message.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
,
REM_CAL_DURATION 8  
CLOCK_ADJ  
Minutes  
Sec./Day  
20  
0
1–120  
Duration of automatic calibration  
initiated from TAI protocol.  
-60–60  
Time-of-day clock speed  
adjustment.  
SERVICE_CLEAR  
OFF  
OFF  
ON resets the service interval  
timer.  
ON  
TIME_SINCE_SVC  
SVC_INTERVAL  
Hours  
Hours  
0
0
0–500000  
0–100000  
Time since last service.  
Sets the interval between service  
reminders.  
CAL_ON_NO2 3  
OFF  
ON, OFF  
ON enables span calibration on  
pure NO2; OFF disables it.  
A-8  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
Medium Access Level Setup Variables (929 password)  
LANGUAGE_SELECT  
ENGL  
ENGL,  
SECD,  
EXTN  
Selects the language to use for  
the user interface. Enclose value  
in double quotes (") when setting  
from the RS-232 interface.  
MAINT_TIMEOUT  
Hours  
2
0.1–100  
Time until automatically  
switching out of software-  
controlled maintenance mode.  
LATCH_WARNINGS  
ON  
ON  
ON, OFF  
ON, OFF  
ON enables latching warning  
messages; OFF disables latching  
DAYLIGHTSAVING_ENABLE  
ON enables Daylight Saving  
Time change; OFF disables  
DST.  
BXTEMP_TPC_GAIN  
RCTEMP_TPC_GAIN  
RCPRESS_TPC_GAIN  
SPRESS_TPC_GAIN  
CE_CONC1A  
0
0
1
1
1
1
0–10  
Box temperature compensation  
attenuation factor.  
0–10  
Reaction cell temperature  
compensation attenuation factor.  
0–10  
Reaction cell pressure  
compensation attenuation factor.  
0–10  
Sample pressure compensation  
attenuation factor.  
0-10000  
Target CE concentration cal pt A  
for range 1.  
CONV_EFF1A  
0.8–1.2,  
0.1–2 6, 19  
0-10000  
Converter efficiency cal pt A for  
range 1.  
CE_CONC1B 19  
CONV_EFF1B 19  
CE_OFFSET1 19  
1
1
1
Target CE concentration cal pt B  
for range 1.  
0.1–2  
0.1–2  
Converter efficiency cal pt B for  
range 1.  
CE linearization Offset for range  
1.  
CE_SLOPE1 19  
CE_CONC2A  
CONV_EFF2A  
1
1
1
-10–10  
CE linearization Slope for range  
1.  
0-10000  
Target CE concentration cal pt A  
for range 2.  
0.8–1.2,  
0.1–2 6, 19  
0-10000  
Converter efficiency cal pt A for  
range 2.  
CE_CONC2B 19  
CONV_EFF2B 19  
CE_OFFSET2 19  
1
1
1
Target CE concentration cal pt B  
for range 2.  
0.1–2  
0.1–2  
Converter efficiency cal pt B for  
range 2.  
CE linearization Offset for range  
2.  
CE_SLOPE2 19  
1
-10–10  
CE linearization Slope for range  
2.  
NEG_NO2_SUPPRESS  
ON  
ON, OFF  
ON suppresses negative NO2 in  
during switching mode;  
OFF does not suppress negative  
NO2 readings  
A-9  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
FILT_SIZE  
Samples  
42,  
10 4,9  
1–500  
Moving average filter size.  
SG_FILT_SIZE  
FILT_ADAPT  
Samples  
60  
1–500  
Moving average filter size in  
single-gas measure modes.  
ON  
ON, OFF  
ON enables adaptive filter; OFF  
disables it.  
FILT_OMIT_DELTA  
PPM  
0.05 3,  
10 4,  
0.03 5,  
0.8 9  
0.005–0.13,5  
5–100 4,  
0.1–100 9  
,
,
Absolute change in concentration  
to omit readings.  
FILT_OMIT_PCT  
%
10 3,4  
8 5  
,
1–100  
Percent change in concentration  
to omit readings.  
FILT_SHORT_DELT  
PPM  
0.04 3,  
5 4,  
0.005–0.13,5  
5–100 4,  
Absolute change in concentration  
to shorten filter.  
0.015 5,  
0.5 9  
0.1–100 9  
FILT_SHORT_PCT  
FILT_ASIZE  
%
8 3,5  
5 4,  
7 9  
3,  
2 4,  
4 5  
6,  
,
1–100  
1–500  
Percent change in concentration  
to shorten filter.  
Samples  
Moving average filter size in  
adaptive mode.  
SG_FILT_ASIZE  
FILT_DELAY  
Samples  
Seconds  
1–500  
0–200  
Moving average filter size in  
adaptive mode, in single-gas  
measure modes.  
4 5  
120 3,  
60 4,  
200 5,  
80 9  
Delay before leaving adaptive  
filter mode.  
SG_FILT_DELAY  
Seconds  
200 5,  
0–200  
Delay before leaving adaptive  
filter mode in single-gas measure  
modes.  
60  
CO2_DWELL 15  
Seconds  
1
0.1–30  
Dwell time before taking each  
sample.  
CO2_FILT_ADAPT 15  
ON  
ON, OFF  
ON enables CO2 adaptive filter;  
OFF disables it.  
CO2_FILT_SIZE 15  
CO2_FILT_ASIZE 15  
Samples  
Samples  
48  
12  
1–300  
1–300  
CO2 moving average filter size.  
CO2 moving average filter size in  
adaptive mode.  
CO2_FILT_DELTA 15  
CO2_FILT_PCT 15  
%
2
0.01–10  
0.1–100  
0–300  
Absolute CO2 conc. change to  
trigger adaptive filter.  
%
10  
90  
1
Percent CO2 conc. change to  
trigger adaptive filter.  
CO2_FILT_DELAY 15  
CO2_DIL_FACTOR 15  
Seconds  
Delay before leaving CO2  
adaptive filter mode.  
0.1–1000  
Dilution factor for CO2. Used only  
if is dilution enabled with  
FACTORY_OPT variable.  
A-10  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
O2_DWELL 14  
Seconds  
1
0.1–30  
Dwell time before taking each  
sample.  
O2_FILT_ADAPT 14  
O2_FILT_SIZE 14  
O2_FILT_ASIZE 14  
O2_FILT_DELTA 14  
O2_FILT_PCT 14  
ON  
60  
10  
2
ON, OFF  
1–500  
ON enables O2 adaptive filter;  
OFF disables it.  
Samples  
Samples  
%
O2 moving average filter size in  
normal mode.  
1–500  
O2 moving average filter size in  
adaptive mode.  
0.1–100  
0.1–100  
0–300  
Absolute change in O2  
concentration to shorten filter.  
%
2
Relative change in O2  
concentration to shorten filter.  
O2_FILT_DELAY 14  
O2_DIL_FACTOR 14  
Seconds  
20  
1
Delay before leaving O2 adaptive  
filter mode.  
0.1–1000  
Dilution factor for O2. Used only if  
is dilution enabled with  
FACTORY_OPT variable.  
NOX_DWELL  
Seconds  
Seconds  
2.5 3,  
4.2 4,  
4 5,  
3.5 9  
4 5,  
0.1–30  
0.1–30  
Dwell time after switching valve  
to NOX position.  
SG_NOX_DWELL  
Dwell time after switching valve  
to NOX position in single-gas  
measure modes.  
1
NOX_SAMPLE  
Samples  
Samples  
2
2
1–30  
1–30  
Number of samples to take in  
NOX mode.  
SG_NOX_SAMPLE  
Number of samples to take in  
NOX mode in single-gas measure  
modes.  
NO_DWELL  
Seconds  
Seconds  
1.5 3,5  
4.2 4,  
3.0 9  
1.5 5,  
1
,
0.1–30  
0.1–30  
Dwell time after switching valve  
to NO position.  
SG_NO_DWELL  
Dwell time after switching valve  
to NO position in single-gas  
measure modes.  
NO_SAMPLE  
Samples  
Samples  
2
2
1–30  
1–30  
Number of samples to take in NO  
mode.  
SG_NO_SAMPLE  
Number of samples to take in NO  
mode in single-gas measure  
modes.  
USER_UNITS  
PPB 3, 5  
PPM 4, 9  
,
PPB 3, 5  
PPM 3, 4, 9  
UGM 3, 5  
,
Concentration units for user  
interface. Enclose value in  
double quotes (") when setting  
from the RS-232 interface.  
,
,
MGM 3, 4, 9  
DIL_FACTOR  
1
1–1000  
Dilution factor. Used only if is  
dilution enabled with  
FACTORY_OPT variable.  
AGING_ENABLE20  
OFF  
ON, OFF  
ON enables aging offset and  
slope compensation.  
A-11  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
AGING_OFFSET_RATE20  
AGING_SLOPE_RATE20  
AZERO_ENABLE  
mV/day  
0
0
-1.0–1.0  
Aging offset rate of change per  
day.  
Change/day  
-0.01–0.01  
ON, OFF  
Aging slope rate of change per  
day.  
ON,  
OFF 8  
ON enables auto-zero; OFF  
disables it.  
AZERO_FREQ  
AZERO_DWELL  
Minutes  
1 3,5  
2 4  
2 3,  
4 4,  
,
0–60  
Auto-zero frequency.  
Seconds  
0.1–60  
Dwell time after opening auto-  
zero valve.  
1.5 5  
2 3,  
4 4,  
1.5 5  
2
AZERO_POST_DWELL  
Seconds  
0–60  
Dwell time after closing auto-zero  
valve.  
AZERO_SAMPLE  
SG_AZERO_SAMP  
Samples  
Samples  
1–10  
1–10  
Number of auto-zero samples to  
average.  
2
Number of auto-zero samples to  
average in single-gas measure  
modes.  
AZERO_FSIZE 3,4,6,8  
AZERO_LIMIT  
Samples  
mV  
15 3,  
8 4  
200 3,  
4000 5  
0
1–50  
Moving average filter size for  
auto-zero samples.  
0–1000 3,  
0–5000 5  
Maximum auto-zero offset  
allowed.  
NOX_TARG_ZERO1  
NOX_SPAN1  
Conc  
-100–999.99  
Target NOX concentration during  
zero calibration of range 1.  
Conc.  
400,  
80 4,  
0.01–9999.99  
Target NOX concentration during  
span calibration of range 1.  
20 11  
16 9  
0
,
NO_TARG_ZERO1  
NO_SPAN1  
Conc  
-100–999.99  
0.01–9999.99  
Target NO concentration during  
zero calibration of range 1.  
Conc.  
400,  
80 4,  
20 11  
16 9  
400,  
80 4,  
20 11  
16 9  
1
Target NO concentration during  
span calibration of range 1.  
,
,
NO2_SPAN1  
Conc.  
0.01–9999.99  
Target NO2 concentration during  
converter efficiency calibration of  
range 1.  
NOX_SLOPE1  
NOX_OFFSET1  
NO_SLOPE1  
PPM/mV  
mV  
0.25–4  
NOX slope for range 1.  
NOX offset for range 1.  
NO slope for range 1.  
NO offset for range 1.  
0
-10–10  
PPM/mV  
mV  
1
0.25–4  
NO_OFFSET1  
NOX_TARG_ZERO2  
0
-10–10  
Conc  
0
-100–999.99  
Target NOX concentration during  
zero calibration of range 2.  
A-12  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
NOX_SPAN2  
Conc.  
400,  
0.01–9999.99  
Target NOX concentration during  
span calibration of range 2.  
80 4,  
20 11  
16 9  
0
,
NO_TARG_ZERO2  
NO_SPAN2  
Conc  
-100–999.99  
0.01–9999.99  
Target NO concentration during  
zero calibration of range 2.  
Conc.  
400,  
80 4,  
20 11  
16 9  
400,  
80 4,  
20 11  
16 9  
1
Target NO concentration during  
span calibration of range 2.  
,
,
NO2_SPAN2  
Conc.  
0.01–9999.99  
Target NO2 concentration during  
converter efficiency calibration of  
range 2.  
NOX_SLOPE2  
PPM/mV  
mV  
0.25–4  
-10–10  
0.25–4  
-10–10  
0.01–100,  
NOX slope for range 2.  
NOX offset for range 2.  
NO slope for range 2.  
NO offset for range 2.  
NOX_OFFSET2  
NO_SLOPE2  
0
PPM/mV  
mV  
1
NO_OFFSET2  
CO2_TARG_SPAN_CONC 15  
0
%
12  
Target CO2 concentration during  
span calibration.  
0.01–9999.99  
16  
15  
CO2_SLOPE  
%
1
0
0.5–5  
CO2 slope.  
CO2 offset.  
15  
CO2_OFFSET  
-10–10,  
-100–100 16  
0.1–100  
O2_TARG_SPAN_CONC 14  
%
20.95  
Target O2 concentration during  
span calibration.  
O2_SLOPE 14  
O2_OFFSET 14  
RANGE_MODE  
%
1
0.5–2  
O2 slope.  
O2 offset.  
0
-10–10  
SNGL,  
SNGL  
Range control mode. Enclose  
value in double quotes (") when  
setting from the RS-232  
interface.  
IND,  
AUTO,  
REM 4,5  
0.1–2500,  
5–5000 9,  
5–10000 4  
PHYS_RANGE1  
PHYS_RANGE2  
PPM  
PPM  
2,  
Low pre-amp range.  
20 9,  
500 4,  
1 11  
22,  
0.1–2500,  
5–5000 9,  
5–10000 4  
High pre-amp range.  
220 9,  
5500 4,  
100 11  
500,  
100 4,  
20 9  
CONC_RANGE1  
CONC_RANGE2 1  
Conc.  
Conc.  
1–20000,  
1–10000 4,  
1–500 9  
D/A concentration range 1 or  
range for NOX.  
500,  
100 4,  
1–20000,  
1–10000 4,  
D/A concentration range 2 or  
range for NO.  
A-13  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Description  
Range  
200 9  
1–500 9  
CONC_RANGE3 1  
Conc.  
500,  
100 4,  
20 9  
15  
1–20000,  
1–10000 4,  
1–500 9  
0.1–500  
0.1–500  
30–70  
D/A concentration range 3 or  
range for NO2.  
CO2_RANGE 15  
O2_RANGE 14  
RCELL_SET  
%
%
ºC  
CO2 concentration range.  
O2 concentration range.  
100  
50 3,4  
40 5  
,
Reaction cell temperature set  
point and warning limits.  
Warnings:  
45–55 3,4  
35–45 5  
,
MANIFOLD_SET 5  
ºC  
50 4,6,8  
40 5  
,
30–70  
Manifold temperature set point  
and warning limits.  
Warnings:  
45–55 4,6,8  
35–45 5  
,
CONV_TYPE  
CONV_SET  
ºC  
MOLY 3,5, 9  
CONV 4,  
O3KL 6  
,
NONE, MOLY, Converter type. “CONV” is mini-  
hicon. Enclose value in double  
CONV, O3KL  
quotes (") when setting from the  
RS-232 interface. Changing this  
variable changes CONV_SET  
accordingly.  
315,  
200 6  
0–800  
Converter temperature set point  
and warning limits.  
Warnings:  
305–325,  
190–210 6  
30  
BOX_SET  
PMT_SET  
ºC  
ºC  
0–70  
Nominal box temperature set  
point and warning limits.  
Warnings:  
7–48  
7 3,4  
5 5  
,
0–40 3,4  
-10–40 5  
,
PMT temperature warning limits.  
Set point is not used.  
Warnings:  
5–12 3,4  
3–7 5  
,
SFLOW_SET  
cc/m  
500,  
290 4,  
0–1000,  
100–1000 4, 9  
Sample flow warning limits. Set  
point is not used.  
360 4+14  
250 9,  
,
320 9+14  
Warnings:  
350–600,  
200–600 4,9  
,
300–700 4+14,  
9+14  
A-14  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
SAMP_FLOW_SLOPE  
OFLOW_SET  
1
0.001–100  
Slope term to correct sample  
flow rate.  
cc/m  
80,  
250 4, 9  
0–500,  
100–1000 4, 9  
Ozone flow warning limits. Set  
point is not used.  
Warnings:  
50–150,  
200–600 4, 9  
1
OZONE_FLOW_SLOPE  
RCELL_PRESS_CONST2  
RCELL_PRESS_CONST3  
PRESS_FILT_SIZE  
0.001–100  
Slope term to correct ozone flow  
rate.  
3.6  
-99.999–  
99.999  
Reaction cell pressure  
compensation constant #2.  
-1.1  
-99.999–  
99.999  
Reaction cell pressure  
compensation constant #3.  
Samples  
3,  
30 5  
1–20,  
1–120 5  
Sample and reaction cell  
pressure moving average filter  
size.  
PRESS_SAMP_FREQ 5  
RS232_MODE  
Seconds  
20  
0
1–120  
Sample and reaction cell  
pressure sampling frequency.  
0–65535  
RS-232 COM1 mode flags. Add  
values to combine flags.  
1 = quiet mode  
2 = computer mode  
4 = enable security  
16 = enable Hessen protocol 12  
32 = enable multidrop  
64 = enable modem  
128 = ignore RS-232 line errors  
256 = disable XON / XOFF  
support  
512 = disable hardware FIFOs  
1024 = enable RS-485 mode  
2048 = even parity, 7 data bits, 1  
stop bit  
4096 = enable command prompt  
BAUD_RATE  
115200  
300,  
RS-232 COM1 baud rate.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
1200,  
2400,  
4800,  
9600,  
19200,  
38400,  
57600,  
115200  
MODEM_INIT  
“AT Y0 &D0  
Any character  
in the allowed  
character set.  
Up to 100  
characters  
long.  
RS-232 COM1 modem  
&H0 &I0 S0=2  
&B0 &N6 &M0  
E0 Q1 &W0”  
initialization string. Sent verbatim  
plus carriage return to modem on  
power up or manually. Enclose  
value in double quotes (") when  
setting from the RS-232  
interface.  
A-15  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
RS232_MODE2  
BitFlag  
0,  
3 8  
0–65535  
RS-232 COM2 mode flags.  
(Same settings as  
RS232_MODE, plus these when  
MODBUS option is installed:)  
8192 = enable dedicated  
MODBUS ASCII protocol  
16384 = enable dedicated  
MODBUS RTU or TCP protocol  
BAUD_RATE2  
19200,  
9600 8  
300,  
RS-232 COM2 baud rate.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
1200,  
2400,  
4800,  
9600,  
19200,  
38400,  
57600,  
115200  
MODEM_INIT2  
“AT Y0 &D0  
Any character  
in the allowed  
character set.  
Up to 100  
characters  
long.  
RS-232 COM2 modem  
&H0 &I0 S0=2  
&B0 &N6 &M0  
E0 Q1 &W0”  
initialization string. Sent verbatim  
plus carriage return to modem on  
power up or manually. Enclose  
value in double quotes (") when  
setting from the RS-232  
interface.  
RS232_PASS  
Password  
940331  
200  
0–999999  
0–9999  
RS-232 log on password.  
MACHINE_ID  
ID  
Unique ID number for instrument.  
COMMAND_PROMPT  
“Cmd> ”  
Any character  
in the allowed  
character set.  
Up to 100  
characters  
long.  
RS-232 interface command  
prompt. Displayed only if enabled  
with RS232_MODE variable.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
NONE,  
TEST_CHAN_ID  
NONE  
Diagnostic analog output ID.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
PMT DE-  
TECTOR,  
OZONE FLOW,  
SAMPLE FLOW,  
SAMPLE  
PRESSURE,  
RCELL  
PRESSURE,  
RCELL TEMP,  
MANIFOLD  
TEMP,  
IZS TEMP,  
CONV TEMP,  
PMT TEMP,  
BOX TEMP,  
HVPS  
VOLTAGE  
A-16  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
REMOTE_CAL_MODE 3  
LOW  
LOW,  
Range to calibrate during remote  
calibration. Enclose value in  
double quotes (") when setting  
from the RS-232 interface.  
HIGH,  
CO2 15  
O2 14  
,
PASS_ENABLE  
STABIL_FREQ  
STABIL_SAMPLES  
HVPS_SET  
OFF  
10  
ON, OFF  
ON enables passwords; OFF  
disables them.  
Seconds  
Samples  
Volts  
1–300  
Stability measurement sampling  
frequency.  
25  
2–40  
Number of samples in  
concentration stability reading.  
650 3,5  
550 4,  
600 9  
,
0–2000  
High voltage power supply  
warning limits. Set point is not  
used.  
Warnings:  
400–900 3,5  
400–700 4,  
450–750 9  
6
,
RCELL_PRESS_SET  
In-Hg  
0–100  
Reaction cell pressure warning  
limits. Set point is not used.  
Warnings:  
0.5–15  
RCELL_CYCLE  
RCELL_PROP  
Seconds  
1/ºC  
10  
0.5–30  
0–10  
0–10  
0–10  
0.5–30  
0–10  
0–10  
0–10  
0.5–30  
0–10  
0–10  
0–10  
Reaction cell temperature control  
cycle period.  
1
Reaction cell PID temperature  
control proportional coefficient.  
RCELL_INTEG  
RCELL_DERIV  
MANIFOLD_CYCLE 5  
MANIFOLD_PROP 5  
MANIFOLD_INTEG 5  
MANIFOLD_DERIV 5  
IZS_CYCLE 3  
0.1  
Reaction cell PID temperature  
control integral coefficient.  
0 (disabled)  
Reaction cell PID temperature  
control derivative coefficient.  
Seconds  
1/ºC  
5
Manifold temperature control  
cycle period.  
0.2  
0.1  
0.5  
2
Manifold PID temperature control  
proportional coefficient.  
Manifold PID temperature control  
integral coefficient.  
Manifold PID temperature control  
derivative coefficient.  
Seconds  
1/ºC  
IZS temperature control cycle  
period.  
IZS_PROP 3  
1
IZS temperature PID proportional  
coefficient.  
IZS_INTEG 3  
0.03  
0
IZS temperature PID integral  
coefficient.  
IZS_DERIV 3  
IZS temperature PID derivative  
coefficient.  
A-17  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
CO2_CELL_SET 15  
ºC  
50  
30–70  
CO2 sensor cell temperature set  
point and warning limits.  
Warnings:  
45–55  
10  
CO2_CELL_CYCLE 15  
CO2_CELL_PROP 15  
CO2_CELL_INTEG 15  
CO2_CELL_DERIV 15  
STD_O2_CELL_TEMP 14  
O2_CELL_SET 14  
Seconds  
0.5–30  
0–10  
CO2 cell temperature control  
cycle period.  
ºK  
ºC  
1
CO2 cell PID temperature control  
proportional coefficient.  
0.1  
0–10  
CO2 cell PID temperature control  
integral coefficient.  
0 (disabled)  
323  
0–10  
CO2 cell PID temperature control  
derivative coefficient.  
1–500  
30–70  
Standard O2 cell temperature for  
temperature compensation.  
50  
O2 sensor cell temperature set  
point and warning limits.  
Warnings:  
45–55  
10  
O2_CELL_CYCLE 14  
O2_CELL_PROP 14  
O2_CELL_INTEG 14  
O2_CELL_DERIV 14  
STAT_REP_PERIOD 8  
SERIAL_NUMBER  
Seconds  
0.5–30  
0–10  
O2 cell temperature control cycle  
period.  
1
O2 cell PID temperature control  
proportional coefficient.  
0.1  
0–10  
O2 cell PID temperature control  
integral coefficient.  
0 (disabled)  
1
0–10  
O2 cell PID temperature control  
derivative coefficient.  
Seconds  
0.5–120  
Any  
TAI protocol status message  
report period.  
“00000000 ”  
Unique serial number for  
character in instrument. Enclose value  
the allowed in double quotes (") when  
character  
set. Up to  
100  
setting from the RS-232  
interface.  
characters  
long.  
DISP_INTENSITY  
HIGH  
HIGH,  
Front panel display intensity.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
MED,  
LOW,  
DIM  
I2C_RESET_ENABLE  
ALARM_TRIGGER 17  
ON  
3
OFF, ON  
1–100  
I2C bus automatic reset enable.  
Cycles  
Number of times concentration  
must exceed limit to trigger  
alarm.  
A-18  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-2: Setup Variables For Serial I/O  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
CLOCK_FORMAT  
“TIME=%H:%  
M:%S”  
Any character  
in the allowed  
character set.  
Up to 100  
Time-of-day clock format flags.  
Enclose value in double quotes  
(") when setting from the RS-232  
interface.  
characters  
long.  
“%a” = Abbreviated weekday  
name.  
“%b” = Abbreviated month name.  
“%d” = Day of month as decimal  
number (01 – 31).  
“%H” = Hour in 24-hour format  
(00 – 23).  
“%I” = Hour in 12-hour format (01  
– 12).  
“%j” = Day of year as decimal  
number (001 – 366).  
“%m” = Month as decimal  
number (01 – 12).  
“%M” = Minute as decimal  
number (00 – 59).  
“%p” = A.M./P.M. indicator for  
12-hour clock.  
“%S” = Second as decimal  
number (00 – 59).  
“%w” = Weekday as decimal  
number (0 – 6; Sunday is 0).  
“%y” = Year without century, as  
decimal number (00 – 99).  
“%Y” = Year with century, as  
decimal number.  
“%%” = Percent sign.  
FACTORY_OPT  
0,  
512 5,6  
0–0x7fffffff  
Factory option flags. Add values  
to combine flags.  
1 = enable dilution factor  
2 = display units in concentration  
field  
4 = zero/span valves installed  
8
18 = low span valve installed  
16 3 = IZS and zero/span valves  
installed  
32 = enable software-controlled  
maintenance mode  
64 = display temperature in  
converter warning message  
128 = enable switch-controlled  
maintenance mode  
256 = not used  
512 = enable manifold  
temperature control  
1024 = enable concentration  
alarms 17  
2048 = enable Internet option 22  
A-19  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-2: Setup Variables For Serial I/O  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Setup Variable  
Numeric  
Units  
Default  
Value  
Value  
Range  
Description  
4096 = suppress front panel  
warnings  
8192 = enable non-zero offset  
calibration  
16384 = enable pressurized zero  
calibration  
32768 = enable pressurized  
span calibration  
0x10000 = enable external  
analog inputs 21  
1
Multi-range modes.  
Hessen protocol.  
T200, M200E.  
2
3
4
T200H, M200EH.  
T200U, M200EU.  
M200EUP.  
5
6
7
“De-tuned” instrument.  
TAI protocol  
8
9
T200M, M200EM.  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
22  
User-configurable D/A output option.  
SUNLAW special.  
Must power-cycle instrument for these options to fully take effect.  
O2 option.  
CO2 option.  
CO2 PPM sensor.  
Concentration alarm option.  
Low span option.  
2 point Converter Efficiency option.  
Aging Compensation option.  
T Series external analog input option.  
E Series internet option.  
A-20  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-3: Warnings and Test Measurements  
APPENDIX A-3: Warnings and Test Measurements  
Table A-2: Warning Messages  
Name 1  
Message Text  
Description  
Warnings  
WSYSRES  
SYSTEM RESET  
Instrument was power-cycled or the CPU  
was reset.  
WDATAINIT  
DATA INITIALIZED  
Data storage was erased.  
WCONFIGINIT  
CONFIG INITIALIZED  
Configuration storage was reset to factory  
configuration or erased.  
WNOXALARM1 9  
WNOXALARM2 9  
NOX ALARM 1 WARN  
NOX ALARM 2 WARN  
NOX concentration alarm limit #1  
exceeded  
NOX concentration alarm limit #2  
exceeded  
WNOALARM1 9  
WNOALARM2 9  
WNO2ALARM1 9  
NO ALARM 1 WARN  
NO ALARM 2 WARN  
NO2 ALARM 1 WARN  
NO concentration alarm limit #1 exceeded  
NO concentration alarm limit #2 exceeded  
NO2 concentration alarm limit #1  
exceeded  
WNO2ALARM2 9  
NO2 ALARM 2 WARN  
NO2 concentration alarm limit #2  
exceeded  
WO2ALARM1 5+9  
WO2ALARM2 5+9  
WCO2ALARM1 8+9  
O2 ALARM 1 WARN  
O2 ALARM 2 WARN  
CO2 ALARM 1 WARN  
O2 concentration alarm limit #1 exceeded  
O2 concentration alarm limit #2 exceeded  
CO2 concentration alarm limit #1  
exceeded  
WCO2ALARM2 8+9  
WSAMPFLOW  
WOZONEFLOW  
WOZONEGEN  
CO2 ALARM 2 WARN  
SAMPLE FLOW WARN  
OZONE FLOW WARNING  
OZONE GEN OFF  
CO2 concentration alarm limit #2  
exceeded  
Sample flow outside of warning limits  
specified by SFLOW_SET variable.  
Ozone flow outside of warning limits  
specified by OFLOW_SET variable.  
Ozone generator is off. This is the only  
warning message that automatically  
clears itself. It clears itself when the ozone  
generator is turned on.  
WRCELLPRESS  
RCELL PRESS WARN  
Reaction cell pressure outside of warning  
limits specified by RCELL_PRESS_SET  
variable.  
WBOXTEMP  
BOX TEMP WARNING  
Chassis temperature outside of warning  
limits specified by BOX_SET variable.  
WRCELLTEMP  
RCELL TEMP WARNING  
Reaction cell temperature outside of  
warning limits specified by RCELL_SET  
variable.  
WMANIFOLDTEMP 4  
WCO2CELLTEMP 8  
WO2CELLTEMP 5  
WIZSTEMP  
MANIFOLD TEMP WARN  
CO2 CELL TEMP WARN  
O2 CELL TEMP WARN  
IZS TEMP WARNING  
Bypass or dilution manifold temperature  
outside of warning limits specified by  
MANIFOLD_SET variable.  
CO2 sensor cell temperature outside of  
warning limits specified by  
CO2_CELL_SET variable.  
O2 sensor cell temperature outside of  
warning limits specified by O2_CELL_SET  
variable.  
IZS temperature outside of warning limits  
specified by IZS_SET variable.  
A-21  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A-3: Warnings and Test Measurements  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Name 1  
Message Text  
Description  
Warnings  
WCONVTEMP  
WPMTTEMP  
CONV TEMP WARNING  
Converter temperature outside of warning  
limits specified by CONV_SET variable.  
PMT TEMP WARNING  
PMT temperature outside of warning limits  
specified by PMT_SET variable.  
WAUTOZERO  
WPREREACT 11  
AZERO WRN XXX.X MV  
PRACT WRN XXX.X MV 11  
Auto-zero reading above limit specified by  
AZERO_LIMIT variable. Value shown in  
message indicates auto-zero reading at  
time warning was displayed.  
WHVPS  
HVPS WARNING  
High voltage power supply output outside  
of warning limits specified by HVPS_SET  
variable.  
WDYNZERO  
CANNOT DYN ZERO  
CANNOT DYN SPAN  
REAR BOARD NOT DET  
RELAY BOARD WARN  
FRONT PANEL WARN  
ANALOG CAL WARNING  
Contact closure zero calibration failed  
while DYN_ZERO was set to ON.  
WDYNSPAN  
Contact closure span calibration failed  
while DYN_SPAN was set to ON.  
WREARBOARD  
WRELAYBOARD  
WFRONTPANEL  
Rear board was not detected during  
power up.  
Firmware is unable to communicate with  
the relay board.  
Firmware is unable to communicate with  
the front panel.  
WANALOGCAL  
The A/D or at least one D/A channel has  
not been calibrated.  
1
The name is used to request a message via the RS-232 interface, as in “T BOXTEMP”.  
2
Engineering firmware only.  
Current instrument units.  
Factory option.  
3
4
5
O2 option.  
6
User-configurable D/A output option.  
Optional.  
7
8
CO2 option.  
9
Concentration alarm option.  
M200EUP.  
10  
11  
12  
T200U, T200U_NOy, M200EU and M200EU_NOy.  
T-Series External analog input option.  
A-22  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-3: Warnings and Test Measurements  
Table A-3: Test Measurements  
Test Measurement Name  
Message Text  
Description  
Test measurements  
NONOXCONC  
NO=396.5 NOX=396.5 3  
Simultaneously displays NO and NOX  
concentrations.  
RANGE not 6  
RANGE1 not 6  
RANGE2 not 6  
RANGE3 not 6  
STABILITY  
RANGE=500.0 PPB 3  
RANGE1=500.0 PPB 3  
RANGE2=500.0 PPB 3  
RANGE3=500.0 PPB 3  
NOX STB=0.0 PPB 3  
O2 STB=0.0 PCT 5  
D/A range in single or auto-range modes.  
D/A #1 range in independent range mode.  
D/A #2 range in independent range mode.  
D/A #3 range in independent range mode.  
Concentration stability (standard deviation  
based on setting of STABIL_FREQ and  
STABIL_SAMPLES). Select gas with  
STABIL_GAS variable.  
CO2 STB=0.0 PCT 8  
RESPONSE 2  
RSP=8.81(1.30) SEC  
Instrument response. Length of each  
signal processing loop. Time in  
parenthesis is standard deviation.  
SAMPFLOW  
OZONEFLOW  
PMT  
SAMP FLW=460 CC/M  
OZONE FL=87 CC/M  
PMT=800.0 MV  
Sample flow rate.  
Ozone flow rate.  
Raw PMT reading.  
NORMPMT  
NORM PMT=793.0 MV  
PMT reading normalized for temperature,  
pressure, auto-zero offset, but not range.  
AUTOZERO  
HVPS  
AZERO=1.3 MV  
Auto-zero offset.  
HVPS=650 V  
High voltage power supply output.  
Reaction cell temperature.  
Internal chassis temperature.  
Remote chassis temperature.  
PMT temperature.  
RCELLTEMP  
RCELL TEMP=50.8 C  
BOX TEMP=28.2 C  
REM BOX TMP=30.1 C  
PMT TEMP=7.0 C  
BOXTEMP  
REMBOXTEMP 10  
PMTTEMP  
MANIFOLDTEMP 4  
CO2CELLTEMP 8  
O2CELLTEMP 5  
IZSTEMP  
MF TEMP=50.8 C  
Bypass or dilution manifold temperature.  
CO2 sensor cell temperature.  
O2 sensor cell temperature.  
IZS temperature.  
CO2 CELL TEMP=50.8 C  
O2 CELL TEMP=50.8 C  
IZS TEMP=50.8 C  
MOLY TEMP=315.0 C  
CONVTEMP  
Converter temperature. Converter type is  
MOLY, CONV, or O3KL.  
SAMPRESTTEMP 10  
RCELLPRESS  
SAMPPRESS  
SMP RST TMP=49.8 C  
RCEL=7.0 IN-HG-A  
SAMP=29.9 IN-HG-A  
NOX SLOPE=1.000  
Sample restrictor temperature.  
Reaction cell pressure.  
Sample pressure.  
NOXSLOPE  
NOX slope for current range, computed  
during zero/span calibration.  
NOXOFFSET  
NOSLOPE  
NOX OFFS=0.0 MV  
NO SLOPE=1.000  
NO OFFS=0.0 MV  
NOX offset for current range, computed  
during zero/span calibration.  
NO slope for current range, computed  
during zero/span calibration.  
NOOFFSET  
NO offset for current range, computed  
during zero/span calibration.  
A-23  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-3: Warnings and Test Measurements  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Test Measurement Name  
Message Text  
Test measurements  
Description  
NO2  
NO2=0.0 PPB 3  
NO2_1=0.0 PPB 3  
NO2_2=0.0 PPB 3  
NO2 concentration for current range.  
NO2 concentration for range #1.  
NO2 concentration for range #2.  
NOX concentration for current range.  
NOX concentration for range #1.  
NOX concentration for range #2.  
NO concentration for current range.  
NO concentration for range #1.  
NO concentration for range #2.  
D/A #4 range for CO2 concentration.  
NO2_1 7  
NO2_2 7  
NOX  
NOX_1 7  
NOX_2 7  
NO  
NO_1 7  
NO_2 7  
CO2RANGE 8, not 6  
CO2SLOPE 8  
NOX=396.5 PPB 3  
NOX_1=396.5 PPB 3  
NOX_2=396.5 PPB 3  
NO=396.5 PPB 3  
NO_1=396.5 PPB 3  
NO_2=396.5 PPB 3  
CO2 RANGE=100.00 PCT  
CO2 SLOPE=1.000  
CO2 slope, computed during zero/span  
calibration.  
CO2OFFSET 8  
CO2 OFFSET=0.000  
CO2 offset, computed during zero/span  
calibration.  
CO2 8  
CO2=15.0 %  
CO2 concentration.  
O2RANGE 5, not 6  
O2SLOPE 5  
O2 RANGE=100.00 PCT  
O2 SLOPE=1.000  
D/A #4 range for O2 concentration.  
O2 slope computed during zero/span  
calibration.  
O2OFFSET 5  
O2 OFFSET=0.00 %  
O2 offset computed during zero/span  
calibration.  
O2 5  
O2=0.00 %  
O2 concentration.  
TESTCHAN 5,6,8  
TEST=3627.1 MV  
Value output to TEST_OUTPUT analog  
output, selected with TEST_CHAN_ID  
variable.  
XIN1 12  
XIN2 12  
XIN3 12  
XIN4 12  
XIN5 12  
XIN6 12  
XIN7 12  
XIN8 12  
AIN1=37.15 EU  
AIN2=37.15 EU  
AIN3=37.15 EU  
AIN4=37.15 EU  
AIN5=37.15 EU  
AIN6=37.15 EU  
AIN7=37.15 EU  
AIN8=37.15 EU  
External analog input 1 value in  
engineering units.  
External analog input 2 value in  
engineering units.  
External analog input 3 value in  
engineering units.  
External analog input 4 value in  
engineering units.  
External analog input 5 value in  
engineering units.  
External analog input 6 value in  
engineering units.  
External analog input 7 value in  
engineering units.  
External analog input 8 value in  
engineering units.  
A-24  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-3: Warnings and Test Measurements  
Test Measurement Name  
Message Text  
Test measurements  
Description  
CLOCKTIME  
TIME=10:38:27  
Current instrument time of day clock.  
1
The name is used to request a message via the RS-232 interface, as in “T BOXTEMP”.  
2
Engineering firmware only.  
Current instrument units.  
Factory option.  
3
4
5
O2 option.  
6
User-configurable D/A output option.  
Optional.  
7
8
CO2 option.  
9
Concentration alarm option.  
M200EUP.  
10  
11  
12  
T200U, T200U_NOy, M200EU and M200EU_NOy.  
T-Series External analog input option.  
A-25  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-4: M Signal I/O Definitions  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-4: M Signal I/O Definitions  
Table A-4: Signal I/O Definitions  
Signal Name  
Bit or Channel  
Number  
Description  
Internal inputs, U7, J108, pins 9–16 = bits 0–7, default I/O address 322 hex  
0–7 Spare  
Internal outputs, U8, J108, pins 18 = bits 07, default I/O address 322 hex  
ELEC_TEST  
0
1
2
3
1 = electrical test on  
0 = off  
OPTIC_TEST  
1 = optic test on  
0 = off  
PREAMP_RANGE_HI  
O3GEN_STATUS  
1 = select high preamp range  
0 = select low range  
0 = ozone generator on  
1 = off  
4–5  
6
Spare  
I2C_RESET  
1 = reset I2C peripherals  
0 = normal  
I2C_DRV_RST  
7
0 = hardware reset 8584 chip  
1 = normal  
Control inputs, U11, J1004, pins 1–6 = bits 0–5, default I/O address 321 hex  
EXT_ZERO_CAL  
0
1
2
3
0 = go into zero calibration  
1 = exit zero calibration  
EXT_SPAN_CAL  
0 = go into span calibration  
1 = exit span calibration  
0 = go into low span calibration  
1 = exit low span calibration  
0 = remote select high range  
1 = default range  
EXT_LOW_SPAN 20  
REMOTE_RANGE_HI 21  
CAL_MODE_0 5  
CAL_MODE_1  
CAL_MODE_2  
0
1
2
Three inputs, taken as binary number (CAL_MODE_2 is  
MSB) select calibration level and range:  
0 & 7 = Measure  
1 = Zero, range #3  
2 = Span, range #3  
3 = Zero, range #2  
4 = Span, range #2  
5 = Zero, range #1  
6 = Span, range #1  
Spare  
4–5  
6–7  
Always 1  
Control inputs, U14, J1006, pins 16 = bits 05, default I/O address 325 hex  
0–5  
6–7  
Spare  
Always 1  
Control outputs, U17, J1008, pins 18 = bits 07, default I/O address 321 hex  
0–7 Spare  
A-26  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-4: M Signal I/O Definitions  
Signal Name  
Bit or Channel  
Number  
Description  
Control outputs, U21, J1008, pins 912 = bits 03, default I/O address 325 hex  
0–3 Spare  
Alarm outputs, U21, J1009, pins 112 = bits 47, default I/O address 325 hex  
ST_SYSTEM_OK2 12  
4
5
6
7
1 = system OK  
0 = any alarm condition or in diagnostics mode  
Controlled by MODBUS coil register  
1 = calibration mode  
MB_RELAY_36 18  
OUT_CAL_MODE 13  
0 = measure mode  
ST_CONC_ALARM_1 17  
1 = conc. limit 1 exceeded  
0 = conc. OK  
MB_RELAY_37 18  
OUT_SPAN_CAL 13  
Controlled by MODBUS coil register  
1 = span calibration  
0 = zero calibration  
ST_CONC_ALARM_2 17  
1 = conc. limit 2 exceeded  
0 = conc. OK  
MB_RELAY_38 18  
OUT_PROBE_1 13  
Controlled by MODBUS coil register  
0 = select probe #1  
1 = not selected  
ST_HIGH_RANGE2 19  
1 = high auto-range in use (mirrors ST_HIGH_RANGE  
status output)  
0 = low auto-range  
MB_RELAY_39 18  
OUT_PROBE_2 13  
Controlled by MODBUS coil register  
0 = select probe #2  
1 = not selected  
A status outputs, U24, J1017, pins 18 = bits 07, default I/O address 323 hex  
ST_SYSTEM_OK  
ST_CONC_VALID  
ST_HIGH_RANGE  
ST_ZERO_CAL  
ST_SPAN_CAL  
0
1
2
3
4
0 = system OK  
1 = any alarm condition  
0 = conc. valid  
1 = conc. filters contain no data  
0 = high auto-range in use  
1 = low auto-range  
0 = in zero calibration  
1 = not in zero  
0 = in span calibration  
1 = not in span  
ST_DIAG_MODE  
5
6
0 = in diagnostic mode  
1 = not in diagnostic mode  
ST_LOW_SPAN_CAL 20  
0 = in low span calibration  
1 = not in low span  
ST_O2_CAL 11  
7
0 = in O2 calibration mode  
1 = in measure or other calibration mode  
A-27  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-4: M Signal I/O Definitions  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Signal Name  
Bit or Channel  
Number  
Description  
B status outputs, U27, J1018, pins 18 = bits 07, default I/O address 324 hex  
ST_CO2_CAL 15  
0
0 = in CO2 calibration mode  
1 = in measure or other calibration mode  
Spare  
1–7  
Front panel I2C keyboard, default I2C address 4E hex  
MAINT_MODE  
LANG2_SELECT  
SAMPLE_LED  
CAL_LED  
5 (input)  
0 = maintenance mode  
1 = normal mode  
0 = select second language  
1 = select first language (English)  
0 = sample LED on  
1 = off  
6 (input)  
8 (output)  
9 (output)  
10 (output)  
14 (output)  
0 = cal. LED on  
1 = off  
FAULT_LED  
0 = fault LED on  
1 = off  
AUDIBLE_BEEPER  
0 = beeper on (for diagnostic testing only)  
1 = off  
Relay board digital output (PCF8575), default I2C address 44 hex  
RELAY_WATCHDOG  
RCELL_HEATER  
0
Alternate between 0 and 1 at least every 5 seconds to keep  
relay board active  
1
0 = reaction cell heater on  
1 = off  
CONV_HEATER  
MANIFOLD_HEATER 10  
IZS_HEATER  
2
3
4
0 = converter heater on  
1 = off  
0 = bypass or dilution manifold heater on  
1 = off  
0 = IZS heater on  
1 = off  
CO2_CELL_HEATER 15  
O2_CELL_HEATER 11  
SPAN_VALVE  
0 = CO2 sensor cell heater on  
1 = off  
5
6
0 = O2 sensor cell heater on  
1 = off  
0 = let span gas in  
1 = let zero gas in  
ZERO_VALVE 3  
0 = let zero gas in  
1 = let sample gas in  
0 = let cal. gas in  
CAL_VALVE  
7
8
9
1 = let sample gas in  
0 = let zero air in  
AUTO_ZERO_VALVE  
NOX_VALVE  
1 = let sample gas in  
0 = let NOX gas into reaction cell  
1 = let NO gas into reaction cell  
0 = turn on NO2 converter (measure NOx)  
1 = turn off NO2 converter (measure NO)  
NO2_CONVERTER 4  
A-28  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-4: M Signal I/O Definitions  
Signal Name  
Bit or Channel  
Number  
Description  
LOW_SPAN_VALVE 20  
10  
0 = let low span gas in  
1 = let high span/sample gas in  
0 = let span gas in  
SPAN_VALVE 3  
NO2_VALVE 16  
VENT_VALVE 7  
11  
12  
1 = let sample gas in  
0 = let NO2 gas into reaction cell  
1 = let NOX/NO gas into reaction cell  
0 = open vent valve  
1 = close vent valve  
13–15  
Spare  
Rear board primary MUX analog inputs, MUX default I/O address 32A hex  
PMT_SIGNAL  
HVPS_VOLTAGE  
PMT_TEMP  
0
PMT detector  
1
HV power supply output  
PMT temperature  
2
CO2_SENSOR 15  
3
CO2 concentration sensor  
Temperature MUX  
4
5
Spare  
O2_SENSOR 11  
6
O2 concentration sensor  
Sample pressure  
SAMPLE_PRESSURE  
RCELL_PRESSURE  
REF_4096_MV  
7
8
Reaction cell pressure  
4.096V reference from MAX6241  
Ozone flow rate  
9
OZONE_FLOW  
10  
11  
TEST_INPUT_11  
SAMP_REST_TEMP 4  
CONV_TEMP  
Diagnostic test input  
Sample restrictor temperature  
Converter temperature  
Diagnostic test input  
DAC loopback MUX  
Ground reference  
12  
13  
14  
15  
TEST_INPUT_13  
REF_GND  
Rear board temperature MUX analog inputs, MUX default I/O address 326 hex  
BOX_TEMP  
0
1
2
Internal box temperature  
Reaction cell temperature  
IZS temperature  
RCELL_TEMP  
IZS_TEMP  
CO2_CELL_TEMP 15  
CO2 sensor cell temperature  
Spare  
3
4
5
O2_CELL_TEMP 11  
TEMP_INPUT_5  
REM_BOX_TEMP 4  
O2 sensor cell temperature  
Diagnostic temperature input  
Remote box temperature  
Diagnostic temperature input  
Bypass or dilution manifold temperature  
TEMP_INPUT_6  
MANIFOLD_TEMP 10  
6
7
Rear board DAC MUX analog inputs, MUX default I/O address 327 hex  
DAC_CHAN_1  
DAC_CHAN_2  
DAC_CHAN_3  
DAC_CHAN_4  
0
1
2
3
DAC channel 0 loopback  
DAC channel 1 loopback  
DAC channel 2 loopback  
DAC channel 3 loopback  
A-29  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-4: M Signal I/O Definitions  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Signal Name  
Bit or Channel  
Number  
Description  
Rear board analog outputs, default I/O address 327 hex  
CONC_OUT_1  
DATA_OUT_1 6  
CONC_OUT_2  
DATA_OUT_2 6  
CONC_OUT_3  
DATA_OUT_3 6  
TEST_OUTPUT  
CONC_OUT_4 11, 15  
DATA_OUT_4 6  
0
1
2
3
Concentration output #1 (NOX)  
Data output #1  
Concentration output #2 (NO)  
Data output #2  
Concentration output #3 (NO2)  
Data output #3  
Test measurement output  
Concentration output #4 (CO2 or O2)  
Data output #4  
External analog input board, default I2C address 5C hex  
XIN1 22  
XIN2 22  
XIN3 22  
XIN4 22  
XIN5 22  
XIN6 22  
XIN7 22  
XIN8 22  
0
1
2
3
4
5
6
7
External analog input 1  
External analog input 2  
External analog input 3  
External analog input 4  
External analog input 5  
External analog input 6  
External analog input 7  
External analog input 8  
1
Hessen protocol.  
2
T200H, M200EH.  
3
T200U, M200EU.  
4
M200EUP.  
5
Triple-range option.  
6
User-configurable D/A output option.  
Pressurized zero/span option.  
Dual NOX option.  
7
8
9
MAS special.  
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21  
22  
Factory option.  
O2 option.  
Optional  
Probe-select special.  
CO2 option.  
NO2 valve option.  
Concentration alarm option.  
MODBUS option.  
High auto range relay option  
Low span option.  
Remote range control option  
T-Series external analog input option.  
A-30  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-5: DAS Functions  
APPENDIX A-5: DAS Functions  
Table A-5: DAS Trigger Events  
Name  
Description  
ATIMER  
Automatic timer expired  
EXITZR  
EXITLS 1  
Exit zero calibration mode  
Exit low span calibration mode  
Exit high span calibration mode  
Exit multi-point calibration mode  
Exit CO2 calibration mode  
Exit O2 calibration mode  
EXITHS  
EXITMP  
EXITC2 4  
EXITO2 3  
SLPCHG  
CO2SLC 4  
O2SLPC 3  
EXITDG  
Slope and offset recalculated  
CO2 slope and offset recalculated  
O2 slope and offset recalculated  
Exit diagnostic mode  
CONC1W 5  
CONC2W 5  
AZEROW  
OFLOWW  
RPRESW  
RTEMPW  
MFTMPW 2  
C2TMPW 4  
O2TMPW 3  
IZTMPW  
Concentration exceeds limit 1 warning  
Concentration exceeds limit 2 warning  
Auto-zero warning  
Ozone flow warning  
Reaction cell pressure warning  
Reaction cell temperature warning  
Bypass or dilution manifold temperature warning  
CO2 sensor cell temperature warning  
O2 sensor cell temperature warning  
IZS temperature warning  
CTEMPW  
PTEMPW  
SFLOWW  
BTEMPW  
Converter temperature warning  
PMT temperature warning  
Sample flow warning  
Box temperature warning  
HVPSW  
HV power supply warning  
1
Low span option.  
Factory option.  
O2 option.  
2
3
4
5
CO2 option.  
Concentration alarm option.  
A-31  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A-5: DAS Functions  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Table A-6: DAS Parameters (Data Types)  
Name  
Description 9  
Units  
PMTDET  
RAWNOX 6  
RAWNO 6  
NXSLP1  
PMT detector reading  
mV  
mV  
mV  
Raw PMT detector reading for NOX  
Raw PMT detector reading for NO  
NOX slope for range #1  
NOX slope for range #2  
NOX slope for range #3  
NO slope for range #1  
NO slope for range #2  
NO slope for range #3  
NOX offset for range #1  
NOX offset for range #2  
NOX offset for range #3  
NO offset for range #1  
NO offset for range #2  
NO offset for range #3  
CO2 slope  
NXSLP2  
NXSLP3 7  
NOSLP1  
NOSLP2  
NOSLP3 7  
NXOFS1  
NXOFS2  
NXOFS3 7  
NOOFS1  
NOOFS2  
NOOFS3 7  
CO2SLP 5  
CO2OFS 5  
O2SLPE 3  
O2OFST 3  
NXZSC1  
mV  
mV  
mV  
mV  
mV  
mV  
CO2 offset  
%
O2 slope  
O2 offset  
%
PPB 2  
NOX concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
NXZSC2  
NXZSC3 7  
NOZSC1  
NOZSC2  
NOZSC3 7  
N2ZSC1  
NOX concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
%
NOX concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
NO concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
NO concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
NO concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
NO2 concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
N2ZSC2  
NO2 concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
N2ZSC3 7  
CO2ZSC 5  
O2ZSCN 3  
NO2 concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
CO2 concentration during zero/span calibration, just before  
computing new slope and offset  
O2 concentration during zero/span calibration, just before computing  
new slope and offset  
%
A-32  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-5: DAS Functions  
Name  
NXCNC1  
Description 9  
Units  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
PPB 2  
%
NOX concentration for range #1  
NOX concentration for range #2  
NOX concentration for range #3  
NO concentration for range #1  
NO concentration for range #2  
NO concentration for range #3  
NO2 concentration for range #1  
NO2 concentration for range #2  
NO2 concentration for range #3  
CO2 concentration  
NXCNC2  
NXCNC3 7  
NOCNC1  
NOCNC2  
NOCNC3 7  
N2CNC1  
N2CNC2  
N2CNC3 7  
CO2CNC 5  
O2CONC 3  
STABIL  
O2 concentration  
%
PPB 2  
Concentration stability  
AZERO  
Auto zero offset (range de-normalized)  
Ozone flow rate  
mV  
O3FLOW  
RCPRES  
RCTEMP  
MFTEMP 1  
C2TEMP 5  
O2TEMP 3  
IZTEMP  
cc/m  
"Hg  
Reaction cell pressure  
Reaction cell temperature  
°C  
Bypass or dilution manifold temperature  
CO2 sensor cell temperature  
O2 sensor cell temperature  
°C  
°C  
°C  
IZS block temperature  
°C  
CNVEF1  
CNVEF2  
CNVEF3 7  
CNVTMP  
PMTTMP  
SMPFLW  
SMPPRS  
SRSTMP 8  
BOXTMP  
RBXTMP 8  
HVPS  
Converter efficiency factor for range #1  
Converter efficiency factor for range #2  
Converter efficiency factor for range #3  
Converter temperature  
°C  
PMT temperature  
°C  
Sample flow rate  
cc/m  
"Hg  
Sample pressure  
Sample restrictor temperature  
Internal box temperature  
°C  
°C  
Remote box temperature  
°C  
High voltage power supply output  
Ground reference (REF_GND)  
4096 mV reference (REF_4096_MV)  
Diagnostic test input (TEST_INPUT_11)  
Diagnostic test input (TEST_INPUT_13)  
Diagnostic temperature input (TEMP_INPUT_5)  
Diagnostic temperature input (TEMP_INPUT_6)  
External analog input 1 value  
External analog input 1 slope  
External analog input 1 value  
External analog input 2 value  
External analog input 2 slope  
External analog input 2 value  
Volts  
mV  
REFGND  
RF4096  
mV  
TEST11  
mV  
TEST13  
mV  
TEMP5  
°C  
TEMP6  
XIN1 10  
°C  
Volts  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
XIN1SLPE 10  
XIN1OFST 10  
XIN2 10  
XIN2SLPE 10  
XIN2OFST 10  
A-33  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-5: DAS Functions  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
Name  
Description 9  
External analog input 3 value  
Units  
XIN3 10  
Volts  
XIN3SLPE 10  
XIN3OFST 10  
XIN4 10  
XIN4SLPE 10  
XIN4OFST 10  
XIN5 10  
XIN5SLPE 10  
XIN5OFST 10  
XIN6 10  
XIN6SLPE 10  
XIN6OFST 10  
XIN7 10  
XIN7SLPE 10  
XIN7OFST 10  
XIN8 10  
XIN8SLPE 10  
XIN8OFST 10  
External analog input 3 slope  
External analog input 3 value  
External analog input 4 value  
External analog input 4 slope  
External analog input 4 value  
External analog input 5 value  
External analog input 5 slope  
External analog input 5 value  
External analog input 6 value  
External analog input 6 slope  
External analog input 6 value  
External analog input 7 value  
External analog input 7 slope  
External analog input 7 value  
External analog input 8 value  
External analog input 8 slope  
External analog input 8 value  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
Volts  
eng unit / V  
eng unit  
1
Factory option.  
Current instrument units.  
2
3
O2 option.  
4
Optional.  
5
CO2 option.  
6
Engineering firmware only.  
7
Triple-range option.  
8
M200EUP.  
9
All NOX references become NOy for T200U_NOy and M200EU_NOy.  
T-Series external analog input option.  
10  
A-34  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-6: Terminal Command Designators  
APPENDIX A-6: Terminal Command Designators  
Table A-7: Terminal Command Designators  
COMMAND  
? [ID]  
ADDITIONAL COMMAND SYNTAX  
DESCRIPTION  
Display help screen and this list of commands  
Establish connection to instrument  
Terminate connection to instrument  
Display test(s)  
LOGON [ID]  
LOGOFF [ID]  
password  
SET ALL|name|hexmask  
LIST [ALL|name|hexmask] [NAMES|HEX]  
name  
Print test(s) to screen  
T [ID]  
Print single test  
CLEAR ALL|name|hexmask  
SET ALL|name|hexmask  
LIST [ALL|name|hexmask] [NAMES|HEX]  
name  
Disable test(s)  
Display warning(s)  
Print warning(s)  
W [ID]  
Clear single warning  
CLEAR ALL|name|hexmask  
ZERO|LOWSPAN|SPAN [1|2]  
ASEQ number  
Clear warning(s)  
Enter calibration mode  
Execute automatic sequence  
Compute new slope/offset  
Exit calibration mode  
C [ID]  
COMPUTE ZERO|SPAN  
EXIT  
ABORT  
Abort calibration sequence  
Print all I/O signals  
LIST  
name[=value]  
Examine or set I/O signal  
Print names of all diagnostic tests  
Execute diagnostic test  
Exit diagnostic test  
LIST NAMES  
ENTER name  
EXIT  
RESET [DATA] [CONFIG] [exitcode]  
PRINT ["name"] [SCRIPT]  
RECORDS ["name"]  
Reset instrument  
D [ID]  
Print iDAS configuration  
Print number of iDAS records  
REPORT ["name"] [RECORDS=number]  
[FROM=<start date>][TO=<end  
date>][VERBOSE|COMPACT|HEX] (Print DAS  
records)(date format: MM/DD/YYYY(or YY)  
[HH:MM:SS]  
Print iDAS records  
CANCEL  
Halt printing iDAS records  
Print setup variables  
LIST  
name[=value [warn_low [warn_high]]]  
Modify variable  
name="value"  
CONFIG  
Modify enumerated variable  
Print instrument configuration  
Enter/exit maintenance mode  
Print current instrument mode  
V [ID]  
MAINT ON|OFF  
MODE  
DASBEGIN [<data channel definitions>]  
DASEND  
Upload iDAS configuration  
CHANNELBEGIN propertylist CHANNELEND  
CHANNELDELETE ["name"]  
Upload single iDAS channel  
Delete iDAS channels  
A-35  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A-6: Terminal Command Designators  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
The command syntax follows the command type, separated by a space character. Strings in [brackets] are  
optional designators. The following key assignments also apply.  
TERMINAL KEY ASSIGNMENTS  
ESC  
CR (ENTER)  
Ctrl-C  
Abort line  
Execute command  
Switch to computer mode  
COMPUTER MODE KEY ASSIGNMENTS  
LF (line feed)  
Ctrl-T  
Execute command  
Switch to terminal mode  
A-36  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-7: MODBUS Register Map  
APPENDIX A-7: MODBUS Register Map  
MODBUS  
Register Address  
(decimal,  
Description 10  
Units  
0-based)  
MODBUS Floating Point Input Registers  
(32-bit IEEE 754 format; read in high-word, low-word order; read-only)  
0
Instantaneous PMT detector reading  
NOX slope for range #1  
NOX slope for range #2  
NO slope for range #1  
NO slope for range #2  
NOX offset for range #1  
NOX offset for range #2  
NO offset for range #1  
NO offset for range #2  
mV  
2
4
6
8
mV  
mV  
mV  
mV  
mV  
PPB  
10  
12  
14  
16  
18  
NOX concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
20  
22  
24  
26  
28  
NOX concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
PPB  
PPB  
PPB  
PPB  
PPB  
NO concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
NO concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
NO2 concentration for range #1 during zero/span calibration, just  
before computing new slope and offset  
NO2 concentration for range #2 during zero/span calibration, just  
before computing new slope and offset  
30  
32  
34  
36  
38  
40  
42  
44  
NOX concentration for range #1  
NOX concentration for range #2  
NO concentration for range #1  
NO concentration for range #2  
NO2 concentration for range #1  
NO2 concentration for range #2  
Concentration stability  
PPB  
PPB  
PPB  
PPB  
PPB  
PPB  
PPB  
mV  
Auto zero offset (range de-normalized)  
11  
Pre React  
46  
48  
50  
52  
54  
56  
58  
60  
62  
Ozone flow rate  
cc/m  
"Hg  
C  
Reaction cell pressure  
Reaction cell temperature  
Manifold temperature  
°C  
Converter efficiency factor for range #1  
Converter efficiency factor for range #2  
Converter temperature  
PMT temperature  
°C  
C  
Sample flow rate  
cc/m  
A-37  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
APPENDIX A-7: MODBUS Register Map  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
MODBUS  
Register Address  
(decimal,  
Description 10  
Units  
0-based)  
64  
Sample pressure  
“Hg  
C  
66  
Internal box temperature  
68  
High voltage power supply output  
Ground reference (REF_GND)  
4096 mV reference (REF_4096_MV)  
Diagnostic test input (TEST_INPUT_13)  
Diagnostic temperature input (TEMP_INPUT_6)  
IZS temperature  
Volts  
mV  
mV  
mV  
°C  
70  
72  
74  
76  
78  
C  
80 9  
82 9  
80  
Sample restrictor temperature  
Remote box temperature  
C  
C  
Diagnostic test input (TEST_INPUT_11)  
Diagnostic temperature input (TEMP_INPUT_5)  
Raw PMT detector reading for NOX  
Raw PMT detector reading for NO  
NOX slope for range #3  
mV  
°C  
82  
84 1  
86 1  
100 3  
102 3  
104 3  
106 3  
108 3  
mV  
mV  
NO slope for range #3  
mV  
mV  
mV  
PPB  
NOX offset for range #3  
NO offset for range #3  
NOX concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
110 3  
112 3  
NO concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
PPB  
PPB  
NO2 concentration for range #3 during zero/span calibration, just  
before computing new slope and offset  
114 3  
116 3  
118 3  
120 3  
130 12  
132 12  
134 12  
136 12  
138 12  
140 12  
142 12  
144 12  
146 12  
148 12  
150 12  
152 12  
154 12  
NOX concentration for range #3  
NO concentration for range #3  
NO2 concentration for range #3  
Converter efficiency factor for range #3  
External analog input 1 value  
External analog input 1 slope  
External analog input 1 offset  
External analog input 2 value  
External analog input 2 slope  
External analog input 2 offset  
External analog input 3 value  
External analog input 3 slope  
External analog input 3 offset  
External analog input 4 value  
External analog input 4 slope  
External analog input 4 offset  
External analog input 5 value  
PPB  
PPB  
PPB  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
A-38  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-7: MODBUS Register Map  
MODBUS  
Description 10  
Units  
Register Address  
(decimal,  
0-based)  
156 12  
158 12  
160 12  
162 12  
164 12  
166 12  
168 12  
170 12  
172 12  
174 12  
176 12  
External analog input 5 slope  
External analog input 5 offset  
External analog input 6 value  
External analog input 6 slope  
External analog input 6 offset  
External analog input 7 value  
External analog input 7 slope  
External analog input 7 offset  
External analog input 8 value  
External analog input 8 slope  
External analog input 8 offset  
O2 concentration  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
Volts  
eng unit /V  
eng unit  
%
200 5  
202 5  
O2 concentration during zero/span calibration, just before computing  
new slope and offset  
%
204 5  
206 5  
208 5  
300 6  
302 6  
O2 slope  
%
°C  
%
%
O2 offset  
O2 sensor cell temperature  
CO2 concentration  
CO2 concentration during zero/span calibration, just before  
computing new slope and offset  
304 6  
306 6  
308 6  
CO2 slope  
%
CO2 offset  
CO2 sensor cell temperature  
°C  
MODBUS Floating Point Holding Registers  
(32-bit IEEE 754 format; read/write in high-word, low-word order; read/write)  
0
Maps to NOX_SPAN1 variable; target conc. for range #1  
Maps to NO_SPAN1 variable; target conc. for range #1  
Maps to NOX_SPAN2 variable; target conc. for range #2  
Maps to NO_SPAN2 variable; target conc. for range #2  
Maps to NOX_SPAN3 variable; target conc. for range #3  
Maps to NO_SPAN3 variable; target conc. for range #3  
Conc. units  
Conc. units  
Conc. units  
Conc. units  
Conc. units  
Conc. units  
%
2
4
6
100 3  
102 3  
200 5  
Maps to O2_TARG_SPAN_CONC variable; target conc. for range  
O2 gas  
300 6  
Maps to CO2_TARG_SPAN_CONC variable; target conc. for range  
%
CO2 gas  
MODBUS Discrete Input Registers  
(single-bit; read-only)  
Manifold temperature warning  
Converter temperature warning  
Auto-zero warning  
0
1
2
3
4
Box temperature warning  
PMT detector temperature warning  
A-39  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX A-7: MODBUS Register Map  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
MODBUS  
Register Address  
(decimal,  
Description 10  
Units  
0-based)  
5
Reaction cell temperature warning  
6
Sample flow warning  
7
Ozone flow warning  
8
Reaction cell pressure warning  
HVPS warning  
9
10  
System reset warning  
11  
Rear board communication warning  
Relay board communication warning  
Front panel communication warning  
Analog calibration warning  
12  
13  
14  
15  
Dynamic zero warning  
16  
Dynamic span warning  
17  
Invalid concentration  
18  
In zero calibration mode  
19  
In span calibration mode  
20  
In multi-point calibration mode  
System is OK (same meaning as SYSTEM_OK I/O signal)  
Ozone generator warning  
21  
22  
23  
IZS temperature warning  
24 8  
25 7  
26 7  
27 7  
28 7  
29 7  
30 7  
200 5  
201 5  
202 5+7  
203 5+7  
300 6  
301 6  
302 6+7  
303 6+7  
In low span calibration mode  
NO concentration alarm limit #1 exceeded  
NO concentration alarm limit #2 exceeded  
NO2 concentration alarm limit #1 exceeded  
NO2 concentration alarm limit #2 exceeded  
NOX concentration alarm limit #1 exceeded  
NOX concentration alarm limit #2 exceeded  
Calibrating O2 gas  
O2 sensor cell temperature warning  
O2 concentration alarm limit #1 exceeded  
O2 concentration alarm limit #2 exceeded  
Calibrating CO2 gas  
CO2 sensor cell temperature warning  
CO2 concentration alarm limit #1 exceeded  
CO2 concentration alarm limit #2 exceeded  
A-40  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H/M and 200EH/EM Menu Trees (05147H DCN6512)  
APPENDIX A-7: MODBUS Register Map  
MODBUS  
Register Address  
(decimal,  
Description 10  
Units  
0-based)  
MODBUS Coil Registers  
(single-bit; read/write)  
0
Maps to relay output signal 36 (MB_RELAY_36 in signal I/O list)  
Maps to relay output signal 37 (MB_RELAY_37 in signal I/O list)  
Maps to relay output signal 38 (MB_RELAY_38 in signal I/O list)  
Maps to relay output signal 39 (MB_RELAY_39 in signal I/O list)  
Triggers zero calibration of NOX range #1 (on enters cal.; off exits cal.)  
Triggers span calibration of NOX range #1 (on enters cal.; off exits cal.)  
Triggers zero calibration of NOX range #2 (on enters cal.; off exits cal.)  
Triggers span calibration of NOX range #2 (on enters cal.; off exits cal.)  
1
2
3
20 2  
21 2  
22 2  
23 2  
1
Engineering firmware only.  
2
Set DYN_ZERO or DYN_SPAN variables to ON to enable calculating new slope or offset. Otherwise a calibration check  
is performed.  
3
Triple-range option.  
4
Optional.  
5
O2 option.  
6
CO2 option.  
7
Concentration alarm option.  
Low span option.  
8
9
M200EUP.  
10  
11  
12  
All NOX references become NOy for M200EU_NOy.  
M200EU and M200EU_NOy.  
T-Series external analog input option.  
A-41  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
This page intentionally left blank.  
A-42  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX B - Spare Parts  
Use of replacement parts other than those supplied by Teledyne Advanced  
Note  
Note  
Pollution Instrumentation (TAPI) may result in non-compliance with European  
standard EN 61010-1.  
Due to the dynamic nature of part numbers, please refer to the TAPI Website at  
http://www.teledyne-api.com or call Customer Service at 800-324-5190 for more  
recent updates to part numbers.  
07270B DCN6512  
B-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
This page intentionally left blank.  
B-2  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H Spare Parts List  
(Reference: 07351, 2012 July 17, 14:26p  
PARTNUMBER  
000940100  
000940300  
000940400  
000940500  
001761800  
002270100  
002730000  
003290000  
005960000  
005970000  
008830000  
009690200  
009690300  
009810300  
009810600  
009811000  
010680100  
010820000  
011630000  
011930100  
013140000  
014080100  
016290000  
016301400  
016680600  
018080000  
018720100  
02190020A  
022630200  
037860000  
040010000  
040030800  
040400000  
040410200  
040900000  
041800500  
041920000  
042680100  
043220100  
043420000  
044440000  
044530000  
044540000  
044610100  
045230200  
045500200  
045500400  
045500500  
046030000  
DESCRIPTION  
CD, ORIFICE, .003 GREEN  
CD, ORIFICE, .020 VIOLET  
CD, ORIFICE, .004 BLUE (KB)  
CD, ORIFICE, .007 ORANGE (KB)  
ASSY, FLOW CTL, 90CC, 1/4" TEE-TMT, B  
AKIT, GASKETS, WINDOW, (12 GASKETS = 1)  
CD, FILTER, 665NM (KB)  
THERMISTOR, BASIC (VENDOR ASSY)(KB)  
AKIT, EXP, ACT CHARCOAL, (2 BTL@64 FL-OZ EA)  
AKIT, EXP, PURAFIL (2 BTL@64 FL-OZ EA)  
COLD BLOCK (KB)  
AKIT, TFE FLTR ELEM (FL19,100=1) 47mm  
AKIT, TFE FLTR ELEM (FL19, 30=1) 47mm  
ASSY, PUMP PK, 115V/60HZ w/FL34/NO/SO  
ASSY, PUMP PACK, 100V/60HZ w/FL34  
ASSY, PUMP, NOX, 220-240V/50-60HZ FL34  
BAND HTR W/TC, 50W @115V, CE/VDE *  
ASSY, THERMOCOUPLE, HICON  
HVPS INSULATOR GASKET (KB)  
CD, PMT (R928), NOX, *  
ASSY, COOLER FAN (NOX/SOX)  
ASSY, HVPS, SOX/NOX  
WINDOW, SAMPLE FILTER, 47MM (KB)  
ASSY, SAMP FILT, 47MM, ANG BKT, 1UM, TEE  
PCA, O3 GEN DRIVER, NOX (OBS)  
AKIT, DESSICANT BAGGIES, (12)  
ASSY, MOLYCON, w/O3 DESTRUCT  
ASSY, TC, TYPE K, LONG, WELDED MOLY  
PCA, TEMP CONTROL BOARD, W/PS  
ORING, TEFLON, RETAINING RING, 47MM (KB)  
ASSY, FAN REAR PANEL (B/F)  
PCA, PRESS SENSORS (2X), FLOW, (NOX)  
ASSY, HEATERS/THERMAL SWITCH, RX CELL  
ASSY, VACUUM MANIFOLD  
ORIFICE HOLDER, REACTION CELL (KB)  
PCA, PMT PREAMP, VR  
ASSY, THERMISTOR  
ASSY, VALVE (SS)  
THERMOCOUPLE INSULATING SLEEVE *  
ASSY, HEATER/THERM, O2 SEN  
ASSY, HICON w/O3 DESTRUCT  
OPTION, O2 SENSOR ASSY,(KB)  
ASSY, THERMISTOR, NOX  
ASSY, VALVES, MOLY/HICON  
PCA, RELAY CARD  
ASSY, ORIFICE HOLDER, 7 MIL  
ASSY, ORIFICE HOLDER, 3 MIL  
ASSY, ORIFICE HOLDER, NOX ORIFICE  
AKIT, CH-43, 3 REFILLS  
07270B DCN6512  
B-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H Spare Parts List  
(Reference: 07351, 2012 July 17, 14:26p  
047210000  
048830000  
049310100  
049760300  
050610700  
050610900  
050611100  
051210000  
051990000  
052930200  
054250000  
055740000  
055740100  
055740200  
058021100  
059940000  
061400000  
062390000  
064540000  
064540100  
064540200  
065190100  
065200100  
066970000  
067240000  
067300000  
067300100  
067300200  
067900000  
068810000  
069500000  
072150000  
072280100  
072640100  
072700000  
CN0000073  
CN0000458  
CN0000520  
CP0000036  
FL0000001  
FL0000003  
FL0000034  
FM0000004  
FT0000010  
HW0000005  
HW0000020  
HW0000030  
HW0000036  
HW0000041  
HW0000099  
HW0000101  
HW0000453  
ASSY, MINI-HICON GUTS, GROUNDED  
AKIT, EXP KIT, EXHAUST CLNSR, SILCA GEL  
PCA,TEC DRIVER,PMT,(KB)  
ASSY, TC PROG PLUG, MOLY,TYP K, TC1  
OPTION, 100-120V/50-60Hz,NOX (KB)  
OPTION, 220-240V/50-60Hz, NOX (KB)  
OPTION, 100V/50Hz, NOX (OBS)  
DESTRUCT w/FTGS, O3 *  
ASSY, SCRUBBER, INLINE EXHAUST, DISPOS  
ASSY, BAND HEATER TYPE K, NOX  
OPTION, CO2 SENSOR (20%) (WO)  
ASSY, PUMP, NOx PUMP PACK, 115V/60HZ  
ASSY, PUMP, NOx PUMP PACK, 220V/60HZ  
ASSY, PUMP, NOx PUMP PACK, 220V/50HZ  
PCA, MOTHERBD, GEN 5-ICOP(KB)  
OPTION, SAMPLE GAS CONDITIONER, Amb/H/M *  
ASSY, DUAL HTR, MINI-HICON, 120/240VAC  
ASSY, MOLY GUTS w/WOOL  
ASSY, PUMP NOX INTERNAL, 115V/60HZ  
ASSY, PUMP NOX INTERNAL, 230V/60HZ  
ASSY, PUMP NOX INTERNAL, 230V/50HZ  
ASSY, NOX CELL TOP-FLO*  
ASSY SENSOR, TOP-FLOW  
PCA, INTRF. LCD TOUCH SCRN, F/P  
CPU, PC-104, VSX-6154E, ICOP *(KB)  
PCA, AUX-I/O BD, ETHERNET, ANALOG & USB  
PCA, AUX-I/O BOARD, ETHERNET  
PCA, AUX-I/O BOARD, ETHERNET & USB  
LCD MODULE, W/TOUCHSCREEN(KB)  
PCA, LVDS TRANSMITTER BOARD  
PCA, SERIAL & VIDEO INTERFACE BOARD  
ASSY. TOUCHSCREEN CONTROL MODULE  
ASSY, O3 GEN BRK, PULSE, 250HZ  
DOM, w/SOFTWARE, T200H *  
MANUAL, OPERATORS, T200H/T200M  
POWER ENTRY, 120/60 (KB)  
PLUG, 12, MC 1.5/12-ST-3.81 (KB)  
PLUG, 10, MC 1.5/10-ST-3.81 (KB)  
TEMP CONTROLLER, FUJI,PXR, RELAY OUTPUT  
FILTER, SS (KB)  
FILTER, DFU (KB)  
FILTER, DISPOSABLE, PENTEK (IC-101L)  
FLOWMETER (KB)  
CONNECTOR-ORING, SS, 1/8" (KB)  
FOOT  
SPRING  
ISOLATOR  
TFE TAPE, 1/4" (48 FT/ROLL)  
STANDOFF,#6-32X3/4"  
STANDOFF, #6-32X.5, HEX SS M/F  
ISOLATOR  
SUPPORT, CIRCUIT BD, 3/16" ICOP  
B-4  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200H Spare Parts List  
(Reference: 07351, 2012 July 17, 14:26p  
HW0000685  
KIT000095  
KIT000219  
KIT000231  
KIT000253  
KIT000254  
OP0000030  
OP0000033  
OR0000001  
OR0000002  
OR0000025  
OR0000027  
OR0000034  
OR0000039  
OR0000044  
OR0000083  
OR0000086  
OR0000094  
OR0000101  
PU0000005  
PU0000011  
PU0000052  
PU0000054  
PU0000083  
RL0000015  
RL0000019  
SW0000006  
SW0000025  
SW0000040  
SW0000058  
SW0000059  
WR0000008  
LATCH, MAGNETIC, FRONT PANEL (KB)  
AKIT, REPLACEMENT COOLER  
AKIT, 4-20MA CURRENT OUTPUT  
KIT, RETROFIT, Z/S VALVE  
ASSY & TEST, SPARE PS37  
ASSY & TEST, SPARE PS38  
OXYGEN TRANSDUCER, PARAMAGNETIC  
CO2 MODULE, 0-20%  
ORING, 2-006VT *(KB)  
ORING, 2-023V  
ORING, 2-133V  
ORING, 2-042V  
ORING, 2-011V FT10  
ORING, 2-012V (KB)  
ORING, 2-125V  
ORING, 105M, 1MM W X 5 MM ID, VITON(KB)  
ORING, 2-006, CV-75 COMPOUND(KB)  
ORING, 2-228V, 50 DURO VITON(KB)  
ORING,2-209V  
PUMP, THOMAS 607, 115V/60HZ (KB)  
REBUILD KIT, THOMAS 607(KB)  
PUMP, THOMAS 688, 220/240V 50HZ/60HZ  
PUMP, THOMAS 688, 100V, 50/60HZ  
KIT, REBUILD, PU80, PU81, PU82  
RELAY, DPDT, (KB)  
SSRT RELAY, TA2410, CE MARK  
SWITCH, THERMAL, 60 C (KB)  
SWITCH, POWER, CIRC BREAK, VDE/CE *(KB)  
PWR SWITCH/CIR BRK, VDE CE (KB)  
SWITCH, THERMAL/450 DEG F(KB)  
PRESSURE SENSOR, 0-15 PSIA, ALL SEN  
POWER CORD, 10A(KB)  
07270B DCN6512  
B-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200M Spare Parts List  
(Reference 07367, 2012 July 12, 14:20p)  
PARTNUMBER  
040410300  
040900000  
041800500  
041920000  
042680100  
043170000  
043420000  
044340000  
044430200  
044530000  
044540000  
044610100  
045230200  
045500200  
047050500  
048830000  
049310100  
049760300  
050610700  
050610900  
050611100  
051210000  
051990000  
052930200  
054250000  
055740000  
055740100  
055740200  
057660000  
058021100  
059940000  
061400000  
062390000  
040400000  
040030800  
040010000  
037860000  
018720100  
018080000  
016301400  
016290000  
014080100  
013140000  
011930100  
011630000  
009811000  
009810600  
009810300  
009690300  
DESCRIPTION  
ASSY, VACUUM MANIFOLD  
ORIFICE HOLDER, REACTION CELL (KB)  
PCA, PMT PREAMP, VR  
ASSY, THERMISTOR  
ASSY, VALVE (SS)  
MANIFOLD, RCELL, (KB) *  
ASSY, HEATER/THERM, O2 SEN  
ASSY, HTR, BYPASS MANIFOLD  
ASSY, BYPASS MANIFOLD  
OPTION, O2 SENSOR ASSY,(KB)  
ASSY, THERMISTOR, NOX  
ASSY, VALVES, MOLY/HICON  
PCA, RELAY CARD  
ASSY, ORIFICE HOLDER, 7 MIL  
ASSY, ORIFICE HOLDER, SHORT, 7 MIL  
AKIT, EXP KIT, EXHAUST CLNSR, SILCA GEL  
PCA,TEC DRIVER,PMT,(KB)  
ASSY, TC PROG PLUG, MOLY,TYP K, TC1  
OPTION, 100-120V/50-60Hz,NOX (KB)  
OPTION, 220-240V/50-60Hz, NOX (KB)  
OPTION, 100V/50Hz, NOX (OBS)  
DESTRUCT w/FTGS, O3 *  
ASSY, SCRUBBER, INLINE EXHAUST, DISPOS  
ASSY, BAND HEATER TYPE K, NOX  
OPTION, CO2 SENSOR (20%) (WO)  
ASSY, PUMP, NOx PUMP PACK, 115V/60HZ  
ASSY, PUMP, NOx PUMP PACK, 220V/60HZ  
ASSY, PUMP, NOx PUMP PACK, 220V/50HZ  
ASSY, DFU FILTER  
PCA, MOTHERBD, GEN 5-ICOP(KB)  
OPTION, SAMPLE GAS CONDITIONER, Amb/H/M *  
ASSY, DUAL HTR, MINI-HICON, 120/240VAC  
ASSY, MOLY GUTS w/WOOL  
ASSY, HEATERS/THERMAL SWITCH, RX CELL  
PCA, PRESS SENSORS (2X), FLOW, (NOX)  
ASSY, FAN REAR PANEL (B/F)  
ORING, TEFLON, RETAINING RING, 47MM (KB)  
ASSY, MOLYCON, w/O3 DESTRUCT  
AKIT, DESSICANT BAGGIES, (12)  
ASSY, SAMP FILT, 47MM, ANG BKT, 1UM, TEE  
WINDOW, SAMPLE FILTER, 47MM (KB)  
ASSY, HVPS, SOX/NOX  
ASSY, COOLER FAN (NOX/SOX)  
CD, PMT (R928), NOX, *  
HVPS INSULATOR GASKET (KB)  
ASSY, PUMP, NOX, 220-240V/50-60HZ FL34  
ASSY, PUMP PACK, 100V/60HZ w/FL34  
ASSY, PUMP PK, 115V/60HZ w/FL34/NO/SO  
AKIT, TFE FLTR ELEM (FL19, 30=1) 47mm  
B-6  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200M Spare Parts List  
(Reference 07367, 2012 July 12, 14:20p)  
009690200  
002730000  
002270100  
001761800  
000941200  
000940500  
000940400  
000940300  
064540000  
064540100  
064540200  
065190000  
066430100  
066970000  
067240000  
067300000  
067300100  
067300200  
067900000  
068810000  
069500000  
072150000  
072280100  
072630000  
072700000  
075980300  
CN0000073  
CN0000458  
CN0000520  
FL0000001  
FL0000003  
FM0000004  
FT0000010  
HW0000005  
HW0000020  
HW0000030  
HW0000036  
HW0000099  
HW0000101  
HW0000453  
HW0000685  
KIT000095  
KIT000219  
KIT000231  
KIT000253  
KIT000254  
OP0000030  
OP0000033  
OR0000001  
OR0000002  
OR0000025  
OR0000027  
AKIT, TFE FLTR ELEM (FL19,100=1) 47mm  
CD, FILTER, 665NM (KB)  
AKIT, GASKETS, WINDOW, (12 GASKETS = 1)  
ASSY, FLOW CTL, 90CC, 1/4" TEE-TMT, B  
CD, ORIFICE, .008, RED/NONE  
CD, ORIFICE, .007 ORANGE (KB)  
CD, ORIFICE, .004 BLUE (KB)  
CD, ORIFICE, .020 VIOLET  
ASSY, PUMP NOX INTERNAL, 115V/60HZ  
ASSY, PUMP NOX INTERNAL, 230V/60HZ  
ASSY, PUMP NOX INTERNAL, 230V/50HZ  
ASSY, NOX CELL TOP-FLO*  
PCA, OZONE PULSE DRIVER, 250 HZ  
PCA, INTRF. LCD TOUCH SCRN, F/P  
CPU, PC-104, VSX-6154E, ICOP *(KB)  
PCA, AUX-I/O BD, ETHERNET, ANALOG & USB  
PCA, AUX-I/O BOARD, ETHERNET  
PCA, AUX-I/O BOARD, ETHERNET & USB  
LCD MODULE, W/TOUCHSCREEN(KB)  
PCA, LVDS TRANSMITTER BOARD  
PCA, SERIAL & VIDEO INTERFACE BOARD  
ASSY. TOUCHSCREEN CONTROL MODULE  
ASSY, O3 GEN BRK, PULSE, 250HZ  
DOM, w/SOFTWARE, T200M *  
MANUAL, OPERATORS, T200H/T200M  
KIT, NOX RCELL SS MNFLD W/NZZL, ORFC HLDR 3 PORT  
POWER ENTRY, 120/60 (KB)  
PLUG, 12, MC 1.5/12-ST-3.81 (KB)  
PLUG, 10, MC 1.5/10-ST-3.81 (KB)  
FILTER, SS (KB)  
FILTER, DFU (KB)  
FLOWMETER (KB)  
CONNECTOR-ORING, SS, 1/8" (KB)  
FOOT  
SPRING  
ISOLATOR  
TFE TAPE, 1/4" (48 FT/ROLL)  
STANDOFF, #6-32X.5, HEX SS M/F  
ISOLATOR  
SUPPORT, CIRCUIT BD, 3/16" ICOP  
LATCH, MAGNETIC, FRONT PANEL (KB)  
AKIT, REPLACEMENT COOLER  
AKIT, 4-20MA CURRENT OUTPUT  
KIT, RETROFIT, Z/S VALVE  
ASSY & TEST, SPARE PS37  
ASSY & TEST, SPARE PS38  
OXYGEN TRANSDUCER, PARAMAGNETIC  
CO2 MODULE, 0-20%  
ORING, 2-006VT *(KB)  
ORING, 2-023V  
ORING, 2-133V  
ORING, 2-042V  
07270B DCN6512  
B-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200M Spare Parts List  
(Reference 07367, 2012 July 12, 14:20p)  
OR0000034  
OR0000039  
OR0000044  
OR0000083  
OR0000086  
OR0000094  
OR0000101  
PU0000005  
PU0000011  
PU0000052  
PU0000054  
PU0000083  
RL0000015  
SW0000025  
SW0000059  
WR0000008  
ORING, 2-011V FT10  
ORING, 2-012V (KB)  
ORING, 2-125V  
ORING, 105M, 1MM W X 5 MM ID, VITON(KB)  
ORING, 2-006, CV-75 COMPOUND(KB)  
ORING, 2-228V, 50 DURO VITON(KB)  
ORING,2-209V  
PUMP, THOMAS 607, 115V/60HZ (KB)  
REBUILD KIT, THOMAS 607(KB)  
PUMP, THOMAS 688, 220/240V 50HZ/60HZ  
PUMP, THOMAS 688, 100V, 50/60HZ  
KIT, REBUILD, PU80, PU81, PU82  
RELAY, DPDT, (KB)  
SWITCH, POWER, CIRC BREAK, VDE/CE *(KB)  
PRESSURE SENSOR, 0-15 PSIA, ALL SEN  
POWER CORD, 10A(KB)  
B-8  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix C  
Warranty/Repair Questionnaire  
T200H/M, M200EH/EM  
(05149B DCN5798)  
CUSTOMER:_____________________________________  
CONTACT NAME: ________________________________  
PHONE: ________________________________  
FAX NO. _______________________________  
SITE ADDRESS:_____________________________________________________________________________  
MODEL TYPE: ______________ SERIAL NO.:_________________ FIRMWARE REVISION: ___________  
1. Are there any failure messages? ______________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
________________________________________________________________ (Continue on back if necessary)  
PLEASE COMPLETE THE FOLLOWING TABLE:  
TEST FUNCTION  
NOx STAB  
RECORDED VALUE  
UNITS  
PPB/PPM  
CM3  
CM3  
MV  
ACCEPTABLE VALUE  
1 PPB WITH ZERO AIR  
500 ± 50  
SAMPLE FLOW  
80 ± 15  
OZONE FLOW  
-20 to 150  
PMT SIGNAL WITH ZERO AIR  
MV  
0-5000MV  
PMT SIGNAL AT SPAN GAS CONC  
0-5,000 PPM1, 200 PPM2  
PPB  
MV  
0-5000MV  
0-5,000 PPM1, 200 PPM2  
NORM PMT SIGNAL AT SPAN  
GAS CONC  
PPB  
MV  
-20 to 150  
400 to 900  
50 ± 1  
AZERO  
HVPS  
V
RCELL TEMP  
BOX TEMP  
ºC  
AMBIENT ± 5ºC  
7 ± 2ºC  
ºC  
PMT TEMP  
ºC  
O2 CELL TEMP3  
IZS TEMP3  
ºC  
30ºC to 70ºC  
50 ± 1ºC  
ºC  
315 ± 5ºC  
<10  
MOLY TEMP  
RCEL  
ºC  
IN-HG-A  
IN-HG-A  
AMBIENT ± 1  
1.0 ± 0.3  
SAMP  
NOx SLOPE  
50 to 150  
1.0 ± 0.3  
NOx OFFSET  
NO SLOPE  
mV  
mV  
50 to 150  
0.5 to 2.0  
-10 to + 10  
2000 ± 1000  
2000 ± 1000  
NO OFFSET  
O2 SLOPE3  
O2 OFFSET3  
PMT SIGNAL DURING ETEST  
PMT SIGNAL DURING OTEST  
%
MV  
MV  
4096mv ±2mv and Must be  
Stable  
REF_4096_MV4  
REF_GND4  
MV  
0± 0.5 and Must be Stable  
MV  
1 T200H, M200EH  
2 T200M, M200EM  
3 If option is installed  
4 Located in Signal I/O list under DIAG menu  
TELEDYNE INSTRUMENTS CUSTOMER SERVICE  
PHONE: (858) 657-9800  
TOLL FREE: (800) 324-5190  
FAX: (858) 657-9816  
C-1  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Appendix C  
Warranty/Repair Questionnaire  
T200H/M, M200EH/EM  
(05149B DCN5798)  
2. What is the rcell & sample pressures with the sample inlet on rear of machine capped?  
RCELL PRESS - __________________ IN-HG-A  
SAMPLE PRESSURE: _______________ IN-HG-A  
3. What are the failure symptoms? ______________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
4. What test have you done trying to solve the problem? _____________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
5. If possible, please include a portion of a strip chart pertaining to the problem. Circle pertinent data.  
Thank you for providing this information. Your assistance enables Teledyne Instruments to respond faster to the  
problem that you are encountering.  
OTHER NOTES: ____________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
__________________________________________________________________________________________  
TELEDYNE INSTRUMENTS CUSTOMER SERVICE  
PHONE: (858) 657-9800  
TOLL FREE: (800) 324-5190  
FAX: (858) 657-9816  
07270B DCN6512  
C-2  
07270B DCN6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
APPENDIX D – Wire List and Electronic Schematics  
07270B DCN 6512  
D-1  
Download from Www.Somanuals.com. All Manuals Search And Download.  
This page intentionally left blank.  
D-2  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200X INTERCONNECT LIST  
(Reference 0691101C DCN5936)  
CONNECTION FROM  
CONNECTION TO  
PN  
Cable Part  
#
Signal  
Assembly  
PN  
J/P Pin  
Assembly  
J/P Pin  
0364901 CBL, AC POWER  
AC Line  
Power Entry  
CN0000073  
CN0000073  
CN0000073  
CN0000073  
SW0000025  
SW0000025  
CN0000073  
SW0000025  
SW0000025  
CN0000073  
SW0000025  
SW0000025  
CN0000073  
L
N
Power Switch  
Power Switch  
Shield  
SW0000025  
SW0000025  
SW0000025  
L
N
AC Neutral  
Power Grnd  
Power Grnd  
Power Entry  
Power Entry  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
Power Switch  
Power Switch  
Power Entry  
Chassis  
AC Line Switched  
AC Neutral Switched  
Power Grnd  
AC Line Switched  
AC Neutral Switched  
Power Grnd  
AC Line Switched  
AC Neutral Switched  
Power Grnd  
L
N
PS2 (+12)  
PS2 (+12)  
PS2 (+12)  
PS1 (+5, ±15)  
PS1 (+5, ±15)  
PS1 (+5, ±15)  
Relay PCA  
Relay PCA  
Relay PCA  
060820000  
060820000  
060820000  
068010000  
068010000  
068010000  
045230100  
045230100  
045230100  
SK2  
SK2  
SK2  
SK2  
SK2  
SK2  
J1  
1
3
2
1
3
2
1
3
2
L
N
L
N
J1  
J1  
03829  
CBL, DC POWER TO MOTHERBOARD  
DGND  
+5V  
AGND  
+15V  
AGND  
-15V  
+12V RET  
+12V  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
1
2
3
4
5
6
7
8
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
P15  
P15  
P15  
P15  
P15  
P15  
P15  
P15  
P15  
1
2
3
4
5
6
7
8
9
Chassis Gnd  
10 Motherboard  
04022  
CBL, DC POWER, FANM KEYBOARD, TEC, SENSOR PCA  
TEC +12V  
TEC +12V RET  
DGND  
+5V  
DGND  
+5V  
+12V RET  
+12V  
P/Flow Sensor AGND  
P/Flow Sensor +15V  
Pressure signal 1  
Pressure signal 2  
Flow signal 1  
Flow signal 2  
Shield  
TEC PCA  
TEC PCA  
Relay PCA  
Relay PCA  
LCD Interface PCA  
LCD Interface PCA  
Relay PCA  
Relay PCA  
Relay PCA  
049310100  
049310100  
045230100  
045230100  
066970000  
066970000  
045230100  
045230100  
045230100  
045230100  
040030800  
040030800  
040030800  
040030800  
040030800  
058021100  
058021100  
058021100  
058021100  
058021100  
P1  
P1  
1
2
1
2
2
3
7
8
3
4
2
4
5
1
S
9
2
8
1
7
Relay PCA  
Relay PCA  
LCD Interface PCA  
LCD Interface PCA  
Relay PCA  
Relay PCA  
Chassis fan  
Chassis fan  
P/Flow Sensor PCA  
P/Flow Sensor PCA  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
066970000  
066970000  
045230100  
045230100  
040010000  
040010000  
040030800  
040030800  
058021100  
058021100  
058021100  
058021100  
058021100  
045230100  
045230100  
045230100  
045230100  
045230100  
P10  
P10  
P14  
P14  
P11  
P11  
P1  
P1  
P1  
P1  
8
7
8
1
1
2
1
2
3
6
6
5
4
3
P10  
P10  
P14  
P14  
P11  
P11  
P11  
P11  
P1  
P1  
P1  
P1  
P1  
Relay PCA  
P/Flow Sensor PCA  
P/Flow Sensor PCA  
P/Flow Sensor PCA  
P/Flow Sensor PCA  
P/Flow Sensor PCA  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
P110  
P110  
P110  
P110  
P110 12  
Shield  
P110  
P110  
P110  
P110  
P110  
P17  
P17  
P17  
P17  
P17  
S
1
2
3
4
Thermocouple signal 1  
TC 1 signal DGND  
Thermocouple signal 2  
TC 2 signal DGND  
04023  
04024  
CBL, I2C, RELAY PCA TO MOTHERBOARD  
I2C Serial Clock  
I2C Serial Data  
I2C Reset  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
P107  
P107  
P107  
P107  
3
5
2
6
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
045230100  
045230100  
P3  
P3  
P3  
P3  
1
2
4
5
I2C Shield  
CBL, NOX, ZERO/SPAN, IZS VALVES  
Zero/Span valve +12V Relay PCA  
Zero/Span valve +12V RET Relay PCA  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
P4  
1
2
3
4
5
6
7
8
Zero/Span valve  
Zero/Span valve  
Sample valve  
Sample valve  
AutoZero valve  
AutoZero valve  
NONOx valve  
NONOx valve  
042680100  
042680100  
042680100  
042680100  
042680100  
042680100  
042680100  
042680100  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
1
2
1
2
1
2
1
2
Sample valve +12V  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Sample valve +12V RET  
AutoZero valve +12V  
AutoZero valve +12V RET  
NONOx valve +12V  
NONOx valve +12V RET  
07270B DCN 6512  
D-3  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200X INTERCONNECT LIST  
(Reference 0691101C DCN5936)  
CONNECTION FROM  
CONNECTION TO  
PN  
Cable Part  
#
Signal  
Assembly  
PN  
J/P Pin  
Assembly  
J/P Pin  
0402603 CBL, IZS & O2 SENSOR HEATERS/THERMISTORS, REACTION CELL & MANIFOLD THERMISTORS  
Rcell thermistor A  
Rcell thermistor B  
IZS or CO2 thermistor A  
IZS or CO2 thermistor B  
IZS or CO2 heater L  
IZS or CO2 heater L  
Shield  
O2 sensor heater  
O2 sensor heater  
Shield  
Reaction cell thermistor  
Reaction cell thermistor  
Motherboard  
Motherboard  
IZS or CO2 thermistor/htr 05282\06693  
IZS or CO2 thermistor/htr 05282\06693  
041920000  
041920000  
058021100  
058021100  
P1  
P1  
P27  
2
1
6
Motherboard  
Motherboard  
IZS or CO2 thermistor/htr 05282\06693  
058021100  
058021100  
P27  
P27  
P1  
7
14  
2
3
1
2
11  
4
P27 13 IZS or CO2 thermistor/htr 05282\06693  
P1  
P1  
P1  
4
1
Relay PCA  
Relay PCA  
Relay PCA  
O2 sensor therm./heater 043420000  
O2 sensor therm./heater 043420000  
045230100  
045230100  
045230100  
P18  
P18  
P18  
P1  
P1  
P1  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
045230100  
P18  
P18  
6
7
2
P18 12 O2 sensor therm./heater 043420000  
O2 sensor thermistor A  
O2 sensor thermistor B  
Byp/dil. man. thermistor A  
Byp/dil. man. thermistor B  
Configuration jumper intern. Relay PCA  
Configuration jumper intern. Relay PCA  
O2 sensor therm./heater 043420000  
O2 sensor therm./heater 043420000  
P1  
P1  
P27  
P27  
P18  
P18  
3
1
1
8
3
8
Motherboard  
Motherboard  
Manifold thermistor  
Manifold thermistor  
Relay PCA  
058021100  
058021100  
043420000  
043420000  
045230100  
045230100  
P27  
P27  
P1  
P1  
P18  
P18  
4
11  
1
2
4
Motherboard  
Motherboard  
058021100  
058021100  
045230100  
045230100  
Relay PCA  
9
04027  
CBL, NO2 CONVERTER, REACTION CELL & MANIFOLD HEATERS  
Bypass/dil. manifold heater L Manifold heater 1  
Bypass/dil. manifold heater N Manifold heater 1  
Bypass/dil. manifold heater L Relay PCA  
Bypass/dil. manifold heater N Relay PCA  
044340000  
044340000  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
1
2
Relay PCA  
Relay PCA  
045230100  
045230100  
044340000  
044340000  
039700100  
039700100  
039700100  
045230100  
045230100  
040400000  
040400000  
040400000  
P2  
P2  
P1  
P1  
P1  
P1  
P1  
P2  
P2  
P1  
P1  
P1  
P1  
P1  
P1  
11  
12  
1
2
1
2
3
14  
9
4
11 Manifold heater 2  
15 Manifold heater 2  
7
6
10 Moly heater B  
13 Relay PCA  
8
1
1
2
3
4
5
Moly heater A  
Moly heater C  
Moly heater B  
Relay PCA  
Relay PCA  
Relay PCA  
Moly heater A  
Moly heater C  
Configuration jumper intern. Relay PCA  
Configuration jumper intern. Relay PCA  
Relay PCA  
Reaction cell heater/switch  
Reaction cell heater/switch  
Reaction cell heater/switch  
Reaction cell heater/switch  
Reaction cell heater/switch  
Reaction cell heater/switch  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Reaction cell heater 1B  
Reaction cell heater 2B  
Reaction cell heater 1A  
Reaction cell heat switch 040400000  
Reaction cell heat switch 040400000  
6
3
1
2
Reaction cell heater 2A  
040400000  
5
04105  
04176  
CBL, KEYBOARD, DISPLAY TO MOTHERBOARD  
Kbd Interrupt  
DGND  
SDA  
SCL  
Shld  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
066970000  
066970000  
066970000  
066970000  
066970000  
J1  
J1  
J1  
J1  
J1  
7
2
5
6
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
J106  
J106  
J106  
J106  
J106  
1
8
2
6
5
10 Motherboard  
CBL, DC POWER TO RELAY PCA  
DGND  
+5V  
+15V  
AGND  
-15V  
+12V RET  
+12V  
Relay PCA  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
045230100  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
1
2
4
5
6
7
8
Power Supply Triple  
068010000  
068010000  
068010000  
068010000  
068010000  
068020000  
068020000  
J1  
J1  
J1  
J1  
J1  
J1  
J1  
3
1
6
4
5
3
1
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Power Supply Triple  
Power Supply Triple  
Power Supply Triple  
Power Supply Triple  
Power Supply Single  
Power Supply Single  
04433  
04437  
CBL, PREAMPLIFIER TO RELAY PCA  
Preamplifier DGND  
Preamplifier +5V  
Preamplifier AGND  
Preamplifier +15V  
Preamplifier -15V  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
045230100  
045230100  
045230100  
P9  
P9  
P9  
P9  
P9  
1
2
3
4
6
Preamp PCA  
Preamp PCA  
Preamp PCA  
Preamp PCA  
Preamp PCA  
041800500  
041800500  
041800500  
041800500  
041800500  
P5  
P5  
P5  
P5  
P5  
1
2
3
4
6
CBL, PREAMPLIFIER TO TEC  
Preamp TEC drive VREF  
Preamp TEC drive CTRL  
Preamp TEC drive AGND  
Preamp PCA  
Preamp PCA  
Preamp PCA  
041800500  
041800500  
041800500  
J1  
J1  
J1  
1
2
3
TEC PCA  
TEC PCA  
TEC PCA  
049310100  
049310100  
049310100  
J3  
J3  
J3  
1
2
3
D-4  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200X INTERCONNECT LIST  
(Reference 0691101C DCN5936)  
CONNECTION FROM  
CONNECTION TO  
PN  
Cable Part  
Signal  
Assembly  
PN  
J/P Pin  
Assembly  
J/P Pin  
#
04671  
CBL, MOTHERBOARD TO XMITTER BD (MULTIDROP OPTION)  
GND  
RX0  
RTS0  
TX0  
CTS0  
RS-GND0  
RTS1  
CTS1/485-  
RX1  
TX1/485+  
RS-GND1  
RX1  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
P12  
2
Xmitter bd w/Multidrop  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
J4  
2
14  
13  
12  
11  
10  
8
6
9
7
5
P12 14 Xmitter bd w/Multidrop  
P12 13 Xmitter bd w/Multidrop  
P12 12 Xmitter bd w/Multidrop  
P12 11 Xmitter bd w/Multidrop  
P12 10 Xmitter bd w/Multidrop  
P12  
P12  
P12  
P12  
P12  
P12  
P12  
P12  
8
6
9
7
5
9
7
5
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
9
7
5
TX1/485+  
RS-GND1  
06737  
CBL, I2C to AUX I/O (ANALOG IN OPTION)  
ATX+  
ATX-  
LED0  
ARX+  
ARX-  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
067300000  
067300000  
067300000  
067300000  
067300000  
067300000  
067300000  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
1
2
3
4
5
6
8
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
J106  
J106  
J106  
J106  
J106  
J106  
J106  
1
2
3
4
5
6
8
LED0+  
LED1+  
06738  
CBL, CPU COM to AUX I/O (USB OPTION)  
RXD1  
DCD1  
DTR1  
TXD1  
DSR1  
GND  
CTS1  
RTS1  
RI1  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
1
2
3
4
5
6
7
8
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
0673000 or -02  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
1
2
3
4
5
6
7
8
10  
COM1 10 AUX I/O PCA  
06738  
CBL, CPU COM to AUX I/O (MULTIDROP OPTION)  
RXD  
DCD  
DTR  
TXD  
DSR  
GND  
CTS  
RTS  
RI  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
COM1  
1
2
3
4
5
6
7
8
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
Xmitter bd w/Multidrop  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
069500000  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
J3  
1
2
3
4
5
6
7
8
10  
COM1 10 Xmitter bd w/Multidrop  
06739  
CBL, CPU LAN TO AUX I/O PCA  
ATX-  
CPU PCA  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
LAN  
LAN  
LAN  
LAN  
LAN  
LAN  
LAN  
LAN  
1
2
3
4
5
6
7
8
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
AUX I/O PCA  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
06730XXXX  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
J2  
1
2
3
4
5
6
7
8
ATX+  
LED0  
ARX+  
ARX-  
LED0+  
LED1  
LED1+  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
06741  
CBL, CPU USB to Front Panel  
GND  
CPU PCA  
067240000  
067240000  
067240000  
067240000  
USB  
USB  
USB  
USB  
8
6
4
2
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
LCD Interface PCA  
066970000  
066970000  
066970000  
066970000  
JP9  
JP9  
JP9  
JP9  
LUSBD3+  
LUSBD3-  
VCC  
CPU PCA  
CPU PCA  
CPU PCA  
07270B DCN 6512  
D-5  
Download from Www.Somanuals.com. All Manuals Search And Download.  
T200X INTERCONNECT LIST  
(Reference 0691101C DCN5936)  
CONNECTION FROM  
CONNECTION TO  
PN  
Cable Part  
Signal  
Assembly  
PN  
J/P Pin  
Assembly  
J/P Pin  
#
06746  
CBL, MB TO 06154 CPU  
GND  
Motherboard  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
058021100  
P12  
2
Shield  
RX0  
RTS0  
TX0  
CTS0  
RS-GND0  
RTS1  
CTS1/485-  
RX1  
TX1/485+  
RS-GND1  
RX1  
TX1/485+  
RS-GND1  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
P12 14 CPU PCA  
P12 13 CPU PCA  
P12 12 CPU PCA  
P12 11 CPU PCA  
P12 10 CPU PCA  
P12  
P12  
P12  
P12  
P12  
P12  
P12  
P12  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
067240000  
COM1  
COM1  
COM1  
COM1  
COM1  
COM2  
COM2  
COM2  
COM2  
COM2  
485  
1
8
4
7
6
8
7
1
4
6
1
2
3
8
6
9
7
5
9
7
5
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
CPU PCA  
485  
485  
06915  
CBL, PREAMP, O2 SENSOR, O3 GEN, FAN, RELAY PCA & MOTHERBOARD  
+15V  
AGND  
+12V  
+12V RET  
O3GEN enable signal  
ETEST  
Relay PCA  
Relay PCA  
Relay PCA  
Relay PCA  
045230100  
045230100  
045230100  
045230100  
07228XXXX  
058021100  
058021100  
058021100  
041800500  
041800500  
041800500  
041800500  
058021100  
058021100  
058021100  
OP0000030  
OP0000030  
P12  
P12  
P12  
P12  
P1  
4
3
8
7
6
8
Ozone generator  
Ozone generator  
PMT cooling fan  
PMT cooling fan  
Motherboard  
07228XXXX  
07228XXXX  
013140000  
013140000  
058021100  
041800500  
041800500  
041800500  
058021100  
058021100  
058021100  
058021100  
OP0000030  
OP0000030  
OP0000030  
045230100  
045230100  
P1  
P1  
P1  
P1  
P108 15  
P6  
P6  
4
5
1
2
Ozone generator  
Motherboard  
Motherboard  
Motherboard  
Preamp PCA  
Preamp PCA  
Preamp PCA  
Preamp PCA  
Motherboard  
Motherboard  
Motherboard  
O2 Sensor (optional)  
O2 Sensor (optional)  
P108  
Preamp PCA  
1
2
4
4
5
6
OTEST  
P108 16 Preamp PCA  
P108  
P6  
P6  
P6  
PHYSICAL RANGE  
PMT TEMP  
HVPS  
PMT SIGNAL+  
AGND  
7
5
6
7
S
9
7
1
5
6
Preamp PCA  
Motherboard  
Motherboard  
Motherboard  
Motherboard  
O2 Sensor (optional)  
O2 Sensor (optional)  
O2 Sensor (optional)  
Relay PCA  
P6  
P109  
P109  
P109  
P6  
P109 11  
AGND  
P109  
P109  
P109  
P1  
P1  
P1  
P1  
P5  
P5  
S
9
10  
1
O2 SIGNAL -  
O2 SIGNAL +  
DGND  
+5V  
P1  
Relay PCA  
2
WR256  
CBL, TRANSMITTER TO INTERFACE  
LCD Interface PCA  
066970000  
J15  
Transmitter PCA  
068810000  
J1  
D-6  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
07270B DCN 6512  
D-7  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
VERSION TABLE  
016680000 - CE MARK VERSION  
STD PROD. VERSION UP TO 10/99  
016680100 - NON CE MARK (OBSOLETE)  
+15V  
+15V  
016680200 - SUB PS 17 SWITCHER FOR LINEAR SUPPLY  
DELETE COMPONENTS  
+15V  
T1, D1, D2, C9, C11, PTC1, PTC2, U2  
ADD COMPONENTS  
PS1  
D
C
B
A
D
R1  
R5  
1.2K  
TP1  
016680300 - LOW OUTPUT + FIXED FREQ  
REPLACE VR2 WITH A WIRE JUMPER  
REPLACE R4 WITH RS297 127KOHM  
4.7K 1%  
+15V  
TP6  
R6  
10  
Q1  
016680400 - HI OUTPUT + FIXED FREQ  
REPLACE VR2 WITH A WIRE JUMPER  
REPLACE R4 WITH RS13 11 KOHM  
IRFZ924  
R2  
+
10K 1%  
C2  
.01  
C7  
.1  
L1  
J2  
016680600 - HI OUTPUT,E SERIES  
DELETE COMPONENTS  
C1  
1000uF/25V  
1
2
3
4
T1,D1,D2,C9,PTC1,PTC2,U2  
68uH  
TP2  
U1  
C3  
10  
16  
2
9
6
7
1
4
15  
13  
12  
14  
11  
3
SD  
VIN  
C_B  
C_A  
E_B  
VREF  
INV+  
COMP  
RT  
CT  
INV-  
+SEN  
+
R7  
10  
Q2  
C8  
.1  
IRFZ24  
1000uF/25V  
E_A  
OSC  
-SEN  
GND  
5
8
VR2  
R8  
1.2K  
100K  
"FREQ"  
C
J1  
C5  
.1  
SG3524B  
C6  
6
+
R10  
100pF  
5
4
3
2
1
C4  
4.7uF/16V  
3K  
TP3  
Text  
R11  
150K  
R4  
10K 1%  
+15V  
TP4  
TP5  
LM7815  
Text  
PTC2  
1.1A  
D1  
U2  
R9  
T1  
1
8
1
3
IN  
OUT  
115V  
15V  
1N4007  
.1  
R13  
10K 1%  
R12  
2
3
7
6
10K 1%  
+
C9  
2200uF/35V  
C10  
.1  
C11  
115V  
4
15V  
5
Text  
B
D2  
PTC1  
1.1A  
.22  
C12  
.22  
R14  
VR1  
PWR XFRMR  
1N4007  
4.7K 1%  
"PW"  
1K 20T  
R15  
4.7K 1%  
Error : LOGO.BMP file not found.  
OZON_ GEN  
10/15/96 REV. D:  
11/21/96 REV. E:  
10/01/99 REV. F  
Added PTC1,2 secondary overcurrent protection.  
Minor cosmetic fixes  
The information herein is the  
property of API and is  
APPROVALS  
DRAWN  
DATE  
A
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
DRIVER  
ADDED VERSION TABLE AT D6  
CHECKED  
SIZE DRAWING NO.  
REVISION  
B
01669  
G
APPROVED  
LAST MOD.  
SHEET  
30-Nov-2006  
1
1
of  
1
2
3
4
5
6
D-8  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
D
C
B
A
D
C
B
A
+15  
+15  
+15  
2
2
5
5
1
1
+15  
+15  
1
2
1
2
5
6
7
8
+15  
+15  
3
4
6
2
3
1
1
2
3
4
12  
11  
12  
11  
3
2
1
5
8
5
67  
8
8
9
10  
13  
12  
14  
+15  
+15  
+15  
+15  
+
+
THERMOELECT  
The information herein is the  
property of API and is  
APPROVALS  
DATE  
DRAW N  
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
COOLER_CONTROL  
CH ECKED  
AP P ROVED  
SIZ E DRAW ING NO.  
REVISION  
B
01840  
LAST MOD.  
14-Jul-1999  
B
SH EET  
1
1
of  
1
2
3
4
5
6
07270B DCN 6512  
D-9  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
D
C
B
A
D
C
B
C6  
0.1  
+12V  
U3  
15  
12  
11  
16  
1
ISO_+15V  
VREF  
SENSE  
VRADJ  
+V  
C4  
SR  
1000PF  
U4  
13  
14  
SSENSE  
4
VIN(10)  
GATEDRV  
Q1  
MOSFETP  
TESTPOINT  
TP1  
U2  
+VS1  
7
+VS2  
OFFADJ  
OFFADJ  
SPAN  
TESTPOINT  
TP2  
2
3
3
5
6
VREFIN  
VIN(5V)  
6
8
10  
9
VOUT  
4MA  
16MA  
OPA277  
R1  
R2  
15  
VIN  
7
2
IOUT+  
GND  
D1  
4.75K  
9.76K  
1N914  
XTR110  
GND  
TP6  
C5  
220PF  
J1  
IOUT-  
IOUT-  
IOUT+  
VIN-  
VIN+  
1
2
4
6
8
3
5
7
-VS1 GND1 -VSG2ND2  
ISO124  
C7  
0.1  
HEADER 4X2  
+12V  
-12V  
+15V  
-12V  
+15V  
U1  
C1  
1
14  
8
VS  
2
SIN  
0.47  
ISO+15  
TP3  
0V  
5
ISO_+15V  
0V  
6
ISO_GND  
TP5  
+VOUT  
7
C2  
-VOUT  
DCP010515  
SOUT  
0.47  
ISO_GND  
C3  
0.47  
ISO_-15V  
JP1  
JUMPER2  
VIN-  
TP4  
ISO-15  
Error : LOGO.BMP file not found.  
Date  
Rev.  
A
Change Description  
Engineer  
KL  
PCA 03631, Isolated 0-20ma, E Series  
The information herein is the  
property of API and is  
APPROVALS  
DRAWN  
DATE  
8/9/00  
INITIAL RELEASE (FROM 03039)  
A
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
CHECKED  
SIZE DRAWING NO.  
REVISION  
B
03632  
LAST MOD.  
A
APPROVED  
SHEET  
19-Jul-2002  
1
1
of  
1
2
3
4
5
6
D-10  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
General Trace Width Requirements  
1. Vcc (+5V) and I2C VCC should be 15 mil  
2. Digitial grounds should be at least 20 mils  
3. +12V and +12V return should be 30 mils  
J1  
AC_Line  
AC_Neutral  
1
4. All AC lines (AC Line, AC Neutral, RELAY0 - 4, All signals on JP2) should be 30 mils wide, with 120 mil isolation/creepage distance around them  
5. Traces between J7 - J12 should be top and bottom and at least 140 mils.  
2
3
4
6. Traces to the test points can be as small as 10 mils.  
4 PIN  
RELAY0  
RELAY1  
D
C
B
A
D
C
B
A
VCC  
RN1  
330  
R1  
R2  
2.2K 2.2K  
RELAY0  
K1  
RELAY1  
K2  
RELAY2  
K3  
JP2  
Heater Config Jumper  
J216 PIN  
1
1
3
2
4
1
3
2
4
1
3
2
4
RELAY2  
COMMON0  
LOAD0  
TS0  
2
JP1  
I2C_Vcc  
RELAY0  
RELAY1  
RELAY2  
I2C_Vcc  
3
RELAY0  
1
3
5
7
2
4
6
8
+-  
+-  
+-  
4
5
TS0  
TS1  
TS2  
COMMON1  
LOAD1  
TS1  
6
SLD-RLY  
SLD-RLY  
SLD-RLY  
7
8
HEADER 4X2  
RELAY1  
9
10  
11  
12  
13  
14  
15  
16  
COMMON2  
LOAD2  
TS2  
D1  
WDOG  
I2C_Vcc  
D2  
D3  
D4  
D7  
D8  
D9  
D10  
AC_Neutral  
RED  
RELAY2  
U1  
YEL  
RL0  
YEL  
RL1  
YEL  
RL2  
GRN  
VA0  
GRN  
VA1  
GRN  
VA2  
GRN  
VA3  
C1  
0.1  
21  
2
4
A0  
P00  
P01  
P02  
5
A1  
A2  
3
6
1
7
INT P03  
P04  
J3  
8
IO3  
IO4  
22  
23  
9
1
SCL P05  
SDA P06  
P07  
U2A  
10  
11  
13  
14  
2
3
4
5
1
2
P10  
P11  
15 IO10  
16 IO11  
17 IO12  
18 IO13  
19 IO14  
20 IO15  
P12  
CON5  
SN74HC04  
U2B  
P13  
P14  
VCC  
P15  
Q1  
VCC  
P16  
3
5
4
6
P17  
R3  
+12V  
J4  
20K  
R5  
10K  
PCF8575  
VCC  
U5  
1
2
3
4
5
6
7
8
16  
15  
14  
10  
9
1
2
3
6
7
8
VALVE0  
VALVE1  
VALVE2  
VALVE3  
IN 4  
IN 3  
OUT4  
U2C  
U4  
I2C_Vcc  
R6  
IRF7205  
JP4  
K
ENABLE OUT 3  
IN 2  
IN 1  
OUT 2  
K
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VBATT  
RESET  
RESET'  
WDO'  
VOUT  
VCC  
OUT 1  
U2D  
U2E  
GND  
CD IN'  
1
2
3
C3  
1
UDN2540B(16)  
BATT_ONCD OUT'  
LOW LINE' WDI  
10K  
9
8
8 PIN  
VLV_ENAB  
OSC IN  
PFO'  
PFI  
OSC SEL  
WTCDG OVR  
+
C5  
JP3  
R4  
1M  
D17  
RLS4148  
C4  
10/16  
MAX693  
11  
10  
+
+
1 2  
10/16  
C2  
0.001  
C6  
2000/25  
HEADER 1X2  
VCC  
U2F  
TP1 TP2 TP3 TP4 TP5 TP6 TP7  
+12V  
DGND +5V AGND +15V -15V +12RT  
DC PWR IN  
J5  
KEYBRD  
J7  
MTHR BRD  
J8  
SYNC DEMOD  
SPARE  
J10  
REV  
B
AUTH  
CAC  
DATE  
J9  
1
J11  
J12  
10/3/02  
CE MARK LINE VOLTAGE TRACE SPACING FIX  
DGND  
VCC  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
1
1
1
2
2
2
3
4
5
6
7
8
9
13  
12  
2
AGND  
+15V  
3
3
3
4
4
4
AGND  
-15V  
5
5
5
6
6
6
+12RET  
+12V  
7
7
Title  
7
8
8
M100E/M200E Relay PCB  
8
EGND  
CHS_GND  
9
9
9
10  
10  
10  
10  
Size  
B
Number  
03956  
Revision  
A
10  
CON10THROUGH  
CON10THROUGH  
CON10THROUGH CON10THROUGH  
CON10THROUGH  
CON10THROUGH  
3
1
3
CON10THROUGH  
Date:  
30-Jun-2004  
Sheet of  
APPLIES TO PCB 03954  
File:  
N:\PCBMGR\RELEASED\03954cc\PDRraOwTnEBLy\0:3954a.ddb  
6
1
2
3
4
5
Te  
T
Te  
T
07270B DCN 6512  
D-11  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
AC_Line  
J20  
RELAY3  
RELAY4  
1
2
3
4
5
6
RN2  
330  
Aux Relay Connector  
D
C
B
A
D
C
B
A
RELAY3  
K4  
RELAY4  
K5  
MOLEX6  
1
3
2
4
1
3
2
4
AC_Neutral  
I2C_Vcc  
I2C_Vcc  
+-  
+-  
SLD-RLY  
SLD-RLY  
D5  
D6  
D11  
D12  
D13  
D14  
D15  
D16  
GRN  
YEL  
YEL  
GRN  
GRN  
GRN  
GRN GRN  
VA5  
VA6  
VA7  
VA4  
TR0  
TR1  
RL3  
RL4  
IO3  
IO4  
IO10  
IO11  
IO12  
VCC  
U3A  
+12V  
J6  
IO13  
1
2
U6  
1
16  
15  
14  
10  
9
1
2
3
6
7
8
Valve4  
Valve5  
Valve6  
Valve7  
IN 4  
IN 3  
OUT4  
K
2
3
SN74HC04  
U3D  
VLV_ENAB  
ENABLE OUT 3  
4
IN 2  
IN 1  
OUT 2  
K
5
6
OUT 1  
7
9
8
8
9
UDN2540B(16)  
10  
U3B  
U3F  
U3E  
U3C  
CON10  
IO14  
3
4
11  
5
10  
6
VCC  
IO15  
13  
12  
J13  
+12V  
1
2
C13  
0.1  
MINIFIT-2  
Q2  
IRL3303  
Use 50 mil traces  
J14  
1
2
+12V  
MINIFIT-2  
Q3  
IRL3303  
Title  
100E/200E/400E RELAY PCB  
Use 40 mil traces  
Size  
B
Number  
03956  
Revision  
A
+12RET  
3
2
3
Date:  
30-Jun-2004  
Sheet of  
File:  
N:\PCBMGR\RELEASED\03954cc\PDRraOwTnEBLy\0:3954a.ddb  
6
1
2
3
4
5
Te  
T
Te  
T
D-12  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
R7  
2.55K  
+15V  
VDD_TC  
ZR1  
C15  
0.1  
C7  
+15V  
D
C
B
A
D
C
B
A
0.1  
5.6V  
C16  
0.1  
ZR3  
10V  
J15  
-
LTC1050  
U8  
R21  
20k  
2
U7A  
1
1
+
3
2
3
2
J17  
6
1
2
3
4
TYPE J  
J TC Connector  
OPA2277  
-15V  
J18  
MICROFIT-4  
R15  
11K  
-
2
R11  
249K  
C17  
1
1
+
R9  
R19  
10K  
TYPE k  
JP5  
1 2  
W
W
R13  
332K  
1K  
K TC Connector  
R17  
5K  
JUMPER  
C8  
0.1  
VEE_TC  
C9  
0.1  
ZR2  
5.6V  
R8  
2.55K  
VDD_TC  
C10  
0.1  
-15V  
ZR4  
10V  
LTC1050  
U9  
U7B  
20k  
R22  
3
2
5
6
7
6
J16  
OPA2277  
-
2
1
R16  
11K  
+
R12  
249K  
TYPE J  
C20  
1 uF  
R10  
1K  
J TC Connector  
U10  
3
R20  
10K  
JP6  
1 2  
JUMPER  
TOUT  
R14  
676K  
8
7
5
5K  
J
K
C14  
0.1  
C11  
0.1  
R-  
C12  
0.1  
LT1025  
VEE_TC  
Title  
TYPE K  
J19  
100E/200E/400E RELAY PAB  
-
Size  
B
Number  
03956  
Revision  
2
A
1
+
K TC Connector  
3
3
3
Date:  
30-Jun-2004  
Sheet of  
File:  
N:\PCBMGR\RELEASED\03954cc\PDRraOwTnEBLy\0:3954a.ddb  
6
1
2
3
4
5
Te  
Te  
07270B DCN 6512  
D-13  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
+15V  
R2  
1.1K  
S1  
D
C
B
A
VR2  
D
C
B
1
2
3
4
5
6
ASCX PRESSURE SENSOR  
2
3
C2  
1.0UF  
1
LM4040CIZ  
TP4 TP5  
S1/S4_OUT S2_OUT  
TP3  
S3_OUT  
TP2  
10V_REF  
TP1  
GND  
+15V  
J1  
3
2
1
6
5
4
S2  
1
2
3
4
5
6
ASCX PRESSURE SENSOR  
MINIFIT6  
+15V  
R1  
499  
S3  
VR1  
1
2
3
FLOW SENSOR  
FM_4  
2
3
C1  
1.0UF  
CN_647 X 3  
1
+15V  
LM4040CIZ  
S4  
C3  
1.0  
1
2
3
4
CON4  
SCH, PCA 04003, PRESS/FLOW, 'E' SERIES  
The information herein is the  
property of API and is  
APPROVALS  
DATE  
submitted in strictest con-  
fidence for reference only.  
Unauthorized use by anyone  
for any other purposes is  
prohibited. This document or  
any information contained  
in it may not be duplicated  
without proper authorization.  
DRAWN  
A
CHECKED  
APPROVED  
SIZE DRAWING NO.  
REVISION  
B
04354  
D
LAST MOD.  
3-Dec-2007  
SHEET  
1
1
of  
1
2
3
4
D-14  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
5ꢗꢋꢍꢒ,ꢖꢗꢗꢍ,ꢋꢊꢖꢗꢕ  
ꢜꢃꢀ1ꢀ0 ꢀ ꢐꢀꢜꢜꢍꢁꢜꢜꢍ-ꢕ,$  
4ꢒꢍꢚꢐ4%,6ꢋꢒ"  
ꢜꢃꢀ1ꢀ0 ꢁ ꢐꢀꢜꢜꢍꢁꢜꢜꢍ-ꢘꢇ0  
07)ꢘ%ꢇ6ꢋꢒ"  
ꢜꢃꢀ1ꢀ0 ꢂ ꢐꢀꢜꢜꢍꢁꢜꢜꢍ-ꢘꢇ0  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
!ꢀꢜꢜ23ꢁꢜꢜ2%)!ꢉ%)ꢒꢍꢚꢐ4%)ꢇꢆ  
ꢎꢏꢐꢑꢍꢒ  
ꢜꢃꢀ1ꢀ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
0
ꢈꢚꢋꢍꢛ  
'ꢊꢌꢍꢛ  
ꢀꢜ !ꢚ" ꢁꢜꢜ#  
ꢘ$ꢍꢍꢋ%%%%ꢖ&%  
ꢎꢛ()ꢇ !*ꢓ(ꢜꢃꢀ#+,,(ꢘꢖꢏꢒ,ꢍ(ꢓꢍꢔ*(ꢜꢃꢀ#+-../ꢗ% "ꢛ  
07270B DCN 6512  
D-15  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Aꢎ%=)ꢁꢛ  
;ꢀꢄ7  
)!ꢉ%ꢉ2!)2ꢓꢆꢉ>ꢓ2%'22ꢈ ꢆꢇ8  
%%'Aꢓ%ꢀꢜꢜ23ꢁꢜꢜ2%ꢛ%ꢘ0Aꢓꢉ%)5ꢎꢘ%ꢁ%Eꢄ%Aꢎ9?-  
%%'Aꢓ%ꢁꢜꢜ2>ꢛ%ꢘ0Aꢓꢉ%)5ꢎꢘ%ꢂ%E%ꢅ%ꢚꢗ.%)5ꢎꢘ%ꢁ%E%ꢄ-  
;ꢀꢁ7<ꢓ2'  
;ꢀꢄ7  
=)ꢁ  
ꢓꢁ1  
ꢄꢜ8  
ꢉ0ꢀ  
'ꢘ7  
;ꢀꢄ7  
ꢈꢀ  
ꢓꢀ1  
ꢘ22%ꢉꢆ 92  
ꢉ=)ꢀꢆ  
ꢉ=)ꢁꢆ  
ꢅ-ꢁ7%B2ꢎ2ꢓ  
ꢅ-ꢁ7  
A)ꢉ5ꢇ%ꢉ2ꢘꢉ  
)!ꢉ%ꢉ2!)%ꢇAꢎ'5*%=>!)2ꢓ  
ꢓ1  
ꢀꢄꢜ8  
>ꢁꢆ  
ꢓꢁ#  
ꢃ++  
9'ꢂꢄꢂ  
ꢓꢅ  
ꢓꢂꢄ  
ꢀ-ꢜ8  
ꢓꢀꢄ  
;ꢀꢁ7<ꢓ2'  
ꢉA%ꢉ2ꢇ% Aꢆꢓꢈ  
;
ꢘ22%ꢉꢆ 92  
ꢀꢜꢜ8  
=ꢁ  
ꢇꢁꢂ  
ꢇꢁꢅ  
ꢜ-ꢀ%ꢏ'  
ꢉ)ꢂ  
@
ꢀꢜꢜ%4'  
ꢇꢀ  
;ꢀꢁ7<ꢓ2'  
7ꢓ2'  
:ꢂ  
=ꢀ#ꢅ  
ꢇAA92ꢓ%ꢇAꢎꢉꢓA9  
ꢎ35  
>ꢂ  
*
ꢆ*ꢎꢈ  
ꢓꢃꢀ  
ꢓꢁ  
ꢄꢀ-ꢀ8  
ꢓꢀꢅ  
ꢀꢜꢜ8  
ꢂ%)5ꢎ%5ꢎ95ꢎ2  
ꢂꢜꢜ8  
#
ꢉ)ꢁꢃ  
@
ꢉ=)ꢀꢆ  
;ꢀꢄ7  
ꢉ02ꢓ!5ꢘꢉAꢓ;  
ꢓꢉꢀ  
9'ꢂꢄꢂ  
ꢓꢂꢁ  
ꢃ++  
ꢓ#  
ꢀꢜ8  
;ꢄ7<ꢘ?ꢘ  
ꢉ)ꢁꢂ  
@
ꢇꢅ  
ꢜ-ꢀ%ꢏ'  
=ꢂ  
ꢓꢀ  
ꢀꢜ8  
+
1
#
 ꢀꢄ7  
ꢀꢁꢂꢃꢄꢅꢅꢅꢅꢅꢆ ꢇꢅꢅꢅꢅꢈ ꢇꢅꢅꢅ  ꢇꢉ  
ꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊ  
ꢅꢅꢋꢆꢌꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢆ ꢍꢅꢅꢅꢅꢅꢅꢆ ꢍꢅꢅꢅꢅꢅꢅꢆꢎꢍ  
ꢅꢅꢋꢆꢏꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢏꢏꢍꢅꢅꢅꢅꢅꢅꢏꢏꢍꢅꢅꢅꢅꢅꢅꢎꢐꢍ  
ꢅꢅꢋꢆ ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢌꢄ ꢑꢍꢅꢅꢅꢌꢄ ꢑꢍꢅꢅꢅꢆ   
ꢅꢅ  
)ꢓ2ꢆ!)ꢀ  
92ꢈ;  
92ꢈ;  
ꢈꢁ  
ꢀꢀꢈ:ꢜꢄ  
ꢉ02ꢓ!5ꢘꢉAꢓ;  
>ꢂꢆ  
ꢓ+  
>ꢀꢂ  
07)ꢘ  
)!ꢉ<ꢉ2!)  
ꢓꢁꢂ  
;ꢀꢄ7  
A)ꢉ5ꢇ<ꢉ2ꢘꢉ  
ꢁ-ꢜ8  
9'ꢂꢄꢂ  
ꢓꢀꢜ  
ꢃ-++8  
ꢓꢂ#  
5ꢎ95ꢎ2 + ꢓꢆ  
ꢘ22%ꢉꢆ 92  
:ꢁ  
#ꢃꢆ0ꢇꢀ*>ꢜꢃ  
ꢂ-ꢂ8  
)ꢎꢁꢁꢁꢁ  
ꢉ=)ꢁꢆ  
ꢉ)ꢀ1 ꢉ)ꢀ#  
ꢉ)ꢁꢄ  
ꢉ)ꢀ+ ꢉ)ꢁꢁ ꢉ)ꢁꢀ  
@
ꢉ)ꢁꢜ  
@
@
@
@
@
@
ꢘꢊCꢗꢚꢌ%ꢇꢖꢗꢗꢍ,ꢋꢖꢒ  
=ꢅ  
2ꢉ2ꢘꢉ  
A)ꢉ5ꢇ<ꢉ2ꢘꢉ  
292ꢇ%ꢉ2ꢘꢉ  
#
1
A)ꢉ5ꢇ%ꢉ2ꢘꢉ  
)ꢓ2ꢆ!)%ꢓꢎ*% 5ꢉꢁ  
)ꢓ2ꢆ!)%ꢓꢎ*% 5ꢉꢀ  
)!ꢉ%ꢉ2!)  
07)ꢘ%7A9ꢉꢆ*2  
)!ꢉ%ꢘ5*ꢎꢆ9  
05*ꢆ5ꢎ  
)!ꢉ<ꢉ2!)  
07)ꢘ  
7)!ꢉ  
!5ꢇꢓA'5ꢉ 1  
=ꢄ  
@)ꢀꢀ  
9ꢁ  
;ꢀꢄ7  
ꢃ-#%ꢏ0  
ꢇꢁꢀ  
;
)ꢖ/ꢍꢒ%ꢇꢖꢗꢗꢍ,ꢋꢖꢒ  
#
ꢇꢃ+  
ꢜ-ꢅ1%ꢏ'  
1
ꢀꢜꢜꢏ'  
+
ꢀꢜ  
ꢉ)ꢀꢄ ꢉ)ꢀꢃ ꢉ)ꢀꢂ  
@
@
@
@)ꢀꢅ  
!5ꢎ5'5ꢉ ꢀꢜ  
9ꢀ  
 ꢀꢄ7  
ꢃ-#%ꢏ0  
;ꢄ7<ꢘ?ꢘ  
ꢇꢀꢅ  
)ꢒꢊꢗꢋꢍ.%.ꢖ,ꢏꢐꢍꢗꢋꢕ%ꢚꢒꢍ%ꢏꢗ,ꢖꢗꢋꢒꢖꢌꢌꢍ.  
;
ꢇꢃꢅ  
ꢜ-ꢅ1%ꢏ'  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢃ-#ꢏ'D%ꢀꢅꢔ  
ꢀꢜꢜ23ꢁꢜꢜ2%)!ꢉ%)ꢓ2ꢆ!)%)ꢇꢆ%ꢘ,$ꢍꢐꢚꢋꢊ,  
ꢎꢏꢐꢑꢍꢒ  
ꢜꢃꢀ1ꢀ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
0
ꢈꢚꢋꢍꢛ  
'ꢊꢌꢍꢛ  
ꢀꢜ !ꢚ" ꢁꢜꢜ#  
ꢘ$ꢍꢍꢋ%%%%ꢖ&%  
ꢎꢛ()ꢇ !*ꢓ(ꢜꢃꢀ#+,,(ꢘꢖꢏꢒ,ꢍ(ꢓꢍꢔ*(ꢜꢃꢀ#+-../ꢗ% "ꢛ  
D-16  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
7)!ꢉ  
ꢉ)+  
@
>ꢄ  
>ꢃ  
1
2ꢉ2ꢘꢉ  
2ꢉ2ꢘꢉ  
5ꢎ%ꢃ  
ꢇA!ꢃ  
5ꢎ%ꢂ  
ꢀꢀ  
ꢀꢃ  
#
ꢎꢇꢃ  
ꢎꢇꢂ  
ꢎꢇꢁ  
ꢎꢇꢀ  
+
2ꢉ2ꢘꢉ  
2ꢉ2ꢘꢉ  
)ꢓ2ꢆ!)ꢁ  
05*ꢆ5ꢎ  
2ꢉ2ꢘꢉ<ꢘ5*ꢎꢆ9  
)ꢓ2ꢆ!)ꢀ  
;ꢀꢄ7  
ꢀꢜ  
ꢀꢅ  
ꢀꢄ  
#ꢃꢆ0ꢇꢀ*>ꢜꢃ  
>ꢀ#  
ꢇA!ꢂ  
5ꢎꢁ  
ꢇA!ꢁ  
5ꢎꢀ  
ꢇA!ꢀ  
05*ꢆ5ꢎ  
ꢇꢂꢀ  
 ꢀꢄ7  
05*ꢆ5ꢎ  
ꢈ*ꢃꢃꢃꢈ?  
 ꢀꢄ7  
ꢜ-ꢅ1%ꢏ'  
#ꢃꢆ0ꢇꢀ*>ꢜꢃ  
;ꢀꢄ7  
>+ꢆ  
;ꢄ7<ꢘ?ꢘ  
ꢇꢁ+  
ꢜ-ꢅ1%ꢏ'  
 ꢀꢄ7  
9'ꢂꢄꢂ  
>ꢀꢅ  
ꢓꢀꢀ  
ꢇꢃ  
ꢀꢜꢜ!  
;ꢀꢄ7  
#
ꢜ-ꢜꢜꢀ%ꢏ'  
ꢀꢜꢜ  
ꢓꢃꢅ  
ꢉ)ꢀ  
@
ꢇꢁ  
ꢀꢜꢜ%4'  
ꢓꢃ1  
ꢀ8  
9'ꢂꢄꢂD%A)ꢆ!)  
ꢓꢄ  
ꢓꢁ+  
ꢄꢜ6D%)Aꢉ  
ꢀꢜꢜꢜ!  
ꢓꢀꢁ  
ꢎ35D%ꢘ0Aꢓꢉ2ꢈ  
;ꢀꢄ7  
ꢉ)1  
@
ꢓꢄꢜ  
ꢎ35  
ꢓꢃꢃ  
ꢘ22%ꢉꢆ 92  
;ꢀꢄ7  
ꢀꢜꢏ'3ꢁꢄ7  
)ꢓ2ꢆ!)ꢁ  
ꢇꢁ1  
ꢇꢃ1  
*>ꢆꢓꢈ%ꢓ5ꢎ*  
)!ꢉ*ꢎꢈ  
ꢜ-ꢀ%ꢏ'  
ꢉ)#  
@
ꢜ-ꢅ1%ꢏ'  
=ꢀ  
ꢇꢄ  
>ꢀ  
ꢓꢂ  
ꢘ22%ꢉꢆ 92  
>ꢁ  
)!ꢉ%ꢘꢊCꢗꢚꢌ%ꢇꢖꢗꢗꢍ,ꢋꢖꢒ  
)ꢓ2ꢆ!)ꢀ  
ꢃ-++8  
'ꢖꢒ%ꢀ-ꢜ%ꢏ'%ꢏꢕꢍ%ꢇꢀꢀ-  
#
'ꢖꢒ%ꢀꢀ%ꢏ'%ꢏꢕꢍ%ꢇꢀꢀꢆ%E%ꢇꢀꢀ  
-
ꢓꢂꢅ  
ꢁꢄꢜ8  
ꢇAꢆJ  
7ꢓ2'  
ꢓꢀ#  
ꢘ22%ꢉꢆ 92  
A)ꢆꢀꢁꢃ  
9'ꢂꢄꢂD%A)ꢆ!)  
ꢇꢀꢀꢆ  
ꢇꢀꢀ  
;
;
ꢁꢁꢏ'3ꢁꢄ7  
ꢁꢁꢏ'3ꢁꢄ7  
ꢉ)ꢁ  
@
 ꢀꢄ7  
ꢇꢂ  
ꢀ-ꢜꢏ'  
ꢇꢀꢀ  
)!ꢉ*ꢎꢈ  
>ꢀꢀ  
ꢘ22%ꢉꢆ 92  
ꢇꢁ#ꢀꢜꢏ'3ꢁꢄ7  
ꢓꢃꢂ  
ꢃ-++8  
ꢓꢃ  
ꢓꢀꢂ  
ꢎ35D%)Aꢉ  
1
#
ꢇꢃ#  
ꢀꢜꢜ  
'
>'A>ꢉ  
A>ꢉ  
7;  
ꢆ*ꢎꢈ  
7  
ꢜ-ꢅ1%ꢏ'  
 ꢁ-ꢄ7  
;ꢀꢁ7<ꢓ2'  
ꢉ)ꢅ  
ꢜ-ꢅ1%ꢏ'  
ꢇꢂꢜ  
@
ꢈ57%ꢓꢆꢉ5A ꢇ%Aꢘꢇ  
ꢇꢂꢅ  
ꢜ-ꢀ%ꢏ'  
ꢇ+  
ꢂ+ꢜꢜ%4'D%'59!  
 ꢀꢄ7  
9ꢉꢇꢀꢜꢅꢁꢇꢎ1  
2ꢉ2ꢘꢉ<ꢘ5*ꢎꢆ9  
ꢓꢄꢀ  
ꢘ22%ꢉꢆ 92  
ꢒꢇꢋꢓꢔꢁꢕꢅꢖꢗꢘꢙꢇꢚ  
ꢓꢂ1  
ꢎ35  
ꢅꢊꢅꢂꢆ ꢛꢇ  
ꢅꢊꢅꢂꢈ ꢛꢇ  
)!ꢉ*ꢎꢈ  
ꢓꢀ+  
ꢀꢜ8D%)Aꢉ  
ꢎAꢉ2ꢘꢛ  
>ꢎ92ꢘꢘ%Aꢉ02ꢓF5ꢘ2%ꢘ)2ꢇ5'52ꢈ  
ꢇꢆ)ꢆꢇ5ꢉꢆꢎꢇ2%5ꢘ%5ꢎ%!5ꢇꢓA'ꢆꢓꢆꢈꢘ-  
ꢓ2ꢘ5ꢘꢉAꢓꢘ%ꢆꢓ2%ꢀGD%ꢀ3ꢃF-  
ꢀꢁꢂꢃꢄꢅꢅꢅꢅꢅ  ꢅꢅꢅꢅꢅꢅꢅꢅ   
ꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊ  
ꢋꢆꢐꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢈ  ꢍꢅꢅꢅꢅꢅꢅꢆ  ꢅꢜ !"  
ꢋꢎꢎꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ#ꢑꢄꢈꢍꢅꢅꢅꢅꢅꢅꢈꢏꢄꢏꢍ  
ꢋꢏꢆꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢆ ꢍꢅꢅꢅꢅꢅꢅꢅꢅꢅ$ꢜ%ꢅ&$"%'(()*  
ꢀ#ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ ꢄꢆꢅ+,ꢅꢅꢅꢅꢅꢅ  ꢆꢈ  
ꢀꢆꢆꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢆꢆꢄ ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢆꢄ  
ꢀ-  
ꢁ-  
ꢂ-  
ꢃ-  
292ꢇꢉ-%ꢉ2ꢘꢉ  
)ꢒꢊꢗꢋꢍ.%.ꢖ,ꢏꢐꢍꢗꢋꢕ%ꢚꢒꢍ%ꢏꢗ,ꢖꢗꢋꢒꢖꢌꢌꢍ.  
)!ꢉ*ꢎꢈ  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
!ꢀꢜꢜ23ꢁꢜꢜ2%)!ꢉ%)ꢒꢍꢚꢐ4%)ꢇꢆ%ꢘ,$ꢍꢐꢚꢋꢊ,  
ꢓ2ꢘ5ꢘꢉꢆꢎꢇ2%5ꢘ%5ꢎ%A0!ꢘ-  
ꢎꢏꢐꢑꢍꢒ  
ꢜꢃꢀ1ꢀ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
0
ꢉ05ꢘ%ꢇ5ꢓꢇ>5ꢉ%!>ꢘꢉ% 2%>ꢘ2ꢈ  
ꢆꢘ%ꢆ%!ꢆꢉꢇ02ꢈ%)ꢆ5ꢓ%F5ꢉ0%ꢉ02  
ꢉ2ꢇ%ꢇAꢎꢉꢓA9%ꢇ5ꢓꢇ>5ꢉ  
ꢈꢚꢋꢍꢛ  
'ꢊꢌꢍꢛ  
ꢀꢜ !ꢚ" ꢁꢜꢜ#  
ꢘ$ꢍꢍꢋ%%%%ꢖ&%  
ꢎꢛ()ꢇ !*ꢓ(ꢜꢃꢀ#+,,(ꢘꢖꢏꢒ,ꢍ(ꢓꢍꢔ*(ꢜꢃꢀ#+-../ꢗ% "ꢛ  
07270B DCN 6512  
D-17  
Download from Www.Somanuals.com. All Manuals Search And Download.  
05*0%7A9ꢉꢆ*2%ꢘ>))9?  
ꢇꢃꢄ  
ꢀꢜꢜ4'  
ꢉ)ꢃ  
@
7ꢓ2'  
;ꢀꢄ7  
ꢇꢄꢀ  
ꢜ-ꢀꢏ'3%ꢄꢜ7  
ꢇꢆꢜꢜꢜꢜꢀ+ꢁ  
>ꢁꢁ 9ꢉꢀ#+ꢜꢆ5ꢘꢅ ꢄ  
ꢓꢂꢂ  
ꢇꢁꢄ  
ꢃ-++8  
A>ꢉ  
5ꢎ  
ꢇ#  
ꢜ-ꢅ1%ꢏ'  
ꢇꢂꢁ  
;ꢀꢄ7  
ꢀ-ꢜꢏ'3ꢀꢅ7  
ꢇꢆꢜꢜꢜꢜꢀ++  
;ꢄ7<9Aꢇꢆ9  
ꢓꢃꢁ  
ꢃ-++8  
ꢓꢁꢜ  
ꢃ-++8  
ꢜ-ꢀ%ꢏ'  
07)ꢘ  
>ꢀꢅꢆ  
>ꢅ  
1
#
5ꢖꢏꢋ  
ꢓꢎꢀ  
ꢓꢃ#  
+
+
1
#
ꢈ#  
ꢈꢅ  
ꢈꢄ  
ꢈꢃ  
ꢈꢂ  
ꢈꢁ  
ꢈꢀ  
ꢈꢜ  
ꢀꢜ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
7ꢒ&H I  
7ꢒ&H;I  
ꢇA!)  
ꢉꢇ  
ꢂ-+ꢁ8  
9'ꢂꢄꢂD%A)ꢆ!)  
ꢇꢁꢜ  
ꢈ#  
ꢀꢅ7  
ꢓꢃ+  
ꢀ-ꢜ8  
;
ꢇꢁꢁ  
ꢇꢂꢂ  
ꢜ-ꢅ1%ꢏ'  
ꢜ-ꢅ1%ꢏ'  
ꢀꢜꢏ'3ꢁꢄ7  
ꢀꢜ  
;ꢄ7<9Aꢇꢆ9  
ꢇꢁꢃ  
ꢜ-ꢀ%ꢏ'  
ꢀꢜꢜ8K1  
7ꢍꢍ  
 ꢀꢄ7  
ꢈꢆꢇꢜ1ꢜꢁ  
 ꢀꢄ7  
>+  
#
9'ꢄꢂꢄ  
1
1
ꢘꢁ  
ꢘꢀ  
;ꢀꢁ7<ꢓ2'  
;ꢄ7<9Aꢇꢆ9  
@)ꢀꢜ  
ꢉ)ꢄ  
@
>1  
>ꢀꢃ  
5ꢎ  
;ꢀꢄ7  
5ꢎ A>ꢉ  
A>ꢉ  
Aꢎ3A'' ꢎꢇ  
ꢈꢅ  
ꢀꢀꢈ:ꢜꢄ  
9!#19ꢀꢁꢆꢇBHꢂI  
;
;
9)ꢁ+1ꢀ5!ꢄ  
;
ꢇꢄꢜ  
ꢀꢜꢏ'3ꢁꢄ7  
ꢇꢂꢃ  
ꢀꢜꢏ'3ꢁꢄ7  
ꢇꢀꢄ  
ꢀꢜꢏ'3ꢁꢄ7  
ꢇꢀꢃ  
ꢀꢜꢏ'3ꢁꢄ7  
ꢇꢃꢁ  
ꢜ-ꢅ1%ꢏ'  
ꢉ)ꢀꢁ  
@
 ꢁ-ꢄ7  
)ꢒꢊꢗꢋꢍ.%.ꢖ,ꢏꢐꢍꢗꢋꢕ%ꢚꢒꢍ%ꢏꢗ,ꢖꢗꢋꢒꢖꢌꢌꢍ.  
7ꢓꢀ  
9!ꢂꢂꢅB ꢁ-ꢄ  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢓꢁꢃ  
ꢁ6  
!ꢀꢜꢜ23ꢁꢜꢜ2%)!ꢉ%)ꢓ2ꢆ!)%)ꢇꢆ%ꢘ,$ꢍꢐꢚꢋꢊ,  
ꢎꢏꢐꢑꢍꢒ  
ꢜꢃꢀ1ꢀ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
0
 ꢀꢄ7  
ꢈꢚꢋꢍꢛ  
'ꢊꢌꢍꢛ  
ꢀꢜ !ꢚ" ꢁꢜꢜ#  
ꢘ$ꢍꢍꢋ%%%%ꢖ&%  
ꢎꢛ()ꢇ !*ꢓ(ꢜꢃꢀ#+,,(ꢘꢖꢏꢒ,ꢍ(ꢓꢍꢔ*(ꢜꢃꢀ#+-../ꢗ% "ꢛ  
D-18  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
A
B
C
D
A
B
C
D
JP1  
1
2
3
4
5
6
7
8
R1  
Not Used  
R2  
22  
Title  
SCH, E-Series Analog Output Isolator, PCA 04467  
Size  
A
Number  
Revision  
B
04468  
Date:  
File:  
6/28/2004  
N:\PCBMGR\..\04468B.sch  
Sheet of  
Drawn By:  
1
2
3
4
07270B DCN 6512  
D-19  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ꢈ6-ꢚ;ꢉꢁ  
ꢈ3&1145  
ꢘ8ꢈꢎ  
ꢈ6-6ꢚ&  
ꢘ8ꢈꢎ  
ꢈ6-6ꢚ&  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢃ  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢃ  
&ꢄ.&ꢀꢑ#,.1ꢕꢛ(  
ꢈ6-ꢚ;ꢉ  
ꢘ8ꢈꢎ  
ꢈ3&1145  
ꢘ8ꢈꢎ  
ꢈ3&1145  
6ꢚ7  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
6ꢚ7  
ꢈ3&1145  
ꢈ3&1145  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
&ꢄ.&ꢀꢑ#,41ꢕꢛ(  
ꢈ6-6ꢎ  
ꢈ3&1145  
ꢈ6-6ꢚꢃ  
ꢈ3&1145  
ꢈ6-6ꢚꢃ  
6ꢚꢓ  
ꢈ6-6ꢚ&  
6ꢚꢓ  
ꢈ6-6ꢚ&  
&ꢄ.&ꢀꢑ#,ꢅ1ꢕꢛ(  
ꢘ0ꢎꢘꢚꢓ6ꢎ  
ꢈ3&1145  
ꢉ0$,$;<  
ꢈꢆꢇ$;<  
ꢉ0$,  
ꢉ0$,$;<  
ꢈꢆꢇ$;<  
ꢉ0$,  
ꢈ3&1145  
ꢈꢆꢇ&9  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢘ8ꢈꢎ  
ꢈ3&1145  
ꢈꢆꢇ&9  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢘ8ꢈꢎ  
6ꢚ7  
6ꢚ7  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢈꢆꢇꢂ  
&ꢄ.&ꢀꢑ#,ꢄ1ꢕꢛ(  
ꢆꢎꢆ6ꢎ  
6ꢚꢓ  
9*ꢓ0ꢆꢈ  
ꢈ3&1145  
9*,ꢓꢚ-  
ꢈꢆꢇ$;<  
ꢇ8-ꢆ6ꢎ  
6ꢚꢓ  
ꢉ0$,$;<  
6ꢚ7  
ꢉ0$,$;<  
6ꢚ7  
9*ꢓ0ꢆꢈ  
ꢈ3&1145  
ꢈ3&1145  
ꢘ8ꢈꢎ  
9ꢓ0*  
ꢉꢇꢅ  
ꢘ8ꢈꢎ  
9ꢓ0*  
ꢉꢇꢅ  
9*,ꢓꢚ-  
ꢈꢆꢇ$;<  
ꢇ8-ꢆ6ꢎ  
ꢉꢇ4  
ꢉꢇ.  
ꢉꢇ4  
ꢉꢇ.  
&ꢄ.&ꢀꢑ#,ꢃ1ꢕꢛ(  
ꢆꢎꢆꢚ;ꢉ  
6ꢚ7  
ꢈ3&1145  
ꢈꢆꢇ9  
ꢇꢘꢈꢆꢇꢆ  
ꢇꢘꢈꢆꢇ  
ꢈꢆꢇ&  
6ꢚ7  
ꢈꢆꢇ&9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
7ꢓꢈꢆꢇ  
9ꢓ0*  
ꢈꢆꢇ&9  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
7ꢓꢈꢆꢇ  
9ꢓ0*  
ꢈ3&1145  
ꢈ3&1145  
ꢈꢆꢇ9  
ꢇꢘꢈꢆꢇꢆ  
ꢇꢘꢈꢆꢇ  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢀ  
ꢉꢇꢁ  
ꢉꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢈꢆꢇꢂ  
ꢘ8ꢈꢆꢇ  
ꢘ8ꢈꢆꢇ  
&ꢄ.&ꢀꢑ#,ꢂ1ꢕꢛ(  
ꢕ(ꢍꢍꢋꢁ  
&ꢄ.&ꢀꢑ#,ꢁ1ꢕꢛ(  
,ꢇꢀ&ꢃ!6*  
ꢈ3&1145  
ꢈ3&1145  
6ꢚ7  
ꢈ3&1145  
6ꢚ7  
6ꢚꢓ  
ꢇ8-ꢆ6ꢎ  
9*ꢓ0ꢆꢈ  
ꢘ8ꢈꢎ  
ꢇ8-ꢆ6ꢎ  
9*ꢓ0ꢆꢈ  
ꢘ8ꢈꢎ  
6ꢚꢓ  
ꢘ8ꢈꢆꢇ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
9*,ꢓꢚ-  
ꢘ8ꢈꢆꢇ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
9*,ꢓꢚ-  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢁ  
ꢉꢇꢀ  
ꢉꢇꢀ  
ꢘ8ꢈꢎ  
ꢘ8ꢈꢎ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
&ꢄ.&ꢀꢑ#,ꢀ1ꢕꢛ(  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$ꢂ'"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-20  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/ꢀ&ꢀꢆ  
,ꢇꢀ&ꢃ  
;ꢁ  
4ꢃ8ꢇꢀꢄꢃ  
&  
 
ꢆꢁ  
&  
=&  
=ꢀ  
ꢈ6-6ꢚ&  
ꢈ6-6ꢚꢀ  
ꢚꢇ  
ꢂꢁ  
ꢂꢀ  
ꢂ&  
ꢁ'  
ꢁ.  
ꢁ4  
ꢁꢅ  
ꢁꢄ  
ꢁꢃ  
ꢁꢂ  
ꢁꢁ  
ꢁꢀ  
ꢁ&  
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀ&  
'
ꢀꢀ  
-  
ꢆ&  
ꢇ>?  
;ꢅꢆ  
ꢆ&  
6ꢚ7  
=ꢁ  
ꢆꢀ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
'
.
4
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
ꢀ.  
ꢀ'  
ꢆꢀ  
=ꢂ  
ꢈ6-6ꢚꢁ  
ꢈ6-6ꢚꢂ  
ꢈ6-6ꢚꢃ  
ꢉ0$,  
ꢈꢆꢇ9  
7ꢓꢈꢆꢇ  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
/ꢀ&.  
4ꢃ8ꢇꢂꢁ  
ꢆꢁ  
ꢆꢁ  
=ꢃ  
ꢈꢚ&  
ꢈꢚꢀ  
ꢈꢚꢁ  
ꢈꢚꢂ  
ꢈꢚꢃ  
ꢈꢚꢄ  
ꢈꢚꢅ  
ꢈꢚ4  
ꢈ6&  
ꢈ6ꢅ  
ꢆꢂ  
6ꢇ&&&&ꢀ'ꢀ  
ꢆꢂ  
=ꢄ  
ꢈ6ꢃ  
ꢆꢃ  
ꢆꢀ  
ꢆꢀ  
4
ꢉ,ꢁ  
ꢆꢃ  
=ꢅ  
;4  
4ꢃ8ꢇꢄꢃꢀ  
ꢀꢅ ꢃ4?A.  
ꢈ6ꢁ  
ꢈ6&  
ꢆꢄ  
'
.
;ꢄ&  
ꢆꢄ  
=4  
ꢆꢅ  
.
0  
'
;ꢄ&ꢇ  
ꢆꢅ  
=.  
ꢈꢚꢅ  
ꢈꢚꢃ  
ꢈꢚꢁ  
ꢈꢚ&  
ꢈ64  
ꢆ4  
ꢀ&  
ꢀ&  
ꢀꢀ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
-ꢀ  
-ꢁ  
4ꢃ8ꢇꢂꢁ  
ꢆ4  
='  
9*,ꢓꢚ-  
ꢇ8-ꢆ6ꢀ  
9*ꢓ0ꢆꢈ  
6ꢚꢓ ꢀ'  
ꢆ.  
ꢆ.  
=ꢀ&  
=ꢀꢀ  
=ꢀꢁ  
=ꢀꢂ  
=ꢀꢃ  
=ꢀꢄ  
4ꢃ8ꢇꢂꢁ  
ꢆ'  
4
ꢆ'  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
4
.
'
4ꢃ8ꢇꢂꢁ  
ꢆꢀ&  
ꢆꢀꢀ  
ꢆꢀꢁ  
ꢆꢀꢂ  
ꢆꢀꢃ  
ꢆꢀꢄ  
&<ꢂꢁꢇ  
&<ꢂꢁꢈ  
&<ꢂꢁ0  
&<ꢂꢁ*  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
4ꢃ8ꢇꢄ4ꢃ  
;.  
.
ꢆꢀ&  
ꢆꢀꢀ  
ꢆꢀꢁ  
ꢆꢀꢂ  
ꢆꢀꢃ  
ꢆꢀꢄ  
ꢆꢀꢅ  
ꢆꢀ4  
ꢆꢀ.  
ꢆꢀ'  
ꢆ0ꢀ  
 
 
'
ꢀꢀ  
ꢈ6ꢀ  
ꢈ6ꢄ  
;ꢄ&ꢈ  
ꢓꢁꢄ  
ꢀ.  
ꢀ'  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
-ꢀ  
-ꢁ  
ꢈ6ꢁ  
ꢈ6ꢂ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢈ6ꢂ  
ꢈ6ꢀ  
ꢈ6ꢃ  
ꢈꢚ4  
ꢈꢚꢄ  
ꢈꢚꢂ  
ꢈꢚꢀ  
9ꢇꢇ  
;ꢀ  
4ꢃ8ꢇꢅ..  
9ꢇꢇ  
9ꢇꢇ  
ꢈ6ꢄ  
ꢁ&  
ꢈ6ꢅ  
;ꢄ&ꢆ  
ꢀ.  
6ꢚ7   
ꢈ64  
&
4
ꢉ,ꢃꢃ  
ꢓꢄ'  
ꢃ4EF!ꢄG  
ꢉ,ꢄꢅ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢅ  
4ꢃ8ꢇꢂꢁ  
ꢆ0ꢀ  
ꢓꢁꢃ  
ꢀꢅ  
4
ꢀ'  
;ꢄꢀꢈ  
,H@  
ꢁ1ꢁ?F!ꢄG  
6ꢚꢇ8ꢓꢈ=  
ꢀꢁ  
ꢀꢂ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ&  
ꢀꢃ  
'
ꢀꢀ  
.
ꢉꢇꢀ  
/6ꢉꢚ#ꢁ#ꢈꢇꢄ*#ꢀ&ꢚ8$  
<ꢂ  
ꢈꢀ  
4
9ꢇꢇ  
ꢈꢁ  
ꢀꢁ  
699Sꢀꢀ2ꢀꢂ‘"%ꢂꢀꢃ9@A6VGUꢄ  
9ꢇꢇ  
ꢈꢘꢄ  
ꢈꢂ  
ꢆꢀ&  
699Sꢀꢀ2ꢀꢂ‘"!ꢂꢀꢃEQ ꢀDITU6GG@9ꢄ  
4ꢃ8ꢇ&.  
ꢆ&  
ꢆ4  
ꢆꢀ  
ꢆꢅ  
ꢆꢁ  
ꢆꢄ  
ꢆꢂ  
ꢆꢃ  
>0ꢈF!ꢓ0ꢈF!ꢕꢐꢋ!ꢀꢁ&ꢅ  
ꢈꢈ&&&&&ꢅꢀ  
ꢈꢃ  
ꢈꢄ  
ꢆꢀꢀ ꢀ4  
9ꢇꢇ  
,ꢊꢗꢕ!ꢀIꢁ!ꢕ(ꢖꢒꢋꢍ !ꢖꢗ!,ꢇ  
ꢆꢃ  
ꢆꢄ ꢀꢄ  
ꢆꢅ  
ꢆ4 ꢀꢂ  
ꢆ.  
ꢆ' ꢀꢀ  
/,4  
;ꢃ  
ꢀ&  
4ꢃ8ꢇ4ꢃ  
@
ꢈꢅ  
ꢆ0ꢀ  
'
.
,ꢓ0  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
ꢈ4  
ꢀꢀ  
ꢈ& ꢀꢁ  
ꢀꢂ  
0ꢀ  
ꢇ>?  
6ꢚꢇ80ꢇ?  
6ꢚ0ꢀ  
ꢓꢂ  
ꢁ1ꢁ?F!ꢄG  
ꢓꢃ  
@
9ꢇꢇ  
ꢉ,ꢅꢀꢉ,ꢅ&ꢉ,ꢄ'  
.
ꢇꢂ.  
ꢁ1ꢁ?F!ꢄG  
ꢇ>ꢓ  
/ꢀ&ꢀ  
,ꢇꢀ&ꢃ  
80ꢆꢈ0ꢓꢂ#ꢈ0*ꢆ;>ꢉ0ꢈ#ꢀ  
/ꢀ&4  
ꢀ&  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
-  
ꢈ-  
ꢘꢈꢆ  
9ꢇꢇ  
ꢘꢇ>  
ꢅꢃ  
ꢅꢂ  
ꢅꢁ  
ꢅꢀ  
ꢅ&  
ꢄ'  
ꢄ.  
ꢄ4  
ꢄꢅ  
ꢄꢄ  
ꢄꢃ  
ꢄꢂ  
ꢄꢁ  
ꢄꢀ  
ꢄ&  
ꢃ'  
ꢃ.  
ꢃ4  
ꢃꢅ  
ꢃꢄ  
ꢃꢃ  
ꢃꢂ  
ꢃꢁ  
ꢃꢀ  
ꢃ&  
ꢂ'  
ꢂ.  
ꢂ4  
ꢂꢅ  
ꢂꢄ  
ꢂꢃ  
ꢂꢂ  
ꢈ3&1145  
-  
-  
ꢚꢘꢇ  
Bꢄ9  
ꢆ>0  
ꢉꢇ  
/,ꢀ  
ꢓꢂ.  
;ꢃꢆ  
ꢘ=ꢘꢇ>?  
ꢁ1ꢁ?F!ꢄG  
;ꢂ'  
,ꢓ0  
ꢇ>?  
@
@
6ꢁꢇ:ꢈꢓ9:ꢓꢘꢉ  
;ꢄꢀ  
;ꢀ&  
,ꢇ*.ꢄ.ꢃ  
9ꢇꢇ  
6ꢈꢇ#80ꢆꢈ0ꢓ  
9ꢇꢇ  
6  
ꢈꢀ  
ꢇ>?  
6ꢁꢇ:ꢓ0ꢘ0ꢉ  
6ꢆꢇ?  
ꢇ>ꢓ  
6  
ꢁ&  
6  
ꢈꢆꢇ?ꢁ  
6ꢓ@ꢂ  
ꢆ&  
6>60#ꢅ  
4ꢃ8ꢇ4ꢃ  
ꢆ&  
4ꢃꢆ8ꢇꢀ-;&ꢃ  
ꢀ'  
ꢉ,ꢅꢃ  
ꢉ,ꢅꢁ  
ꢓ0ꢘ0ꢉ  
ꢉ,ꢅꢂ  
/,ꢁ  
6ꢓ@ꢃ  
6ꢓ@ꢄ  
ꢀ4  
ꢀꢅ  
ꢀ.  
/ꢀ&ꢅ  
ꢇꢘ  
ꢓꢈ  
7ꢓ  
6ꢓ@ꢅ  
ꢕ(ꢖꢒꢋꢍ !#!ꢕꢌ ꢒ!ꢕꢊ ꢍ  
6ꢚꢓ  
6ꢚ7  
?
6  
ꢘꢈꢆ  
9ꢇꢇ  
4ꢃ8ꢇ&.  
ꢘꢇ>  
ꢘꢈꢆ  
4
.
6ꢓ@4  
ꢘ=ꢘꢇ>?  
ꢓ0*ꢓ0ꢘ8  
ꢈꢓ@ꢀ  
ꢈꢆꢇ?ꢀ  
ꢈꢓ@ꢂ  
ꢈꢆꢇ?ꢂ  
6ꢚꢓ  
9ꢇꢇ  
/,ꢂ 6ꢈꢇ#80ꢆꢈ0ꢓ  
/ꢀ&ꢁ  
ꢈ&  
4
.
'
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
&
4
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢘꢇ>  
ꢇꢂ'  
ꢓꢄ  
ꢃ4EF!ꢄG  
ꢈ-  
6ꢚꢓ  
6ꢚ7  
6ꢚꢓ  
6ꢚ7  
;ꢄꢆ 4ꢃ8ꢇ4ꢃ  
6ꢚ7  
ꢀ&  
ꢀ1ꢁ!ꢏ*F!ꢀ&9  
$6ꢇꢓꢚ*6ꢉ#.  
9ꢘꢘ  
/,ꢅ  
ꢘ$0$ꢓ  
ꢘ$0$7  
C?0=D  
Bꢀꢁ9  
,ꢓ0  
ꢇ>?  
@
6ꢈꢇ#80ꢆꢈ0ꢓ  
'
@
9ꢇꢇ  
.
;ꢄꢀꢆ  
Bꢀꢁ9  
ꢇ>ꢓ  
;ꢅꢇ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
ꢀ.  
ꢀ'  
ꢁ&  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢁ4  
ꢁ.  
ꢁ'  
ꢂ&  
ꢂꢀ  
ꢂꢁ  
ꢂꢂ  
ꢂꢃ  
ꢂꢄ  
ꢂꢅ  
ꢂ4  
ꢂ.  
ꢂ'  
ꢃ&  
ꢀ&  
0ꢈ<*ꢓ  
#ꢀꢁ9  
6ꢚ0ꢀ  
ꢓꢘ&&&&ꢄꢀꢃ  
ꢓꢂ'  
ꢃꢁꢁ!ꢀG  
4ꢃ8ꢇꢂꢁ  
ꢈꢓ@ꢁ  
#ꢄ9  
ꢘ8ꢈꢀ  
ꢓꢃ&  
ꢃꢁꢁ!ꢀG  
;ꢄ  
4ꢃ8ꢇ&.  
6ꢓ@'  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
'
.
,ꢓ0  
ꢇ>?  
@
@
ꢘ8ꢈꢀ  
Bꢄ9  
ꢓ0ꢘ0ꢉꢈꢓ9  
-  
ꢀꢁ  
ꢀꢂ  
ꢘ8ꢈꢆꢇ  
ꢘꢇ>  
ꢀꢀ  
ꢈꢘꢅ  
T8G ꢈꢘ4  
T96  
ꢇ>ꢓ  
;ꢅꢈ  
ꢈꢈ&&&&&.4  
4ꢃ8ꢇ4ꢃ  
7GV@  
4ꢃ8ꢇꢂꢁ  
7GV@  
6ꢇ&&&&ꢀ.ꢃ  
9ꢇꢇ  
/,ꢄ  
'
6ꢓ@ꢀ&  
6ꢓ@ꢀꢁ  
9ꢇꢇ  
.
;ꢄꢀꢇ  
6ꢈꢇ#80ꢆꢈ0ꢓ  
ꢀ&  
?
6  
;ꢂ  
/,ꢃ  
     !    !     !  #  (     
4ꢃ8ꢇ&.  
4ꢃ8ꢇꢂꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢘꢈꢀꢁ  
ꢀꢂ  
ꢇꢂ  
4
ꢀꢀ  
7ꢈ6  
ꢓ0ꢘ0ꢉ  
;ꢁ&ꢈ  
ꢓꢅꢀ  
ꢃ4EF!ꢄG  
6ꢇ&&&&ꢀ'ꢀ  
>ꢉꢇꢅ''ꢇꢘ.  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢖꢋꢍꢕ"  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
!ꢀD!ꢉ(ꢊꢕ!ꢕꢛ(ꢍꢐꢜꢋꢊꢛ!ꢊꢕ!)ꢖꢒ!,ꢇꢆ!&ꢄ.&ꢁ  
!ꢁD!ꢉ(ꢊꢕ!ꢕꢛ(ꢍꢐꢜꢋꢊꢛ!ꢊꢕ!)ꢖꢒ!,ꢇ !&ꢄ.&ꢀ  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
ꢂ$'ꢂ"  
7
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
 
!ꢖ)!  
'
,ꢇꢀ&ꢃꢇꢈ  
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
07270B DCN 6512  
D-21  
Download from Www.Somanuals.com. All Manuals Search And Download.  
/ꢀ&ꢀ&  
'!*0$ꢆ>0  
ꢓ<ꢀ  
ꢉ<ꢀ  
4
.
'
ꢓꢘ#-ꢈꢀ  
SYꢀs‚ꢁꢀ8‚€  
ꢓꢉꢘꢀ  
ꢇꢉꢘꢀ  
UYꢀs‚ꢁꢀ8‚€  
ꢈꢘꢁ  
ꢈꢘꢀ  
?
?
ꢉ9ꢀ  
ꢉ9!ꢆꢓꢓꢆ=  
ꢘ$ꢈꢆꢀꢄ>ꢇꢇ  
>0ꢈF!-ꢓF!ꢕꢐꢋ!ꢀꢁ&ꢅ  
>0ꢈF!ꢓ0ꢈ  
ꢓꢀꢀꢀ  
#ꢀꢄ9  
ꢓꢀꢀ  
ꢃ1'?F!ꢄG  
ꢓꢀꢁ  
ꢃ1'?F!ꢄG  
ꢀ&EF!ꢀG  
/ꢀ&ꢀꢂ  
/ꢀꢁ  
ꢈꢇ0!ꢕꢊ ꢍ!ꢖ)!ꢕ2ꢊꢋꢛ(!ꢊꢕ!ꢕꢊ ꢍ!ꢋꢖ2ꢜꢒ ꢕ!Jꢊꢗ!ꢀF  
4
.
'
 
ꢓ<&  
ꢓ<ꢈ  
ꢉ<ꢈ  
 
ꢓꢉꢘ&  
ꢉ<&  
ꢇꢉꢘ&  
-  
 
ꢓꢘ#-ꢈ&  
ꢓ<ꢀ  
ꢓꢉꢘ  
ꢇꢉꢘ  
 
ꢓꢉꢘꢀ  
ꢉ<ꢀ  
4
4
.
ꢇꢉꢘꢀ  
.
ꢀꢀ  
'
ꢓꢘ#-ꢈꢀ  
'
'$  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
9U@  
ꢀ&  
ꢀꢁ  
9ꢇꢇ  
ꢓꢁ  
ꢓꢀꢂ  
ꢓꢀꢃ  
ꢓꢀ  
ꢁ1ꢁ?F!ꢄG  
6>60#ꢀꢁ  
ꢘ7ꢀ&&ꢀ  
ꢘ7!ꢘ>6ꢈ0#ꢃ,ꢈꢉ  
ꢉ9!ꢆꢓꢓꢆ=  
ꢁ1ꢁ?F!ꢄG  
9ꢇꢇ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢓꢀ&  
ꢉ9ꢁ  
ꢘ$ꢈꢆꢀꢄ>ꢇꢇ  
ꢈꢘꢃ  
ꢈꢘꢂ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
Lꢀ  
Lꢁ  
Lꢂ  
>0ꢈF!ꢓ0ꢈ  
UYꢀs‚ꢁꢀ8‚€!  
>0ꢈF!-ꢓꢀ  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
SYꢀs‚ꢁꢀ8‚€!  
$ꢉꢅ  
$ꢉ4  
$ꢉ.  
$ꢉ'  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
ꢉ,ꢀꢂ ꢉ,ꢀꢃ  
ꢉ,ꢀꢄ ꢉ,ꢀꢅ ꢉ,ꢀ4 ꢉ,ꢀ.  
9ꢇꢇ  
Bꢀꢁ9 Bꢀꢁ9ꢓ0Bꢀꢄ9  
#ꢀꢄ9  
$ꢉꢀ  
$ꢉꢁ  
$ꢉꢂ  
$ꢉꢃ  
$ꢉꢄ  
$ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0 $ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
$ꢚ;ꢉ6-!8ꢚ>0  
/ꢀꢄ  
.
4
Bꢀꢁ9  
ꢉꢏꢐꢀꢑꢀꢄꢀꢒꢓꢔꢕꢆꢀꢖꢗ  
Bꢀꢁꢓ0ꢉ  
ꢈ-  
Bꢀꢄ9  
9ꢇꢇ  
#ꢀꢄ9  
ꢆ-  
Bꢄ9  
ꢆ-  
0-  
ꢇ8ꢆꢘ-  
'
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
ꢇꢁ  
ꢈꢀ  
ꢀ&  
ꢇꢀ  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
B
B
ꢈꢈ4ꢀ  
$ꢚ>0<#ꢀ&  
$
ꢓꢘꢂꢃ&ꢇꢉ  
ꢈ'  
ꢈꢀF!ꢈ'!I!ꢓꢂꢄ!ꢐꢏꢕꢋ!ꢑꢍ  
!2ꢊꢋ(ꢊꢗ!ꢀK!ꢖ)!/ꢀꢄ  
$
ꢓꢘꢂꢃ&ꢇꢉ!  
ꢓꢂꢄ  
ꢚꢉ!6ꢘꢉꢆ>>0ꢈ  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
!
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-22  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
 
!
"
#
$
%
6ꢘꢚ>ꢆꢉ0ꢈ!&#ꢁ&$ꢆ!ꢚ,ꢉ6ꢚꢆ>! ꢚꢆꢓꢈꢘ  
;ꢁ&  
ꢈꢆꢇ9  
6ꢚ7  
#
$
968W  
DPX  
%
ꢉ,ꢁꢅ  
W88  
!"  
U8!  
ꢈꢆꢇF!ꢀꢁ! 6ꢉ  
ꢇ $W  
4ꢃ8ꢇꢂꢁ  
;ꢁ&ꢇ  
;ꢂꢀ  
ꢇꢀ.  
#
"
!
 
$
9PVU WP6  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢘꢈꢆꢇꢆ  
ꢈ&  
ꢇ>?  
%
&
'
8T  
9DI  
BI9  
W88  
ꢆ>ꢚ-!9ꢚ>ꢉꢆ-0!I!ꢇ;ꢓꢓ0ꢉ!ꢚ;ꢉ,;ꢉꢘ  
(
ꢈ;ꢆ>!ꢈꢆꢇ!ꢆꢀ  
/ꢀ&ꢁ&  
ꢇ>?  
'
ꢅ $W  
/ꢀ'  
!
ꢇ $W  
ꢚ,ꢆꢃꢁ44;ꢆ  
*0! 0ꢆꢈ  
8GF WP7  
>ꢀ  
>ꢁ  
>ꢂ  
>ꢃ  
>ꢄ  
>ꢅ  
>4  
>ꢀꢄ  
 ꢂ  
,ꢚꢉF!ꢈ6-6ꢉꢆ>  
ꢇꢀ&  
;ꢂꢄꢆ  
 
!
"
#
$
%
&
'
;ꢂꢁ  
6  
9
8
7
6
XS968  
9
8
7
6
!!  
!#  
!  
"
B
#
 
"
$
&
4ꢃ8ꢇꢂꢁ  
ꢘꢚꢇ?0ꢉ!;ꢂꢀ  
X  
7  
6BI9  
!
#
%
'
 
"
$
&
ꢂB  
 
ꢓꢅꢃ ꢁꢁ  
 
#
%
'
!
 B  
!
ꢓꢘ&&&&ꢃꢁꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
!B  
"
    
 !  
 #  
 "  
6ꢈꢇ#.  
8T  
ꢈ&  
ꢇ>?  
;ꢂ&  
4ꢃ8ꢇꢄ4ꢃ  
T9D  
8GF  
T9P  
"B  
ꢉ9!ꢆꢓꢓꢆ=  
ꢉ9ꢃ  
 
ꢉ,ꢁ.  
ꢇꢀꢁ  
ꢅ $W  
*0! 0ꢆꢈ  
P8  
8GF  
    
/ꢁꢀ  
ꢉ0ꢓ$ >ꢚꢇ?#.  
!
#
%
'
 
"
$
&
!
#
%
'
 
ꢈ&  
!
"
#
$
%
&
'
(
 ( ꢇꢘꢈꢆꢇꢆ  
#
!
 
$
%
B
9  
9!  
9"  
9#  
9$  
9%  
9&  
9'  
R  
R!  
R"  
R#  
R$  
R%  
R&  
R'  
8T9686  
8T9687  
X!  
7!  
6BI9!  
"
$
&
ꢓꢀ'  
ꢓꢀ4  
ꢇꢁꢀ  
ꢀ&&&&!J*  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
 ' ꢇꢘꢓꢆ-0ꢀ  
&
;ꢂꢄ  
 & ꢇꢘꢈꢆꢇ  
W88  
"
#
ꢀ&EF!ꢀG  
ꢀ.14?  
6!  
 % ꢇꢘꢓꢆ-0ꢁ  
ꢚ,ꢆꢃꢁ44;ꢆ  
 $  
 #  
 "  
 !  
 $  
 ꢂ  
6ꢈꢇ#.  
ꢇ4  
968ꢂ  
968  
968!  
968"  
ST  
TC9I  
ꢉ9!ꢆꢓꢓꢆ=  
ꢉ9ꢂ  
ꢀ&&&&!J*  
/ꢁꢂ  
ꢇꢀꢄ  
ꢀ&&&&!J*  
 %  
(
!
#
%
'
 
"
$
&
W88  
W88  
!
#
%
'
 
ꢇꢀꢃ  
"
$
&
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9bꢂꢆꢆ&d  
ꢇꢁ&  
ꢀ&&&&!J*  
9BI9  
ꢈꢆꢇ!ꢓꢆ-0!I!ꢚ**ꢘ0ꢉ!,ꢓꢚ-ꢓꢆ$  
6ꢈꢇ#.  
ꢇꢃ  
ꢀ&&&&!J*  
ꢈꢆꢇꢀ  
TC968  
 (  
 '  
!ꢂ  
 &  
 ꢂ  
(
B
;ꢂꢄꢇ  
/ꢁꢃ  
6"  
X"  
7"  
ꢓꢅꢄ ꢁꢁ  
ꢇꢄ  
ꢀ&&&&!J*  
'
!
#
%
'
 
"
$
&
!
#
%
'
 
#
6BI9"  
"
$
&
ꢇ $W  
ꢉ,ꢁꢀꢉ,ꢄ.  
ꢉ,ꢂꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢚ,ꢆꢃꢁ44;ꢆ  
6ꢗꢕꢋꢜꢌꢌ!/ꢁꢃ!)ꢖꢒ  
!ꢃ#ꢁ&!ꢐꢆ!ꢖꢗ!ꢃꢋ(  
!ꢛ(ꢜꢗꢗꢍꢌ1  
ꢇꢀꢂ  
ꢀ&&&&!J*  
ꢚ,ꢆꢁꢁ44  
ꢓꢀꢄ ꢃ&?  
ꢇꢅ  
'
%
$
 !  
 "  
B
80ꢆꢈ0ꢓ#6ꢈꢇ.  
X#  
7#  
6BI9#  
ꢓꢁꢂ  
ꢓꢁꢁ  
ꢀ.14?  
ꢇꢀ'  
ꢀ&&&&!J*  
"
!
B
 #  
;ꢂꢄꢈ  
WS@A  
6ꢗꢕꢋꢜꢌꢌ!ꢓꢂꢅ!I  
!ꢓꢂ4!ꢊ)!ꢃ#ꢁ&!ꢐꢆ  
!ꢖꢗ!ꢃꢋ(!ꢛ(ꢜꢗꢗꢍꢌ  
!ꢗꢖꢋ!ꢏꢕꢍ 1  
ꢓꢂꢅ  
ꢓꢂ4  
&
&
 
&
#
ꢀ&EF!ꢀG  
;ꢁ'ꢆ  
6#  
#
ꢚ,ꢆꢃꢁ44;ꢆ  
ꢓꢘ&&&&ꢄꢀ&!  
ꢇꢄꢂ  
ꢓꢅꢂ  
ꢀ&EF!ꢀG  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢉ,ꢁ4  
W88  
/ꢁꢁ  
ꢇ.  
 
 
;ꢂꢂ  
ꢈꢆꢇꢂ9  
ꢈꢆꢇꢁ9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇ&9  
ꢅ $W  
ꢈꢆꢇF!ꢀꢁ! 6ꢉ  
ꢇ $W  
!
!
ꢇꢀ4  
#
"
!
 
$
%
&
'
"
9PVU WP6  
"
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢘꢈꢆꢇ  
ꢈ&  
#
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
8T  
9DI  
BI9  
W88  
#
ꢈ;ꢆ>!ꢈꢆꢇ!ꢆꢁ  
$
$
ꢇ>?  
%
8GF WP7  
%
ꢚ,ꢆꢃꢁ44;ꢆ  
,ꢚꢉF!ꢈ6-6ꢉꢆ>  
ꢈꢆꢇ!ꢁ  
ꢇ'  
&
;ꢂꢃ  
6  
&
;ꢂꢅꢆ  
!"  
!!  
!#  
!  
"
B
#
'
ꢘꢚꢇ?0ꢉ!;ꢂꢂ  
X  
7  
6BI9  
'
ꢓꢅꢅ  
ꢁꢁ  
 
(
(
!
 ꢂ  
 ꢂ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
$6ꢇꢓꢚ*6ꢉ#ꢀ&  
    
 !  
 #  
 "  
8T  
ꢈ&  
ꢇ>?  
ꢇꢀꢀ  
T9D  
8GF  
T9P  
ꢉ,ꢁ'  
ꢅ $W  
ꢚ,ꢆꢃꢁ44;ꢆ  
968"W  
968!W  
968 W  
968ꢂW  
;ꢂꢅ  
W88  
#
!
 
$
%
B
#
X!  
7!  
6BI9!  
ꢓꢀꢅ  
ꢀ.14?  
ꢓꢀ.  
$
%
B
#
&
&
"
ꢀ&EF!ꢀG  
;ꢁ'  
6!  
ꢚ,ꢆꢁꢁ44  
 $  
 ꢂ  
ST  
TC9I  
ꢘ8ꢈꢆꢇ  
 %  
(
W88  
W88  
ꢇꢀꢅ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢆꢇꢂ  
9BI9  
ꢈ4  
ꢚ,ꢆꢃꢁ44;ꢆ  
;ꢂꢅꢇ  
ꢈꢈ4ꢀ  
 (  
 '  
!ꢂ  
 &  
 ꢂ  
(
B
#
$
ꢓꢘꢂꢃ&ꢇꢉ  
ꢓꢘꢂꢃ&ꢇꢉ  
6"  
6#  
X"  
7"  
6BI9"  
ꢓꢅ4  
ꢁꢁ  
'
ꢈ.  
ꢉ,ꢂꢂ  
 !  
ꢚ,ꢆꢃꢁ44;ꢆ  
;ꢂꢅꢈ  
$
'
%
$
B
#
Uv‡yr  
Tv“r  
ꢀ.14?  
ꢓꢁ&  
X#  
7#  
6BI9#  
ꢓꢁꢀ  
ꢀ&EF!ꢀG  
 #  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢈ4!ꢜꢗ !ꢈ.  
&
 "  
$ꢏꢕꢋ!ꢑꢍ!ꢌꢖꢛꢜꢋꢍ  
2ꢊꢋ(ꢊꢗ!ꢀK!ꢖ)!;ꢂꢁ!I  
Iˆ€irꢁ  
ꢂ$'ꢂ"  
Sr‰v†v‚  
7
Pꢁphqꢀ7  
9h‡r)  
Avyr)  
  ꢅHh’ꢅ!ꢂꢂ(  
Turr‡ꢀ"ꢀꢀ‚sꢀ  
'
I)cQ87HBScꢂ$'ꢂ SEꢅ@ꢅ†rꢁvr†ꢀH‚‡urꢁi9hhqBr7’r)ꢁh‡v‚ꢀ$cT‚ˆꢁprcꢂ$'ꢂ iꢆqqi  
%
 
!
"
#
$
07270B DCN 6512  
D-23  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ꢇ84  
ꢇ8ꢅ  
ꢇ8ꢃ  
ꢇ8ꢂ  
ꢇ8ꢁ  
ꢇ8ꢀ  
ꢇ8ꢀꢃ  
ꢇ8ꢀꢂ  
ꢇ8ꢀꢁ  
ꢇ8ꢀꢀ  
ꢇ8'  
6ꢇ&&&&ꢀꢁ4  
ꢚ,ꢆꢁꢁ44;ꢆ  
ꢇ8.  
Bꢀꢄ9  
4
4
ꢓꢃꢂ  
ꢀ&&  
.
.
#ꢀꢄ9Bꢀꢄ9  
'
'
Bꢀꢄ9  
;ꢄꢂꢆ  
B
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢇꢃ&  
ꢇꢃꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢉꢗꢉꢘꢓꢙꢄꢖꢗꢒꢏꢚ  
ꢇꢄꢄ  
ꢉ,ꢀ  
ꢉ,ꢂ  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9ꢓ0* ꢆ-  
/ꢀꢀ&  
/ꢀ&'  
ꢓꢘ&&&&ꢁ.ꢁ  
ꢀ1&?  
;ꢄꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢁ  
ꢆꢈꢇ9ꢓ0*  
4
ꢓ4ꢅ  
ꢇ8ꢀ  
ꢇ8ꢁ  
ꢇ8ꢂ  
ꢇ8ꢃ  
ꢀ'  
ꢁ.  
B
#
6!ꢀ  
ꢚ;ꢉ  
B9ꢘꢘ  
#9ꢘꢘ  
-  
ꢓꢃꢄ!ꢊꢗ ꢏꢛꢍꢕ!ꢜꢗ  
!ꢖ))ꢕꢍꢋ!ꢊꢗ!ꢜꢗꢜꢌꢖM  
!ꢕꢊMꢗꢜꢌ!ꢋꢖ!Mꢊꢔꢍ!ꢜ  
!Nꢌꢊꢔꢍ!&N!)ꢖꢒ!ꢕꢍꢗꢕꢖꢒꢕ  
!2ꢊꢋ(!&!ꢖꢒ!ꢕꢌꢊM(ꢋꢌ%  
!ꢗꢍMꢜꢋꢊꢔꢍ!ꢖꢏꢋJꢏꢋ  
ꢁ&  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢀꢀ  
ꢀ&  
'
ꢀ$F!ꢀGF!ꢀꢁ&ꢅ!ꢇ86,  
ꢓꢃꢄ  
6!ꢁ  
ꢉꢇ4  
ꢇꢃꢁ &1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
6!ꢂ  
B
#
ꢚ,ꢆꢁꢁ44  
6!ꢃ  
;ꢄꢂ  
ꢁ4  
ꢀꢁ  
ꢉ0$,$;<  
6!ꢄ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢇꢃꢅ  
ꢇ8ꢅ  
ꢇ84  
ꢇ8.  
ꢇ8'  
ꢇꢃꢂ  
6!ꢅ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
9ꢇꢇ  
ꢚ,ꢆꢁꢁ44  
ꢇꢃꢃ  
;ꢄꢃ  
6!4  
9ꢇꢇ  
6!.  
Bꢀꢄ9  
ꢀꢂ  
ꢀ.  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
6!'  
9ꢓ0*  
 
 
0ꢀ  
ꢆꢂ  
#ꢀꢄ9  
;ꢄꢄ  
9ꢇꢇ  
1&ꢁꢁ!ꢏ*F!ꢄ&9  
ꢀ&&  
4
.
ꢀ.  
ꢇꢃꢄ  
B
6!ꢀ&  
6!ꢀꢀ  
6!ꢀꢁ  
6!ꢀꢂ  
6!ꢀꢃ  
6!ꢀꢄ  
6!ꢀꢅ  
ꢚ,!ꢚ;ꢉ  
ꢚ,#  
ꢇꢚ$,B  
ꢀ4  
ꢇ8ꢀꢀ  
ꢇ8ꢀꢁ  
ꢇ8ꢀꢂ  
ꢇ8ꢀꢃ  
ꢈ-ꢃꢃꢃꢈ=  
ꢓꢃꢅ  
ꢇꢚ$,#  
ꢀꢅ  
.
ꢀꢃ  
ꢀꢀ  
ꢘꢀ  
ꢘꢁ  
ꢘꢂ  
ꢘꢃ  
6  
6  
6  
6  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
9ꢇꢇ  
#9ꢘ  
-  
B9ꢘ  
ꢚ,B  
ꢆ-  
ꢀꢄ  
ꢀ1ꢀ?F!ꢄG  
ꢓꢃ4  
4
ꢀꢄ  
ꢀ&  
4
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
ꢄ96  
ꢀ&96  
-  
ꢀꢃ  
ꢆꢁ  
*ꢚ;ꢉ  
9ꢓ0*ꢇ>6,  
ꢓꢃ. ꢁ&&  
ꢈꢆꢇ$;<  
ꢆꢀ  
ꢀꢁ  
ꢆ&  
ꢀꢅ  
'
.
ꢇꢃ4  
9ꢇꢇ  
ꢀꢂ  
ꢆꢈꢅꢄꢁ?,  
ꢉ,ꢃ.  
Bꢀꢄ9  
ꢇꢄꢃ  
!$;<  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢀꢃ ꢀ&&?A.  
ꢀꢄ ꢀ&&?A.  
ꢓ44  
ꢓꢘ&&&&ꢁ.4  
#ꢀꢄ9  
ꢓꢃ4!ꢜꢗ !ꢓꢃ.!ꢒꢍ ꢏꢛꢍ!ꢋ(ꢍ!Mꢜꢊꢗ  
!)ꢖꢒ!ꢜꢗꢜꢌꢖM!ꢊꢗJꢏꢋꢕ!ꢑ%!ꢀGF!ꢕꢖ  
!ꢋ(ꢜꢋ!2ꢍ!ꢛꢜꢗ!ꢒꢍꢜ !ꢕꢌꢊM(ꢋꢌ%  
!ꢜꢑꢖꢔꢍ!)ꢏꢌꢌ!ꢕꢛꢜꢌꢍF!ꢋꢖ!Jꢒꢍꢔꢍꢗꢋ  
!ꢖꢔꢍꢒ)ꢌꢖ2!ꢖ)!ꢆꢈꢇ!ꢒꢍꢜ ꢊꢗM  
ꢀ1ꢁ!ꢏ*F!ꢅ1ꢂ9!ꢛꢍꢒꢜꢐꢊꢛ  
;ꢄꢅ  
#ꢀꢄ9  
B
ꢀ&1&?  
Bꢀꢄ9  
ꢇꢆꢀ.ꢄ  
ꢇꢃ.  
/6ꢉꢚ#ꢁ#ꢈꢇꢆꢄꢆ0#ꢃ1.$8L  
<ꢁ  
ꢓꢃ'  
ꢀ&&  
.
4
ꢇꢃ'  
 
 
 
96ꢀ  
,>ꢆꢇ0!ꢀ&&  
<ꢀ  
ꢓꢘ&&&&ꢃ&'  
!ꢚ8$  
Bꢀꢄ9  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢀꢀ  
ꢆꢘ4&#&&  
9ꢓ0*  
9ꢚ;ꢉ   
ꢇꢀ&ꢃ  
ꢇꢄ&  
!ꢓ0ꢘ6ꢘꢉꢚꢓ!ꢆꢘ  
!ꢇ>ꢚꢘ0!ꢆꢘ  
!,ꢚꢘꢘ6 >0!ꢉꢚ  
!<ꢀ!ꢆꢈ!<ꢁ  
ꢀ1&!ꢏ*F!ꢁꢄ9  
$
ꢀ&&8#ꢃ1.$8L  
ꢓ4.  
&1ꢀꢄ!ꢏ*  
ꢉꢓ6$ -  
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
.ꢃ1ꢄ?  
9ꢇꢇ  
9ꢚ>ꢉꢆ-0!ꢓ0*  
ꢉꢇꢅ  
6ꢇ&&&&ꢀꢄ.  
ꢈꢄ  
ꢈꢅ  
ꢈꢁ  
ꢓ4'  
B
ꢓ' ꢀ&&  
ꢁ&1&?  
;ꢅꢀꢆ  
#
ꢈꢈ&&&&&.ꢅ  
ꢓꢘ&&&&ꢁ4ꢄ  
ꢉ,ꢃ'  
>*ꢂꢄꢂ  
ꢇ8-ꢆ6ꢀ  
ꢇꢀ&ꢄ  
ꢉ,ꢄ4  
;ꢄ'ꢆ  
4ꢃ8ꢇꢂꢁ  
6ꢚ7  
ꢈꢈ&&&&&.ꢄ!  
ꢈꢀ&  
&1ꢀꢄ!ꢏ*  
;ꢄ.  
4ꢃ8ꢇꢄ4ꢃ  
#ꢀꢄ9  
ꢆꢘ4&#&ꢃ  
ꢘ8ꢈꢀ  
ꢚ0  
ꢇ>?  
9ꢇꢇ  
ꢉꢇ.  
ꢓ.&  
ꢀꢀ  
ꢀ4  
ꢀ&&?A.  
ꢈꢃ  
ꢈꢂ  
ꢈ4  
4
.
'
ꢂ'  
ꢁ&1&?  
ꢉ60  
ꢂ.  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
@ꢀ  
4
.
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
B
;ꢅꢀ  
#
ꢓꢈ$ =ꢉ0  
ꢉ60  
ꢂ4  
ꢀ.  
4
9ꢇꢇ  
ꢇꢄꢀ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
@ꢁ  
ꢉ60  
ꢂꢅ  
ꢓ.ꢀ  
ꢀ4  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀ4  
9ꢇꢇ  
@ꢂ  
-  
ꢉ60  
.ꢃ1ꢄ?  
ꢀꢅ  
;ꢄ4  
ꢂꢄ  
>*ꢂꢄꢂ  
ꢈꢀꢁ  
ꢆꢘ4&#&&  
@ꢃ  
4
*ꢓ0@  
ꢀꢄ  
ꢂꢃ  
ꢂꢂ  
ꢂꢁ  
ꢂꢀ  
ꢂ&  
ꢁ'  
@ꢄ  
ꢉ60  
ꢉ60  
ꢉ60  
ꢉ60  
ꢀꢃ  
@ꢅ  
ꢀꢂ  
ꢈ&  
ꢇꢄꢁ  
@4  
&
9ꢇꢇ6ꢚ  
-  
ꢓ.ꢁ  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢀꢁ  
ꢘ0>ꢅ&  
'
<ꢊꢌꢊꢗA!ꢇ,>ꢈ  
@.  
ꢉꢈ6  
ꢉ$ꢘ  
ꢉꢇ?  
ꢀ&1&?  
ꢉꢈꢚ  
ꢘ0>ꢅ&  
ꢘ0>ꢅ&  
ꢈ3&1145  
#ꢀꢄ9  
ꢉ,ꢄ&  
;ꢅ&  
ꢉ,ꢄꢀ  
ꢉ,ꢄꢁ  
ꢉ,ꢄꢂ  
ꢉ,ꢄꢃ  
ꢉ,ꢄꢄ  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢀ  
9*,ꢓꢚ-  
6ꢚ7  
ꢚ0  
ꢇ>?  
ꢈꢀ  
;ꢄ'  
4ꢃ8ꢇꢂꢁ  
6ꢚꢓ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢘꢆ  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
9*ꢓ0ꢆꢈ  
ꢘꢇ  
ꢘꢉꢆꢓꢉ  
$ꢘ  
$6ꢈ  
>ꢘ  
ꢉꢊꢋꢌꢍ  
ꢘꢛ(ꢍꢐꢜꢋꢊꢛ!)ꢖꢒ!0!ꢘꢍꢒꢊꢍꢕ!-ꢄ!$ꢖꢋ(ꢍꢒꢑꢖꢜꢒ !,ꢇꢆ!,!&ꢄ.&ꢁ  
ꢘꢊꢙꢍ  
ꢎꢏꢐꢑꢍꢒ  
&ꢄ.&ꢂ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
.
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!#!!!ꢖ)!  
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-24  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
Bꢀꢄ9  
Bꢄ9ꢆ  
;ꢁꢂ  
=,ꢆꢘꢘ!ꢇꢆ,ꢘ  
!$;ꢘꢉ! 0!76ꢉ86ꢁ  
!ꢀOꢁK!ꢚ*!ꢉ80  
!ꢓ0-;>ꢆꢉꢚꢓ  
!6,;ꢉOꢚ;ꢉ,;ꢉ  
!,6  
6ꢁ  
ꢚ;ꢉ  
Oꢚ**   
ꢇꢅ&  
B
ꢀ&!ꢏ*F!ꢂꢄ9F!ꢉꢆꢉꢆ>;$  
>,ꢁ'.ꢀ6$ꢄ  
ꢇꢁ'  
ꢀ!ꢏ*  
ꢈ3&1145  
ꢉ80ꢓ$6ꢘꢉ0ꢓ  
<ꢉꢀ  
9ꢇꢇ Bꢀꢄ9  
6ꢗꢕꢋꢜꢌꢌ!<ꢉꢀ!Cꢋ(ꢒꢖꢏM(!(ꢖꢌꢍD  
;ꢃ.  
Bꢄ9ꢆ  
!ꢚꢓ!<ꢉꢁ!Cꢘ$ꢈDF!  
$ꢆ<ꢂ.ꢁꢇ7ꢁ  
ꢏꢋ!ꢗꢖꢋ!ꢖꢋ(1  
'
ꢀꢃ  
ꢀꢄ  
<ꢉꢁ  
ꢉ0$,$;<  
ꢚ;ꢉ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢀ  
/ꢁ4  
B9ꢘꢘ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢀ  
-  
9#  
6!ꢀ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢁ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢂ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢃ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢄ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢅ  
ꢉ80ꢓ$6ꢘꢉ0ꢓ4  
ꢉ80ꢓ$6ꢘꢉ0ꢓ.  
ꢉ80ꢓ$6ꢘꢉ0ꢓ  
6!ꢁ  
6!ꢂ  
6!ꢃ  
6!ꢄ  
6!ꢅ  
6!4  
6!.  
4
.
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀ&  
0ꢁ  
ꢆ&  
9ꢂ  
9  
9!  
ꢀ4  
ꢀꢅ  
ꢀ.  
ꢆꢀ  
ꢆꢁ  
ꢘ8ꢈꢁ  
ꢓꢘ  
4
7ꢓ  
.
ꢉ80ꢓ$6ꢘꢉ0ꢓ.  
'
ꢉ80ꢓ$6ꢘꢉ0ꢓ4  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢅ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢄ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢃ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢂ  
ꢉ80ꢓ$6ꢘꢉ0ꢓꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢁ  
ꢀꢂ  
ꢉ0$,  
6ꢚ7  
ꢀꢀ  
;ꢄ'ꢈ  
ꢓ4ꢄ  
ꢓ4ꢃ  
ꢓ4ꢂ  
ꢓ4ꢁ  
ꢓ4ꢀ  
ꢓ4&  
ꢓꢅ'  
ꢓꢅ.  
ꢓꢘ&&&&ꢁ.4  
ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG ꢀ&?!ꢀG  
4ꢃ8ꢇꢂꢁ  
$6ꢇꢓꢚ*6ꢉ#ꢀꢃ  
Bꢀꢄ9#ꢀꢄ9  
;ꢃ'  
ꢀ. ꢀ?Aꢃ  
ꢀꢄ  
ꢀ&  
4
.
4
968ꢂW  
968 W  
968!W  
968"W  
ꢈꢆꢇ$;<  
ꢇꢂꢅ &1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢈꢀ  
ꢘꢀ  
ꢘꢁ  
ꢈꢆꢇ&9  
ꢈꢆꢇꢀ9  
ꢈꢆꢇꢁ9  
ꢈꢆꢇꢂ9  
ꢀꢃ  
ꢀꢀ  
ꢈꢁ  
ꢈꢂ  
ꢘꢂ  
ꢀ&?  
ꢈꢃ  
ꢘꢃ  
ꢓꢂꢃ  
ꢀꢁ  
4
.
9ꢇꢇ  
9ꢇꢇ  
#9ꢘ  
-  
B9ꢘ  
6  
6  
6  
6  
ꢈꢆꢇ&  
ꢈꢆꢇꢀ  
ꢈꢆꢇꢁ  
ꢈꢆꢇꢂ  
ꢀꢅ  
'
ꢀꢂ  
.
ꢇꢂ4  
&1ꢀꢄ!ꢏ*F!ꢛꢍꢒꢜꢐꢊꢛ  
ꢁꢀ ꢀ&?Aꢃ  
ꢈ-ꢃꢃꢃꢈ=  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
$
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
07270B DCN 6512  
D-25  
Download from Www.Somanuals.com. All Manuals Search And Download.  
ꢀꢓꢗꢚꢆꢓꢘꢄꢖꢗꢒꢏꢚ  
9ꢇꢇ  
 
ꢃ4&A.  
ꢉ,4  
 
ꢀꢄ?A.  
;ꢀꢀ  
;ꢀꢁ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀ'  
-ꢀ  
-ꢁ  
ꢈ6-6ꢚ&  
6ꢚꢓ  
/ꢀ&&ꢃ  
ꢀꢅ  
4
.
'
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
ꢀꢀ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
>ꢀ'  
>ꢁ&  
>ꢁꢀ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
@YU@SI6G  
8PIUSPG  
*0! 0ꢆꢈ  
>.  
>ꢁꢁ  
DI  
6
4
ꢀꢀ  
ꢀ&  
4
4ꢃ8ꢇꢄꢃꢀ  
.
ꢈ3&1145  
'
.
'
ꢀ&  
>'  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀ&  
ꢀ&&&&!J*  
0<ꢉBꢄ9ꢚ;ꢉ  
ꢀ&&&&!J*  
ꢓꢁ4 ꢓꢁ. ꢓꢁ'  
ꢀ&& ꢀ&& ꢀ&&  
ꢓꢂꢀ ꢓꢂꢁ ꢓꢂꢂ  
ꢀ&& ꢀ&& ꢀ&&  
ꢓꢁꢅ  
ꢓꢂ&  
ꢀ&&  
ꢀ&&  
ꢂꢂ&!J*F!ꢄ&9  
ꢂꢂ&!J*F!ꢄ&9  
ꢂꢂ&!J*F!ꢄ&9  
;ꢀꢂ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢂꢂ&!J*F!ꢄ&9  
ꢀꢅ  
>ꢁꢂ  
ꢀꢄ  
ꢀꢃ  
>ꢁꢃ  
>ꢁꢅ  
ꢀꢂ  
ꢀꢁ  
>ꢁꢄ  
*0! 0ꢆꢈ  
,ꢌꢜꢛꢍ!ꢋ(ꢍꢕꢍ!ꢋꢍꢒꢐꢊꢗꢜꢋꢊꢖꢗ!ꢒꢍꢕꢊꢕꢋꢖꢒꢕ!ꢜꢋ!ꢋ(ꢍ!ꢍꢗ !ꢖ)!ꢍꢜꢛ(! ꢜꢋꢜ  
!ꢌꢊꢗꢍ1!!0ꢜꢛ(! ꢜꢋꢜ!ꢌꢊꢗꢍ!  
ꢕ(ꢖꢏꢌ !ꢍ!ꢌꢜꢊ !ꢖꢏꢋ!ꢜꢕ!ꢜ! ꢜꢊꢕ%#ꢛ(ꢜꢊꢗF!ꢋ(ꢍ!ꢕꢊMꢗꢜꢌ!JꢜꢕꢕꢊꢗM  
!)ꢒꢖꢐ!ꢖꢗꢍ!6ꢇ!ꢋꢖ!ꢋ(ꢍ!ꢗꢍAꢋ1  
4
ꢀꢀ  
ꢀ&  
.
'
ꢀ&&&&!J*  
9ꢇꢇ  
ꢀ&&&&!J*  
 
ꢀꢄ?A.  
;ꢀꢃ  
 
ꢀ'  
-ꢀ  
-ꢁ  
ꢈ6-6ꢚꢃ  
6ꢚꢓ  
ꢂꢂ&Aꢃ  
4
.
'
ꢀ. ꢈ&  
ꢀ4 ꢈꢀ  
ꢀꢅ ꢈꢁ  
ꢀꢄ ꢈꢂ  
ꢀꢃ ꢈꢃ  
ꢀꢂ ꢈꢄ  
ꢀꢁ ꢈꢅ  
ꢀꢀ ꢈ4  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆ4  
ꢆ.  
=ꢀ  
=ꢁ  
=ꢂ  
=ꢃ  
=ꢄ  
=ꢅ  
=4  
=.  
;ꢀꢄ  
,ꢘꢁ4&ꢁ#ꢃ  
/ꢀ&&ꢅ  
ꢀꢅ  
@YU@SI6G  
>ꢁ.  
>ꢁ'  
>ꢂ&  
>ꢁ4  
ꢀꢄ  
ꢀꢃ  
8PIUSPG  
DI  
7
ꢈ3&1145  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢄꢃꢀ  
4
>ꢀꢀ  
*0! 0ꢆꢈ  
ꢀ&&&&!J*  
.
>ꢀ&  
4
ꢀꢀ  
ꢀ&  
'
ꢀ&  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀ&  
.
'
0<ꢉBꢄ9ꢚ;ꢉ  
ꢉꢊꢋꢌꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢘꢊꢙꢍ  
ꢎꢏꢐꢑꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢀ&&&&!J*  
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
%
!ꢖ)!  
'
ꢎ"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢑꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀꢑ1  ꢑ  
D-26  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
9ꢇꢇ  
ꢑꢖꢙꢖꢚꢉꢘꢄꢄꢓꢏꢚꢒꢏꢚ  
ꢀ&  
ꢃ4&A.  
ꢇ.&  
;ꢁꢁ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢇ.ꢁ  
ꢀ&&&&!*  
ꢉ,ꢀ'  
ꢇ4'  
ꢇ.ꢀ  
TC9I  
ꢀꢄ  
ꢀꢃ  
ꢘ8ꢈꢀ  
;ꢁꢃ  
ꢀ&&&&!*  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢀ  
ꢀꢂ  
ꢀꢁ  
ꢈ6-6ꢚꢁ  
ꢚ0  
ꢇ>?  
>ꢃꢂ  
;ꢅ  
DPX  
>ꢃꢃ  
>ꢃꢄ  
9ꢂ  
9  
9!  
9"  
9#  
9$  
9%  
9&  
4
.
'
ꢀ'  
4
ꢀꢀ  
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢂꢁ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
*0! 0ꢆꢈ  
>ꢃꢅ  
.
'
/ꢀ&ꢀ4  
ꢉꢄ ꢚꢉꢚꢏ ꢄꢓꢏꢚꢒꢏꢚ  
;ꢁꢄ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
>ꢃ.  
>ꢃ'  
>ꢄ&  
ꢈ3&1145  
ꢀꢄ  
ꢀꢃ  
4
.
*0! 0ꢆꢈ  
'
>ꢃ4  
ꢀꢂ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
4
ꢀꢀ  
ꢀ&  
ꢇ.ꢃ  
ꢇ.ꢅ  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢁ  
ꢀ&&&&!*  
>ꢀꢁ  
.
'
ꢇ.ꢂ  
ꢇ.ꢄ  
*0! 0ꢆꢈ  
ꢇꢁꢅ  
ꢇꢁ4  
ꢀ&&&&!*  
ꢓ0ꢘ0ꢉꢉꢆ >0!*;ꢘ0F!&1ꢂꢆF!ꢅ&9  
*ꢀ  
ꢈꢅ  
>ꢀꢂ  
*0! 0ꢆꢈ  
0<ꢉBꢄ9ꢚ;ꢉ  
9ꢇꢇ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢏꢐꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
&
!ꢖ)!  
'
"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀ1  ꢂ  
07270B DCN 6512  
D-27  
Download from Www.Somanuals.com. All Manuals Search And Download.  
9ꢇꢇ  
ꢑꢖꢙꢖꢚꢉꢘꢄꢄꢓꢏꢚꢒꢏꢚ  
4  
ꢄꢀ&A.  
;ꢀꢅ  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢘ8ꢈꢀ  
ꢘ8ꢈꢀ  
;ꢀ4  
ꢀ&&&&!*  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢄ  
ꢀꢃ  
'
ꢈ6-6ꢚ&  
ꢚ0  
ꢇ>?  
.
ꢀꢀ  
;ꢄ'ꢇ  
ꢀ&&&&!*  
6ꢚ7  
ꢀ&  
ꢀꢂ  
ꢀꢁ  
>ꢂꢁ  
>ꢂꢂ  
>ꢂꢃ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4ꢃ8ꢇꢂꢁ  
4
ꢀꢀ  
ꢀ&  
*0! 0ꢆꢈ  
>ꢂꢀ  
.
'
/ꢀ&&.  
;ꢀ.  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢈ3&1145  
>ꢂꢅ  
>ꢂ4  
>ꢂ.  
ꢀꢓꢗꢚꢆꢓꢘꢄꢓꢏꢚꢒꢏꢚ  
ꢀꢄ  
ꢀꢃ  
4
.
*0! 0ꢆꢈ  
'
>ꢂꢄ  
ꢀꢂ  
ꢀꢁ  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
4
ꢀꢀ  
ꢀ&  
ꢇꢚ0<ꢉꢓ0ꢉ  
.
'
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢃ  
*0! 0ꢆꢈ  
>ꢄ'  
9ꢇꢇ  
ꢕꢐꢚꢕꢆꢗꢉꢘꢄꢀꢓꢗꢗꢕꢀꢚꢓꢆ  
ꢓꢘꢑꢕꢆꢄ ꢖꢑꢕ  
ꢀ&&&&!*  
 
ꢄꢀ&A.  
ꢀ&&&&!*  
ꢀ&&&&!*  
;ꢀ'  
,ꢘꢁ4&ꢁ#ꢃ  
ꢀꢅ  
ꢘ8ꢈꢀ  
ꢀꢄ  
ꢀꢃ  
;ꢁꢀ  
4ꢃ8ꢇꢄ4ꢃ  
ꢀꢂ  
ꢀꢁ  
ꢈ6-6ꢚꢃ  
6ꢚ7  
ꢚ0  
ꢇ>?  
>ꢃ&  
>ꢃꢀ  
>ꢃꢁ  
ꢀꢀ  
;ꢁ&ꢆ  
ꢈ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
4
.
'
ꢀ'  
ꢀ.  
ꢀ4  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢁ  
4
ꢀꢀ  
ꢀ&  
ꢈꢀ  
ꢈꢁ  
ꢈꢂ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢈ4  
ꢈ.  
@ꢀ  
@ꢁ  
@ꢂ  
@ꢃ  
@ꢄ  
@ꢅ  
@4  
@.  
4ꢃ8ꢇꢂꢁ  
*0! 0ꢆꢈ  
>ꢂ'  
.
'
ꢀ&&&&!*  
Bꢀꢁ9  
ꢈꢁ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
?ꢀ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
ꢀ&&&&!*  
/ꢀ&&'  
@ꢀ  
ꢓꢄ.  
Bꢀꢁ9  
ꢈꢂ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
ꢁ1ꢁ?F!ꢄG  
?ꢁ  
@YU@SIG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢁ  
S@SꢀQI@G  
GSHꢀPVUQVUT  
4
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
.
?ꢂ  
'
ꢓꢅ  
Bꢀꢁ9  
ꢀ&  
ꢀꢀ  
ꢀꢁ  
ꢈꢃ  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢂ  
ꢉ0ꢓ$ >ꢚꢇ?#ꢀꢁ  
Bꢀꢁ9  
ꢈꢄ  
ꢓ0>ꢆ=!ꢘ,ꢈꢉ  
?ꢃ  
ꢓ4  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
ꢈ6ꢚꢈ0F!ꢘꢇ8ꢚꢉꢉ?=  
@ꢃ  
ꢓ.  
ꢉꢊꢋꢌꢍ  
ꢘꢊꢙꢍ  
ꢁ1ꢁ?F!ꢄG  
ꢘꢚꢁꢁꢁꢁ  
Tpur€h‡vpꢀs‚ꢁꢀ@ꢀTrꢁvr†ꢀB$ꢀH‚‡urꢁi‚hꢁqꢀQ86ꢀQIꢀꢂ$'ꢂ!  
ꢏꢐꢍꢒ  
ꢓꢍꢔꢊꢕꢊꢖꢗ  
7
Bꢀꢁ9ꢓ0ꢉ  
ꢂ$'ꢂ"  
ꢚꢒꢛꢜ !  
ꢈꢜꢋꢍ"  
*ꢊꢌꢍ"  
ꢀꢀ#$ꢜ%#ꢁ&&'  
ꢘ(ꢍꢍꢋ!!!  
'
!ꢖ)!  
'
"+,ꢇ $-ꢓ+&ꢄ.&ꢀꢓ/#0#ꢕꢍꢒꢊꢍꢕ!$ꢖꢋ(ꢍꢒꢖꢜ !-2!ꢍꢒ%ꢋ"ꢖꢗ!ꢄ+ꢘꢖꢏꢒꢛꢍ+&ꢄ.&ꢀ1  ꢃ  
D-28  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
M
T
1
M
T
2
M
T
3
M
T
4
M
T
5
M
T
6
M
T
7
M
T
8
M
T
9
S
D
A
S
D
A
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
C
H
A
S
S
I
S
T
P
1
T
P
2
J
1
J
1
4
+
5
V
A
B
C
A
B
C
D
T
P
3
T
P
4
1
0
9
8
7
6
5
4
3
2
1
1
0
9
8
7
6
5
4
3
2
1
3
.
3
V
F
B
1
+
5
V
F
B
1
6
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
S
C
L
S
C
L
F
B
2
F
B
1
7
R
6
R
1
R
2
R
3
R
4
R
5
0
0
3
9
3
0
0
1
0
0
0
0
3
9
3
0
0
1
0
0
1
D
0
i
K
1
U
0
/
K
D
1
L
0
K
1
a
0
H
K
S
1
a
0
V
K
1
M
0
o
K
d
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
t
h
B
/
R
y
n
c
s
y
n
c
e
5
V
-
G
N
D
J
2
5
V
-
G
N
D
5
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
5
5
2
1
B
k
l
g
h
t
+
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
F
B
3
B
k
l
g
h
t
-
i
B
a
c
k
L
i
g
h
t
D
R
N
r
i
4
I
v
e
6
R
4
7
R
N
4
I
8
0
J
7
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
V
c
o
m
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
2
a
a
a
G
G
G
2
4
6
a
G
G
G
3
5
7
C
1
M
o
d
e
4
6
8
0
2
4
6
8
0
2
4
6
8
0
a
a
2
3
2
1
u
6
F
B
/
6
.
2
3
V
C
2
a
a
a
D
a
t
a
E
n
a
b
l
e
3
.
3
V
J
M
K
J
2
6
K
L
0
.
0
0
2
2
V
s
S
y
y
n
c
+
5
V
J
P
2
C
A
_
1
1
2
H
n
c
I
n
t
e
0
1
r
n
a
l
D
i
t
h
e
r
i
n
g
1
1
1
1
1
2
2
2
2
2
3
a R  
a R  
a R  
2
4
6
a R  
a R  
a R  
3
5
7
a
B
B
B
B
B
B
7
1
3
E
n
=
a
b
l
e
J
3
1
a B  
a B  
a B  
a B  
a B  
a B  
7
6
5
4
3
2
2
5
8
1
4
7
a
a
a
a
a
6
5
4
3
2
D
i
=
s
a
b
l
e
3
5
7
9
1
3
5
7
9
1
N
I
F
B
4
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
6
S
U
c
a
n
D
L
i
r
e
c
t
i
o
n
a B  
a B  
a B  
2
4
6
a B  
a B  
a B  
3
5
7
5
V
-
G
N
D
/
D
/
R
S
c
a
n
D
i
r
.
0
U
D
U
D
D
,
L
R
1
J
8
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
7
9
1
0
1
U
,
R
L
L
0
0
1
a
a
B
B
1
N
I
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
D
,
,
R
0
G
G
G
0
2
4
G
G
G
1
3
5
a
D
C
L
K
a
G
G
G
G
G
G
7
6
5
4
3
2
U
L
R
a G  
a G  
a G  
a G  
a G  
a G  
7
6
5
4
3
2
a
a
a
a
a
1
1
0
2
1
1
1
D
E
N
(
1
=
H
,
0
L
)
=
1
1
1
1
1
1
2
2
2
2
2
3
R
2
1
D
e
f
a
u
l
t
:
R
2
1
B
R 0  
R 2  
R 4  
R 1  
R 3  
R 5  
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
B
3
0
B
-
P
H
D
S
S
(
L
F
)
(
S
N
)
1
3
5
7
9
1
3
5
7
9
1
1
3
5
j
u
m
p
e
r
B 5  
B 4  
B 3  
a
a
G
G
1
M
o
d
e
1
1
6
8
0
B 0  
B 2  
B 4  
B 1  
B 3  
B 5  
B
A
C
K
L
a
R
R
R
R
R
R
7
6
5
4
3
2
b
D
C
L
K
a R  
a R  
a R  
a R  
a R  
a R  
7
6
5
4
3
2
C
3
a
a
a
a
a
2
1
2
u
F
B
/
6
.
3
V
C
4
B 2  
B 1  
B 0  
6
X
3
J
u
m
p
e
r
J
M
K
3
6
J
2
2
6
K
L
0
A
.
0
_
0
2
2
D
E
N
C
1
1
2
0
R
2
8
C
5
G
G
G
5
4
3
2
2
u
F
/
J
6
2
.
3
V
C
6
a
R
1
0
B
3
0
B
-
P
H
D
S
S
(
L
F
)
(
S
N
)
J
M
K
3
1
6
B
2
6
K
L
0
.
0
0
2
2
1
a
R
C
A
_
1
2
G
G
G
2
1
0
3
.
3
V
5
V
-
G
N
D
L
U
/
R
D
/
V
g
h
R 5  
R 4  
R 3  
R
7
V
g
d
l
1
0
0
K
A
V
d
J
P
3
a
R
e
s
e
t
1
3
C
7
V
c
o
m
2
R 2  
R 1  
R 0  
1
J
.
1
0
0
D
i
t
h
B
G
M
K
1
0
7
B
5
K
A
4
6
5
8
1
L
/
R
7
9
4
4
1
2
G
M
8
0
0
4
8
0
X
C
-
7
0
-
T
6
T
X
2
9
N
-
L
2
W
U
/
D
L
5
8
-
0
5
2
1
1
0
2
1
C
L
5
8
6
-
0
5
2
7
-
7
4
X
3
J
u
m
p
e
r
Make  
FEM A  
Model  
GM800480W  
FG0700A0DSWBG01 3-2, 6-5, 9-8, 12-11, 15-14, 18-17  
JP2  
JP3  
D
1-2, 4-5, 7-8, 10-11, 13-14, 16-17  
1-2, 4-5, 7-8, 10-11  
2-3, 5-6, 8-9, 11-12  
2-3, 5-6, 8-9, 11-12  
T
i
t
l
e
Dat a Image  
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
United Radiant Tech. UMSH-8173MD-1T  
2-3, 4/5/6 NC, 7/8/9 NC, 10-11, 13-14, 16/ 17/18 NC  
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
1
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
1
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
07270B DCN 6512  
D-29  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
A
B
C
D
A
B
C
T
P
5
A
V
d
d
:
+
1
0
.
4
V
R
8
R
9
T
P
6
3
0
9
K
C
8
0
.
0
0
1
4
8
7
K
C
D
2
1
4
A
-
B
1
4
0
L
F
D
1
+
5
V
A
V
d
d
D
2
L
1
3
.
3
V
L
2
B
k
l
g
h
h
t
t
+
-
2
1
2
2
u
H
K
A
C
1
1
3
.
9
u
H
C
9
C
1
u
0
F
R
8
1
1
T
P
7
2
2
6
u
F
/
6
.
3
V
M
B
R
M
1
2
0
L
T
1
G
R
1
K
0
C
1
2
4
.
7
u
F
/
1
6
V
T
P
8
4
.
7
/
1
6
V
C
1
4
G
M
K
1
0
7
B
J
1
0
5
K
A
J
M
K
3
1
B
J
2
2
6
K
L
0
6
K
C
1
3
T
M
K
3
2
5
B
J
2
2
6
M
M
V
g
l
:
-
7
V
U
1
1
0
1
.
0
2
4
p
f
2
2
u
f
/
2
5
V
5
4
1
3
G
M
K
1
0
7
B
J
1
0
5
K
A
C
1
5
V
i
n
S
W
1
.
0
R
1
2
V
g
l
S
H
D
N
F
B
B
k
l
g
D
B
3
A
1
K
R
6
1
3
R
2
1
4
T
5
4
S
9
C
1
6
9
.
7
.
0
S
U
P
R
1
5
1
2
2
1
8
1
0
9
7
8
3
2
5
V
-
G
N
D
D
R
V
N
1
0
0
K
1
1
1
1
1
1
2
0
.
3
3
F
B
F
B
N
D
4
C
1
7
R
1
4
6
K
7
C
A
T
4
1
3
9
T
D
-
G
T
3
U
2
D
R
V
P
B
A
T
5
4
S
F
D
V
3
0
5
N
C
1
8
4
6
0
.
3
3
1
R
E
F
0
.
3
3
G
Q
1
T
P
S
6
5
1
5
0
P
W
P
6
2
5
0
3
C
P
I
G
N
D
?
F
B
P
P
G
N
D
D
R
8
1
0
7
6
V
G
H
R
1
.
8
6
K
3
.
3
V
P
G
N
8
0
K
5
V
-
G
N
D
V
C
O
M
C
0
1
.
9
1
2
C
T
R
L
3
3
G
D
R
6
1
6
9
.
C
O
M
P
5
K
C
2
0
T
P
9
+
5
V
0
.
2
2
0
2
5
H
T
S
N
K
V
g
h
:
+
1
6
V
B
A
C
K
L
C
2
1
4
7
0
p
f
3
.
3
V
V
g
h
R
2
7
C
3
5
C
2
6
C
2
3
C
2
4
C
2
5
j
D
u
m
p
a
e
u
r
T
P
1
0
R
2
3
C
2
2
e
f
l
t
:
R
2
7
B
0
.
1
3
3
K
2
4
p
f
4
3
p
f
4
3
p
f
4
3
p
f
0
.
1
V
c
o
m
:
+
4
V
R
3
1
R
2
4
R
1
2
0
5
K
R
0
2
K
6
5
V
-
G
N
D
A
B
V
c
o
m
+
5
V
1
0
K
1
3
.
3
V
U
3
C
2
7
1
0
K
D
e
f
a
u
l
t
:
R
3
1
B
1
.
0
G
M
K
1
0
7
B
J
1
0
5
K
A
1
2
3
4
5
6
7
9
1
1
1
D
e
f
a
u
l
t
:
N
I
A
O
P
P
0
1
2
3
4
5
6
7
A
1
R
2
2
j
u
m
p
e
r
A
2
P
P
P
P
P
P
B
a
c
k
l
l
i
g
h
t
e
P
B
r
i
g
h
t
n
e
s
2
s
2
C
o
n
t
R
r
o
2
l
7
A
B
B
1
1
4
5
S
S
C
D
L
A
S
S
C
D
L
A
0
M
a
i
n
_
t
_
S
S
W
S
1
R
R
N
N
3
1
O
O
C
o
n
t
r
o
M
o
d
1
L
a
n
g
e
l
e
c
t
2
S
2
R
e
m
o
t
e
V
i
d
e
o
o
r
t
N
O
S
W
_
4
6
1
3
R
e
m
o
r
t
e
I
2
C
f
Y
E
S
O
p
t
.
M
a
i
n
S
w
I
N
T
S
W
_
4
6
P
C
F
8
5
7
4
O
p
t
.
L
a
n
g
.
S
w
.
F
i
x
e
d
B
i
g
h
t
(
d
e
a
u
l
t
)
N
O
B
5
V
-
G
N
D
5
V
-
G
N
D
D
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
2
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
2
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
D-30  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
+
5
V
U
S
B
-
B
-
M
I
N
I
6
U
S
B
3
.
3
V
3
.
3
V
3
.
3
V
-
R
E
G
O
J
9
1
4
8
6
A
B
C
A
B
C
D
U
T
I
N
J
P
4
S
H
T
D
N
C
H
A
S
S
I
S
B
P
C
2
8
1
u
F
C
2
9
U
4
4
7
0
p
f
D
_
N
P
C
3
0
5
V
-
G
N
D
1
u
F
D
_
F
B
1
3
J
P
5
J
1
0
C
3
8
R
3
4
5
V
-
G
N
D
G
N
D
R
T
1
0
0
K
1
Y
E
L
U
S
B
3
.
3
V
1
u
F
R
L
2
3
4
5
S
D
C
3
7
0
.
0
1
u
F
1
K
D
S
1
L
L
5
V
-
G
N
D
L
T
R
2
9
R
3
5
U
5
R
3
0
1
0
0
K
T
o
n
e
w
T
S
c
r
e
e
n
1
0
0
K
4
1
S
C
L
+
V
E
7
0
5
5
3
-
0
0
4
S
C
L
2
4
M
H
Z
S
D
A
3
2
S
D
A
O
U
T
-
V
U
S
B
3
.
3
V
J
1
1
F
B
7
5
V
-
G
N
D
5
V
-
G
N
D
L
L
N
I
R
3
2
1
2
3
4
5
R
L
C
H
A
S
S
I
S
5
V
-
G
N
D
U
S
B
3
.
3
V
4
3
2
1
S
D
G
N
+
-
D
1
8
7
6
5
R
T
C
3
1
D
D
2
3
4
L
T
U
S
B
-
A
_
R
/
A
0
.
1
u
F
J
4
+
5
V
R
3
9
R
3
3
5
V
-
G
N
D
1
0
0
K
T
o
o
l
d
T
S
c
r
e
e
n
1
0
0
K
U
7
F
1
7
0
5
5
3
-
0
0
4
R
4
5
5
V
-
G
N
D
J
1
2
+
5
V
N
I
+
5
V
F
B
8
0
.
5
A
/
6
V
T
A
S
1
H
A
R
C
-
1
2
C
R
2
0
0
.
1
C
3
9
C
4
0
5
V
-
G
N
D
0
.
1
u
F
4
9
.
9
3
7
B
U
S
+
5
G
N
D
0
.
1
B
A
C
H
S
C
H
A
S
S
I
S
C
5
9
5
V
-
G
N
D
5
V
-
G
N
D
F
B
5
1
8
2
2
3
3
3
3
3
3
3
8
9
0
1
2
3
4
5
6
P
W
R
3
2
2
S
U
S
/
R
0
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
V
B
U
S
C
H
S
O
C
S
5
V
-
G
N
D
U
S
B
3
.
3
V
+
3
.
3
V
C
4
1
P
W
R
F
B
9
C
3
2
F
U
U
X
S
B
B
-
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
4
3
2
1
3
.
3
V
C
R
G
N
D
1
u
0
.
1
S
+
2
U
8
1
1
2
3
4
8
+
1
.
8
V
D
+
-
T
L
7
6
5
U
S
B
2
5
4
-
A
E
Z
G
O
C
S
1
D
U
J
S
B
-
A
_
V
E
R
T
C
L
K
-
I
N
U
S
B
3
.
3
V
P
W
R
1
+
5
V
5
C
H
A
S
S
I
S
1
.
8
V
P
L
L
R
3
6
T
E
S
3
T
R
B
I
3
A
S
U
9
+
3
.
V
C
6
0
u
1
2
K
+
3
.
P
L
L
F
2
0
.
1
F
C
3
3
C
3
4
+
5
V
+
5
V
0
.
1
u
F
0
.
1
F
B
1
0
0
.
5
A
/
6
V
5
V
-
G
N
D
5
V
-
G
N
D
C
4
2
5
V
-
G
N
D
0
.
1
u
F
D
D
1
_
N
P
C
H
A
S
S
I
S
1
_
D
D
D
D
D
D
4
_
_
_
_
_
_
P
4
3
3
2
2
N
P
5
V
-
G
N
D
1
K
5
V
-
G
N
D
F
B
1
1
N
P
4
3
2
1
C
4
3
C
4
F
4
G
N
D
R
3
8
1
2
3
4
8
7
6
5
D
S
2
0
.
1
u
F
D
+
-
1
u
N
D
G
R
N
U
S
B
-
A
_
V
E
R
T
R
3
7
5
V
-
G
N
D
+
5
V
J
6
1
0
0
K
U
S
B
3
.
3
V
5
V
-
G
N
D
U
1
1
C
3
6
5
V
-
G
N
D
0
.
1
u
F
F
3
+
5
V
5
V
-
G
N
D
F
B
1
2
0
.
5
A
/
6
V
5
V
-
G
N
D
5
V
-
G
N
D
C
4
5
0
.
1
u
F
5
V
-
G
N
D
C
o
d
n
e
u
f
i
g
u
r
a
t
i
o
n
3
S
e
l
e
c
t
M
o
a
R
2
A
B
R
4
5
D
e
f
l
t
A
B
B
D
M
B
U
1
S
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
I
n
s
t
a
l
l
0
0
K
f
o
r
A
,
O
0
h
m
f
o
r
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
3
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
3
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
07270B DCN 6512  
D-31  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
5
6
A
B
C
D
A
B
C
3
.
3
V
T
O
U
C
H
S
C
R
E
E
N
I
N
T
E
R
F
A
C
E
C
I
R
C
U
I
T
R
Y
(
T
B
D
)
F
B
1
1
N
5
T
C
6
1
F
B
M
H
3
2
1
6
H
M
5
0
0
.
1
J
1
3
J
1
5
0
0
0
R
R
R
4
5
5
9
0
1
M H 1  
M H 2  
M H 3  
M H 4  
7
2
9
4
5
6
3
8
1
1
1
1
1
1
1
1
1
1
1
Y
0
_
P
1
U
6
Y
0
_
_
N
P
1
Y
0
_
P
9
8
1
0
4
5
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
1
2
4
5
4
Y
1
1
Y
0
0
1
1
2
2
P
D
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
a
a
a
a
a
a
R
R
R
R
R
R
2
3
4
5
6
7
2
3
4
5
6
7
2
3
4
5
6
7
Y
0
_
N
6
Y
Y
Y
Y
Y
M
P
0
R
5
2
Y
1
_
P
1
1
1
1
7
9
0
1
3
4
5
7
9
0
1
3
5
6
7
Y
1
_
N
1
1
Y
1
_
N
Y
2
_
N
M
M
P
0
R
5
3
Y
2
_
N
P
0
R
5
4
Y
2
_
Y
2
_
P
1
L
C
H
A
S
S
I
S
0
0
R
5
5
2
1
0
3
4
5
6
7
8
9
C
K
O
U
T
_
N
1
a
a
a
a
a
a
a
a
a
a
a
a
G
G
G
G
G
G
B
B
B
B
B
B
2
1
1
3
6
7
b
D
C
L
K
C
C
C
L
L
L
K
O
U
T
M
P
R
5
6
C
L
K
O
U
T
_
N
C
L
K
O
U
T
_
P
1
K
I
N
C
L
K
O
U
T
_
P
K
I
N
D
1
1
1
1
1
1
1
1
1
1
2
2
2
6
H
E
A
D
E
R
-
7
X
2
S
H
T
D
N
D
D
D
D
D
D
D
D
D
D
N
C
2
3
4
4
8
6
2
8
V
V
V
V
C C  
C C  
C C  
C C  
R
4
0
R
4
3
R
4
1
R
1
4
2
R
4
4
3
.
3
V
1
0
0
0
0
1
0
0
1
0
0
G
3
1
6
8
-
0
5
0
0
0
2
0
2
-
0
0
1
0
K
F
B
1
8
1
2
2
0
L
P
V
D
S
/
V
C
C
B
D
A
a
C
K
L
3
.
3
V
L
L
V
C
C
a
t
a
E
n
a
b
l
e
F
B
M
H
3
2
1
6
H
M
5
0
1
N
T
7
3
8
N
O
T
E
:
L
V
D
D
D
S G  
S G  
S G  
ND  
ND  
ND  
3
2
3
3
4
1
1
G
N D  
N D  
N D  
N D  
N D  
C
6
2
T
o
r
e
c
e
i
v
e
b
a
c
k
l
i
g
h
t
c
o
n
t
L
r
o
l
D
(
B
A
C
K
L
)
f
r
o
m
C
P
U
b
o
a
r
d
L
V
5
2
8
4
G
G
G
G
w
h
e
n
u
s
i
n
g
I
C
O
P
_
0
0
9
6
V
S
T
r
a
n
s
m
i
t
t
e
r
.
F
B
B
6
L
V
T
h
e
c
o
n
C
n
)
e
c
t
i
o
n
f
-
r
o
m
p
i
n
4
2
o
n
t
h
e
e
T
n
T
L
n
v
i
d
o
e
o
c
e
o
n
n
e
c
t
o
r
1
2
9
1
P
P
L
L
G
N
D
D
0
.
1
(
V
S
Y
N
t
o
U
1
2
3
m
u
s
t
b
e
b
r
o
k
a
d
c
n
n
c
t
e
d
t
o
F
1
4
L
L
G
N
p
i
n
4
3
.
V
c
c
P
I
N
2
8
V
c
c
P
I
N
3
6
V
c
c
P
I
N
4
2
V
c
c
P
I
N
4
8
S
N
7
5
L
V
D
S
8
6
A
C
4
6
C
4
9
C
4
7
C
5
0
C
4
8
C
5
1
C
5
3
C
5
2
C
5
4
2
3
2
u
F
B
/
6
.
2
3
V
K
C
5
5
C
5
6
C
5
7
C
5
8
J
M
K
1
6
J
2
6
L
0
.
1
0
.
1
0
.
1
0
.
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
1
0
.
0
1
0
.
1
0
.
0
1
D
T
i
t
l
e
G
U
I
I
n
t
e
r
f
a
c
e
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
0
6
6
9
8
D
B
D
a
t
e
:
6
/
2
4
/
2
0
1
0
S
h
e
a
e
t
o
f
4
4
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
6
9
6
.
P
4
.
R
3
.
s
c
h
d
o
c
D
r
w
n
B
y
:
R
T
1
2
3
4
5
6
D-32  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
M
T
1
M
T
2
A
B
C
D
A
B
C
D
T
o
L
C
D
D
i
s
p
l
a
y
F
r
o
m
I
C
O
P
C
P
U
C
H
A
S
S
I
S
-
0
C
H
A
S
S
I
S
U
1
+
3
.
3
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A
A
A
A
A
A
B
B
A
A
A
A
B
B
B
B
B
B
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
6
4
4
4
4
4
5
7
8
1
3
4
6
7
9
0
2
3
5
6
8
9
0
2
3
5
4
4
3
3
3
3
1
0
9
8
5
4
Y
Y
Y
Y
Y
Y
0
0
1
1
2
2
_
_
_
_
_
_
N
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
Y
0
M
7
8
9
1
1
P
Y
0
P
J
1
N
P
N
P
Y
1
M
Y
1
P
Y
2
_
P
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
M
M
M
M
H 1  
H 2  
H 3  
H 4  
H
e
a
d
e
r
2
2
X
2
0
J
2
Y
2
M
1
1
3
5
7
9
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
2
Y
2
P
Y
2
_
_
N
P
V
A
D
0
V
A
D
1
3
1
0
1
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
2 6  
3 3  
3 2  
C
L
K
I
N
Y
1
V
A
D
2
V
A
D
1
C
L
K
I
N
C
C
L
K
O
O
U
T
T
_
N
P
0
1
2
3
2
3
4
5
6
7
C
L
K
O
U
T
M
L
K
U
_
Y
1
_
_
N
P
V A  
V A  
V A  
D
D
D
6
8
1
V A  
V A  
V A  
D
D
D
7
9
1
C
L
K
O
U
T
P
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
4
Y
0
1
1
1
1
1
1
1
2
2
2
2
1
0
1
2
3
4
5
6
7
8
9
0
2
7
0
1
S
H
T
D
N
+
3
.
3
V
3
5
7
9
1
3
5
7
9
1
3
5
7
9
1
3
Y
0
_
O
N
U
C
H
A
S
S
I
S
1
4
3
N
N
C
C
C
L
K
T
_
P
1
1
4
2
8
2
C
L
K
O
U
T
_
N
1
1
1
1
1
1
1
1
V
C
C
C
C
C
C
V B  
V B  
V B  
D
D
D
2
4
6
V B  
V B  
V B  
D
D
D
3
5
7
V
1
V
3
7
9
B
V
A
B
C
D
K
L
L
V
P
D
L
S
V
C
C
C
C
2
V
B
D
1
0
V
B
D
1
1
E
L
V
+
3
.
3
V
2
2
.
1
4 2  
3 6  
3 1  
V
B
G
D
C
E
L
K
5
1
7
4
6
V
V
V
L
L
L
D S  
D S  
D S  
G N  
G N  
G N  
D
D
D
R
1
K
G
G
G
G
G
N
N
N
N
N
D
D
D
D
D
V
B
1
1
2
4
R
2
1
0
3
0
8
P
P
L
L
G
N
D
D
2
G
3
1
6
8
-
0
5
0
0
0
1
0
1
-
0
0
L
L
G
N
S
N
7
5
L
V
D
S
8
4
A
+
3
.
3
V
B
A
C
K
L
J
3
1
3
5
7
9
1
1
2
4
6
8
0
2
4
Y
0
_
P
Y
0
_
N
N
Y
1
_
P
Y
1
_
Y
2
U
_
N
T
Y
C
2
L
_
K
P
O
1
1
1
C
L
K
O
_
N
U
T
_
P
1
3
+
3
.
3
V
H
e
a
d
e
r
7
X
2
C
1
T
i
t
l
e
C
2
C
3
C
4
C
5
C
6
C
7
C
8
C
9
C
1
0
C
1
1
2
2
u
F
/
6
.
3
V
L
V
D
S
,
T
r
a
n
s
m
i
t
t
e
r
B
o
a
r
d
J
M
K
3
1
6
B
J
2
2
6
K
L
0
.
1
0
.
1
0
.
1
0
.
1
0
.
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
0
.
0
1
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
B
A
0
6
8
8
2
D
a
t
e
:
5
/
7
/
2
0
1
0
S
h
e
e
t
1
o
f
1
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
8
8
2
-
P
1
-
R
0
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
1
2
3
4
07270B DCN 6512  
D-33  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
U
6
1
2
6
5
A
B
C
D
A
B
C
D
+
5
V
V
3
4
R
7
1
.
3
7
K
K
J
1
S
P
3
0
5
0
1
2
1
1
2
3
4
5
6
7
8
9
1
J
2
S
T
R
A
I
G
H
T
T
H
R
O
U
G
H
E
T
H
E
R
N
E
T
A
A
A
T
T
R
X
+
-
2
1
4
3
6
5
8
7
X
1
6
5
+
5
X
D
+
1
C
H
A
S
S
I
S
-
1
L
E
0
L
E
D
0
+
1
4
A
R
X
-
1
3
R
8
L
E
D
1
+
1
.
3
7
L
E
D
1
1
0
D
F
1
1
-
8
D
P
-
2
D
S
(
2
4
)
C
O
N
N
_
R
J
4
5
_
L
E
D
G
N
D
T
P
1
+
5
V
+
5
V
-
I
S
O
T
P
2
S
D
A
P
2
P
3
U
8
L
1
1
1
S
D
A
4
2
1
1
5
1
1
7
+
5
V
-
O
U
T
2
3
4
5
6
7
8
2
3
4
5
6
7
8
V
D
D
1
V
D
D
2
1
1
4
3
4
7
u
H
L
M
E
0
5
0
5
S
C
L
G
N
D
1
G
N
D
2
R
1
6
C28  
4.7uF  
1
k
T
P
4
+
C17  
100uF  
R
1
0
H
e
a
d
e
r
8
S
C
L
H
e
a
d
e
r
8
2
.
2
k
T
P
3
I
S
O
-
G
N
D
D
S
3
G
R
N
G
N
D
G
N
D
T
i
t
l
e
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
P
W
R
-
E
T
H
E
R
N
E
T
)
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
A
0
6
7
3
1
A
D
a
t
e
:
1
/
2
8
/
2
0
1
0
S
h
e
e
t
1
o
f
3
LG1  
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
1
_
E
T
H
E
R
N
E
T
.
S
c
h
D
o
D
c
r
a
w
n
B
y
:
R
T
1
2
3
4
D-34  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
V
-
B
U
S
A
B
C
D
A
B
C
D
V
-
B
U
S
C19  
0.1uF  
C20  
0.1uF  
C21  
R
2
1
1
4.7uF  
C24  
0.1uF  
.
2
k
C22  
0.1uF  
3
.
3
V
G
N
D
U
9
C23  
2
8
2
2
3
2
6
D
S
4
0.1uF  
G
N
D
C
C
C
C
1
1
2
2
+
V
C
C
2
4
1
2
3
-
O
N
L
I
N
E
G
N
D
R
1
2
+
-
V
-
7
4
.
7
5
k
V
+
G
R
N
J
3
6
9
1
2
2
2
6
4
8
T
X
D
-
A
1
1
1
4
3
2
9
1
1
T
X
D
-
B
1
7
5
9
4
8
3
2
V
D
D
T
X
D
T
I
1
T
T
T
O
1
2
3
R
C
X
D
R
T
S
-
A
0
1
R
T
S
-
B
R
S
T
R
T
S
T
I
2
O
O
T
S
1
1
D
T
R
-
A
D
T
R
-
B
S
U
S
P
E
N
D
D
T
R
T
I
3
D
S
R
N
/
C
2
2 5  
2 3  
2 7  
1
2
3
R
X
D
-
A
1
1
1
1
1
9
8
7
6
5
4
5
6
7
8
R
X
D
-
B
S
U
S
P
E
N
D
R
X
D
R
R
R
R
R
O
O
O
O
O
1
2
3
4
5
R
R
R
R
R
I1  
I2  
I 3  
I 4  
I5  
T
R
X
T
D
J
4
C
T
S
-
A
C
T
S
-
B
C
T
S
R
S
3
2
1
4
4
5
7
8
D
S
R
-
A
D
S
R
-
B
B
D
+
D
D
V
V
+
D
S
D
T
R
D
U
1
0
D
C
D
-
A
D
C
D
-
D
-
-
D
C
D
D
C
V
-
B
U
S
R
I
-
A
R
I
-
B
1
0
V
B
U
D
S
R
B
E
G
-
I
R
I
R
I
6
G
N
U
S
G
N
D
G
N
D
2
2
1
2
2
0
5
S
S
T
A
T
R
O
2
U
1
1
2
U
S
B
H
T
D
N
G
N
D
D
F
1
1
-
1
0
D
P
-
2
D
S
(
2
4
)
C
P
2
1
0
2
1
2
6
5
0
R
S
P
3
2
4
3
E
U
1
4
C
H
A
S
S
I
S
0
C25  
0.1uF  
C26  
1uF  
G
N
D
R
1
5
3
4
n
c
n
c
N
U
P
2
2
0
2
W
1
G
N
D
G
N
D
M
T
1
M
T
2
M
T
-
H
O
L
E
M
T
-
H
O
L
E
C
H
A
S
S
I
S
C
H
A
S
S
I
S
-
1
T
i
t
l
e
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
U
S
B
)
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
A
0
6
7
3
1
A
D
a
t
e
:
1
/
2
8
/
2
0
1
0
S
h
e
e
t
2
o
f
3
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
2
_
U
S
B
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
1
2
3
4
07270B DCN 6512  
D-35  
Download from Www.Somanuals.com. All Manuals Search And Download.  
1
2
3
4
+
5
V
-
I
S
O
R
9
9
4
.
9
A
B
C
D
A
B
C
D
+
5
V
-
A
D
C
C27  
I
S
O
-
G
N
D
C1  
0.1uF  
4.7uF  
C2  
C3  
C4  
C5  
C6  
C7  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
P
1
U
1
A
N
-
C
H
0
1
1
1
1
1
2
2
2
5
6
7
8
9
0
1
3
1
2
1
1
2
3
4
5
6
7
8
9
C H  
C H  
C H  
C H  
C H  
C H  
C H  
C H  
0
1
2
3
4
5
6
7
V
D
D
D
D
D
N
I
S
O
-
G
N
D
A
2
N
-
C
H
1
V
A
N
-
C
H
3
S
H
T
A
N
-
C
H
3
A
5
N
-
C
H
4
9
5
1
1
6
S
S
D
A
A
N
-
C
H
C
L
A
N
-
C
H
6
0
2
A
2
A
N
-
C
H
7
A
1
4
.
.
7
5
k
4
7
8
1
2
4
4
A
0
N
N
N
N
N
N
A
C
R
1
C
C
C
C
C
G
2
7
6
U
2
U
3
R
F
E
F
J
A
N
A
L
O
G
I
N
P
U
T
1
2
3
6
5
4
1
2
3
6
5
4
2
1
2
2
1
R
E
-
A
C8  
0.1uF  
C9  
0.1uF  
2
2
3
8
C10  
4.7uF  
C11  
0.01uF  
N
N
D
C
C
4
7
5
k
5
N
D
D
G
N
R
2
S
M
S
1
2
S
M
S
1
2
M
A
X
1
2
7
0
B
C
A
I
+
I
S
O
-
G
N
D
I
S
O
-
G
N
D
I
S
O
-
G
N
D
I
S
O
-
G
N
D
+
5
V
-
I
S
O
+
5
V
-
I
S
O
+
5
V
+
5
V
-
I
S
O
R
3
R
4
2
.
2
k
2
.
2
k
C12  
0.1uF  
N
C
7
6
W
Z
1
7
P
6
X
C13  
0.1uF  
C14  
0.1uF  
R
5
R
6
1
2
.
2
k
2
.
2
k
S
D
A
S
C
L
D
S
1
D
S
2
U
4
A
U
5
I
S
O
-
G
N
D
1
1
1
1
1
1
1
9
4
5
2
3
0
1
6
3
V
D
D
2
G
N
D
V
D
D
1
I
S
O
-
G
N
D
2
5
4
8
6
7
1
N
C
N
C
Y
E
L
Y
E
L
S
D
A
2
S
D
A
S
D
A
1
I
S
O
-
G
N
D
N
C
C
N
N
C
N
C
3
4
S
C
L
S
C
L
1
S
C
L
2
2
2
U
N
4
C
B
7
G
N
D
1
1
G
N
D
D
G
N
G
N
D
W
Z
1
7
P
6
X
A
D
u
M
2
2
5
1
T
i
t
l
e
G
N
D
A
u
x
i
l
i
a
r
y
I
/
O
B
o
a
r
d
(
A
D
C
)
I
S
O
-
G
N
D
S
i
z
e
N
u
m
b
e
r
R
e
v
i
s
i
o
n
A
0
6
7
3
1
A
D
a
t
e
:
1
/
2
8
/
2
0
1
0
S
h
e
e
t
3
o
f
3
F
i
l
e
:
N
:
\
P
C
B
M
G
R
\
.
.
\
0
6
7
3
1
-
3
_
A
D
C
.
S
c
h
D
o
c
D
r
a
w
n
B
y
:
R
T
1
2
3
4
D-36  
07270B DCN 6512  
Download from Www.Somanuals.com. All Manuals Search And Download.  

Texas Instruments Computer Accessories MSP430 User Manual
Timex Watch 61 User Manual
Timex Watch M434 User Manual
Toshiba Car Satellite TV System HD S25 User Manual
Toshiba Personal Computer PSAG9X User Manual
USRobotics Switch 7905A User Manual
Vestax CD Player CDX 35 User Manual
ViewSonic Projection Television VS11200 User Manual
Waring Popcorn Poppers WPM10 User Manual
Wasp Bar Code Scanner CCD Scanner User Manual